
Theoretical Comparison of Testing Methods†

Richard Hamlet

Computer Science Department
Portland State University
Portland, OR 97207 USA

(503)464-3216
hamlet@cs.pdx.edu

Abstract

Comparison of software testing methods is meaningful only
if sound theory relates the properties compared to actual
software quality. Existing comparisons typically use anec-
dotal foundations with no necessary relationship to quality,
comparing methods on the basis of technical terms the
methods themselves define. In the most seriously flawed
work, one method whose efficacy is unknown is used as a
standard for judging other methods! Random testing, as a
method thatcanbe related to quality (in both the conven-
tional sense of statistical reliability, and the more stringent
sense of softwareassurance),offers the opportunity for
valid comparison.

1. INTRODUCTION

Testing methods are notoriously difficult to compare,
because most testing lacks a theoretical foundation.For
example, it certainly seems reasonable to test until every
statement of a program has been executed. Itwould be
stupid not to do so, since a never-executed statement could
harbor an arbitrarily bad bug. Buthaving achieved state-
ment coverage, what does the tester know? It is easy to
show that statement coverage can be achieved by many dif-
ferent test sets, some of which expose bugs while others do
not. How then can the worth of statement testing be
assessed? Solong as the relationship between a method’s
basis (in the example, covering statements) and properties
of the software (here, the occurrence of bugs) remains
imprecise, meaningful comparisons between methods,
indeed comparison between two applications of the same
method, cannot be made.

There are a number of apparently sensible, analytic
comparisons thatcanbe made among testing methods,
which on analysis are less useful than they seem. Thecom-
parisons are precise, but they utilize parameters unrelated to

† Work supported by NSF grant CCR-8822869.

true efficacy of the methods, and so can be fundamentally
misleading. The“subsumes” ordering is of this kind.

Empirical comparison of methods seems the obvious
solution to all these difficulties. Itstwo drawbacks are that
it depends heavily on the particular programs and environ-
ments selected for trial, and often on the relative ability of
human subjects who participate in the evaluation. Again,
the real fault is with our lack of theory: because we do not
know how a method is related to software properties of
interest, we do not know how to control for the important
variables.

In §2 below we critique past attempts to compare testing
methods, showing where these are flawed in principle. In
§3 we suggest a new basis for comparison.

2. PRIOR COMPARISON OF TESTING METHODS

In situations where testing resources are scarce or where
tests must demonstrate real software quality, the practitioner
is all too aware of the need to compare methods. From the
opposite side, the inventor of a new method is called upon
to justify it by comparison to existing methods. When the
call for comparison is loud enough, comparisons will be
brought forward, but in the absence of theoretical founda-
tions they cannot be trusted.

2.1. Empirical Comparisons

Empirical studies comparing testing methods must con-
tend with two potential invalidating factors:

(1) (programs) A particular collection of programs must be
used—it may too small or too peculiar for the results to
be trusted.

(2) (test data) Particular test data must be created for each
method—the data may have good or bad properties not
related to the method.

The use of human beings to generate test data is one way in
which (2) can occur. Because test generation requires the
use of information about the program or its specification, a
human being may use this information in some (uncon-
scious) way, distorting the test. It is then certainly unfair to
attribute a quality to the test method that in fact resides in

the human testers. An experimenter can attempt to control
for this “nose-rubbing effect” [11], but since human skill
varies widely, and is little understood, control is imperfect.

The program choice (1) for an experiment may be
biased both by program attributes and by the kind of faults
present. Ifthe programs are real ones that arose in practice
these difficulties merge; however, if the faults are seeded, or
the programs arose in a training environment, the bias can
be twofold. Sinceprogram characterization is not well
understood, no quantitative measures of their properties are
available. Itcertainly seems safer to trust results of a study
in which the researchers worked hard to control the environ-
ment [1], but some unknown factor can confound the best
human efforts when understanding is lacking.

Factor (2) can be handled in several ways:

a) Worst-case analysis.By investigatingall test sets that
satisfy a method, one can accurately predict the worst
that method might do. The main drawback of worst-
case analysis is that it is tedious and usually cannot be
automated. Therehave been few followers for How-
den’s careful study of path coverage on a set of textbook
programs [13]. Furthermore, as we show in §2.3 below,
capturing worst-case analysis as a comparison technique
makes all methods technically incomparable.

b) Random selection.When a method involves drawing
test points at random from a distribution, there should
be no bias introduced. However, if the required distribu-
tion is unknown, then using programs for which it is
given biases an experiment in favor of an actually
impractical method. Random selection of test sets may
also be used for methods that themselves have no proba-
bilistic aspect. If the test sets have a smooth distribu-
tion, sampling them yields an average-case result. (That
any useful real situation could be known to have such a
distribution seems unlikely, howev er.) Even though it
may not yield a true average case, using random selec-
tion to satisfy a coverage method (instead of employing
human subjects) can control the nose-rubbing effect.

c) Automatic test generation.Some methods (notably path
testing [23] and recently mutation testing [5]) can be
used with algorithms or heuristics that generate data to
satisfy the method. There can be a hidden bias through
the choice of programs, those on which a heuristic hap-
pens to work, for example. Also,it must be remem-
bered that the results apply only to that narrow version
of the method using the generation algorithm. (Further
discussion appears in §2.4.)

It is not unfair to say that a typical testing experiment
uses a small set of toy programs, with uncontrolled human
generation of the test data. That is, neither (1) nor (2) is
addressed. Suchstudies can be helpful in understanding
methods, but they do not provide comparisons. It is inter-
esting to note that an exceptional recent study [16] in which
real programmers tested real programs, showed that the

most significant factor in finding bugs was not the method,
but the skill of the human subject.

2.2. The“Subsumes” Ordering

The majority of precise, published comparisons between
testing methods use the following ordering:

MethodA subsumes(or includes) methodb if f a test
that satisfiesA necessarily satisfiesb.

For example, a “method” in which every test result is
required to be correct subsumes one in which only 80% of
the results must be correct. The inclusion is strict because a
test barely satisfying the 80% method must fail to satisfy
the other.

Unfortunately, only some methods, those with a com-
mon basis, can be compared usingsubsumes.Variants of
path coverage can be compared, and these fall into a fairly
simple hierarchy [24, 19]. But many methods are incompa-
rable—neither subsumes the other [28].Trivial differences
can make methods technically incomparable, as in the three
mutation variants [8, 4, 30].

The subsumes relation is more seriously flawed than by
limited applicability, howev er. All algorithmic testing
methods are necessarily imperfect in that none can guaran-
tee correctness of programs in general [14, Ch. 4]. When
one imperfect method subsumes another, the relation
expresses nothing about the ability to expose faults or
assure quality. It can happen thatA subsumesb, but b actu-
ally addresses these real properties better. Intuitively, the
trouble with subsumes is that it evaluates methods in their
own terms, without regard for what’s really of interest.For
example, consider statement testing as methodA, and letb
be “haphazard” testing in which there is no requirement but
that the test set be nonempty and the results be correct.
ObviouslyA subsumesb. But b may find faults thatA does
not. Considerthe Pascal function:

function Q(X: real): real;
begin
if X < 0 then X := -X;
Q := sqr(X)*2

end

Suppose this program is intended to compute the function of

t: 2√  |t|. (Theprogrammer has inadvertently used the Pas-
cal square function instead of the square root.) The test
input set: {1, 0, -1} achieves statement coverage yet uncov-
ers no failure, while {3} is haphazard (and does not cover
all statements), yet does expose a failure.

Such examples are not really pathological. Because
there is no necessary connection between covering state-
ments and finding faults, paying attention to the former
diverts attention from the latter. In this case the haphazard
tester ignored the absolute value part of the program, and
concentrated on the square(root), with good results. In a
similar way, the dataflow variants of path testing [24, 15]

may prove superior to full path testing (which subsumes
them), because they concentrate attention on important
cases that might be trivially treated in the welter of all paths.
The idea of “trivial” satisfaction of methods will be further
examined in §3.2.

If we include the human process of selecting test points,
or use mechanical means to generate test data, the subsumes
ordering shows its flaws more clearly. One method may be
so difficult to understand that in generating test points, triv-
ial choices are encouraged. Another method, easier to use,
may lead to more representative data. Nothingstops the
poorer, more complex method from subsuming the better,
simpler one. Coverage tools exacerbate rather than alleviate
this problem: when a person trys to fill gaps in a hard-to-
understand coverage method, as required by a test tool, triv-
ial data comes naturally to mind, and the tool’s subsequent
approval glosses over the poor test quality.

2.3. Gourlay’s Comparison

In his excellent theoretical framework for testing [7],
Gourlay defines a partial orderingM ≥ N between methods
M andN, which claims to capture the intuitive idea that one
method is more powerful than another. His definition gives
some of the same results assubsumes(for example that
BRANCH ≥ STATEMENT but STATEMENT ≥/ BRANCH
for the two methods with those names).We agree exactly
with Gourlay’s intuition about method comparison (pre-
sented as motivation to his Definition II.B-1). He states that
for methodM to be stronger thanN should mean that ifN
exposes a failure, thenM must necessarily do so as well.
However, his Theorem II.B-7 states that when one method
subsumes another, his ordering holds. The results about
BRANCH and STATEMENT are consistent with Theorem
II.B-7, but appear to conflict with the critique ofsubsumes
in the previous section.

Because Gourlay’s theoretical framework is a good one,
it can be used to explicate the problem and to show that
Definition II.B-1 does not capture his intuition.With a bet-
ter definition we show that no algorithmic method is ever
comparable to any other such method. This formal result
exactly captures the general case againstsubsumespre-
sented in §2.2.

It is Gourlay’s “choice construction” (Definition II.A-3)
that causes the difficulty. In a testing system using this con-
struction, a method corresponds to a collection of different
tests, but the method “isOK” if any test in the collection
executes successfully. Thus, for example, statement testing
for a given program and specification is a method with
many potential tests, all executing every program statement,
but some may execute successfully, and some may expose a
failure. Gourlaycalls statement testingOK if at least one of
the tests is successful. He then takesM ≥ N to mean that
for all programsp and specificationss

p OKM s ☞ p OKN s,

wherep OKQ s stands for the success of methodQ. But for
a choice system, Gourlay’s “success” is not what we intu-
itively think of as success.

Recalling the discussion of §2.2, erroneous comparison
of methods results from the existence of several tests that
satisfy each method, only some of which expose present
bugs. For an incorrect program, call a test that succeeds
(and thus misleads the tester) amisleadingtest. Ifa method
is effective, that is, if it allows a mechanical decision as to
whether a triple (T, p, s) consisting of a test, program, and
specification is satisfactory, then it is a consequence of the
undecidability of the program-equivalence problem that
misleading tests exist for that method. At the same time, if
a program is not correct, then some test exposes this fact,
and because most methods are monotonic (in the sense of
We yuker [29]), any method can be made to incorporate such
a test. Calla test that finds a failure in this way anexposing
test. Anexposing test and a misleading test are enough to
intuitively invalidate any comparison between methods.
Suppose methodA were “better” thanb. Let tA be a mis-
leading test satisfying methodA andtb be an exposing test
satisfyingb. Then in fact A is not better thanb using
Gourlay’s intuitive definition. However, turning the relation
around, exactly the same argument applies, hence the meth-
ods cannot be compared.

We can capture this intuitively correct property of meth-
ods in Gourlay’s theory by altering his definitions. First,
define atesting methodto be a relation over tests, programs,
and specifications, replacing his Definition II.A-4. (In a
choice-construction testing system, the single value of
Gourlay’s method definition would be the set of all tests for
which this relation holds. Thus the definitions are equiv-
alent.) Callthe methodeffectiveif the relation is recursive.
Second, replace his Definition II.B-1 with one that refers to
testsT, not to sets of tests:

M is stronger thanN, M ≥ N, iff :
∀ p∀ s(∃ T(N(T, p, s) 〈 ¬ (p OKT s)) ☞

∀ T ′(M(T ′ , p, s) ☞ ¬ (p OKT ′ s))).

That is, if the weaker method has any exposing test, then
ev ery test of the stronger method must be exposing. Thisis
precisely what Gourlay calls for in motivating his definition.
The choice construction simplified all the substance out of
his Definition II.B-1.

With the revised definitions, and the properties of effec-
tive methods noted above, we hav ethe following theorem in
contrast to Gourlay’s II.B-7 and II.B-8:

Theorem:

All effective, monotonic test methods are incompara-
ble under the ordering≤.

In particular, the PATH methods (including STATEMENT
and BRANCH) and the mutation method Gourlay consid-
ers, are incomparable, not ordered as he claims. The

revised definition above captures a kind of “worst-case sub-
sumes,” requiring that when one method finds a bug, a
stronger method must also.With such a definition, no
effective method would subsume any monotonic method.

It is a special case of the Theorem that≤ is not reflexive
for an effective, monotonic method; that is, no suchM has
M ≤ M . The intuitive content of this special case is that a
method cannot be evaluated even relative to itself; two
applications of the same method may have different out-
comes. Thiscertainly agrees with experience, and under-
lines the difficulty with empirical comparisons discussed in
§2.1.

Perhaps it is worth explicating Gourlay’s definition in
the same terms as above, so that its intuitive content can be
seen. Take our (equivalent) replacement for Definition
II.A-4. Thenhis Definition II.B-1 reads for a choice-con-
struction system:

M ≥ N iff:
∀ p∀ s(∃ T(M(T, p, s) 〈 p OKT s) ☞

∃ T ′(N(T ′ , p, s) 〈 p OKT ′ s)).

That is, if there is a successful test in the more powerful
method, then there must be one in the weaker method. It is
more revealing to state this as what shouldnothappen:
there should not be a misleading test in the more powerful
method, but all tests of the weaker method are exposing.
That property is certainly desirable, and perhaps an
improvement onsubsumes,but a far cry from the intuitively
correct idea that there should not be a misleading test in the
more powerful method, but an exposing test in the weaker
one.

2.4. UsingOne Method to Judge Another

It is tempting to compare test methods directly, in a kind
of mutual coverage competition. Given (1) a set of pro-
grams, (2) several test collections, each satisfying a test cri-
terion for these programs, and (3) analyzers for each crite-
rion, the test collections can be interchanged and submitted
to the analyzers. The results have an intuitively pleasing
form. For example, one might learn that the data for
method R always seems to satisfy method P, but the data for
method P usually fails to satisfy R. The conclusion that R is
better than P seems inescapable. When one method (say M)
is assumed to be the standard (call M the “touchstone”
method), then P and R can be compared by seeing to what
extent they satisfy M; or, a single method P can be evalu-
ated by the extent to which it satisfies M.

Such comparisons are analogous to validating an elec-
tronic instrument by checking its readings against another
known to be erratic. They would probably not be made if
they could not be automated, but when test data is generated
and a coverage tool is available, they can be. Thus mutation
in FORTRAN programs is often involved (because such a
tool is easily available [2]), and random test data is the most
commonly generated.

As experiments the results have meaning only so far as
the programs are representative, and the test generations
free from bias, as described in §2.1. Furthermore, the sim-
plest experiments (does P satisfy M?) are no more than a
sample taken to investigate thesubsumesordering. Insofar
as many experiments exhibit method-P tests that are also
method-M tests and none that are not method-M tests, it is
more likely that P subsumes M. The quality of the experi-
ment determines to what extentsubsumesis actually being
captured; however, the difficulties with this ordering pre-
sented in §2.2 remain, and are the more fundamental.

The first published use of such method comparisons
appears to be Ntafos’s paper defining required-element test-
ing [18]. In it he attempts to compare this method with
branch testing and a peculiar version of random testing,
using mutation as a touchstone. The work suffers from the
usual experimental difficulties described in §2.1, because a
limited number of small programs were used, and the data
for branch- and required-element testing were “minimal”
(generated by Ntafos in a way that is not described). Fur-
thermore, there were few cases in which all mutants were
killed by any of the methods, so the comparison is techni-
cally in terms of the fraction killed, without analyzing
which mutants constitute the fraction in each case.For
example, one of the programs was (a supposedly corrected
version of) the triangle-classification program of [23]. The
mutation system generated 286 incorrect mutants, and the
three methods (random, branch, and required-element)
killed respectively (80%, 91%, and 99%) of these. The
implication is that required-element testing is thus demon-
strated to be the best of the three methods, using the muta-
tion touchstone.

Aside from the experimental difficulties, comparisons
like this can be fundamentally misleading.Part of the rea-
son is that the programs investigated were chosen to be cor-
rect. Inpractice, the whole point of testing is to learn about
a program that is probably not correct. Although Ntafos
does not give the information, the following is a possible
interpretation of his data. Suppose that one of the four
mutants not killed by required-element testing isP281, and
suppose further thatP281 was killed by branch testing. (It is
easy to construct such a case, even though mutation sub-
sumes branch testing, as indicated in §2.2.) IfP281 were
being tested (instead of the correct triangle program) we
have exactly the case of a misleading test for required-ele-
ment testing and an exposing test for branch testing. The
flaw presented relies on not all mutants being killed by the
“better” method, but it extends to a more extensive compari-
son, too. So long as the touchstone method is not perfect in
the sense of guaranteeing correctness, programs likeP281

will exist, and the comparison can mislead us.

What’s disturbing about cross-method exchanges is that
there may be a hidden correlation between the methods
being compared, a correlation which is based on some fea-
ture unrelated to actual program quality. Then the

correlation determines the winner, in a misleading way. For
example, Budd and Miller [3] suggest the hypothesis that
the more times a statement is executed by tests, the more
likely they are to expose faults in that statement. They
experimented with this idea using mutation as a touchstone,
and programs that varied in their degree of iteration.We
believe the hypothesis; indeed, repeated statement execution
is assurance testing restricted to the control-point part of the
state space, as described in §3.2 below. Howev er, the exper-
iment is flawed because there is a direct correlation between
mutation and state-space coverage. Whenthe state space is
better covered, more mutants should be killed, so the exper-
iment’s outcome is predetermined, and it provides no inde-
pendent support for the hypothesis.

Tw o special cases of cross-method comparison deserve
comment. Itcan be used to evaluate heuristics for generat-
ing data.A heuristic attempts to approximate some method,
and that method may then serve to judge the quality of the
heuristic. DeMilloand Offutt [5] use this technique to eval-
uate a constraint-based heuristic for generating (sometimes)
mutation-adequate data. Although it may seem unexcep-
tionable to use a parent method to evaluate the quality of an
approximation, the technique is suspect because it is based
on experimental determination ofsubsumes.It could hap-
pen that the heuristic happens to generate mutation-ade-
quate data of a peculiar kind, which is of low utility relative
to actual program quality. Other mutation-adequate data,
which might be typically found by a human being not using
the heuristic, could be much better at finding failures. Then
the observed result that the heuristic does achieve a substan-
tial fraction of mutation coverage, is misleading. The rea-
son is the one that has appeared again and again in this sec-
tion: methodsshould not be evaluated in their own terms,
when those terms cannot be connected to program quality.

The second special case of using one method with
another is an investigation using random testing on struc-
tural methods. [27] suggests calculating the number of ran-
dom tests required to attain coverage with a given probabil-
ity. As a theoretical idea this gets at the difficult relation-
ship between input distribution and state-space coverage
(see §3.2 below). Asa comparison idea, however, it seems
no better than the others considered in this section. The
random test may have statistical validity as described in
§3.1 below, the more so the larger it is. But there seems no
necessary virtue in a method that is or is not resistant to sat-
isfaction by random inputs.

Thus comparison by using methods on one another in
general suffers from the sins of both empirical study and
subsumesanalysis.

2.5. AxiomaticComparison

Elaine Weyuker has attempted to devise axioms for test
adequacy criteria [29]. Although there are philosophical
differences, an adequacy criterion and a test method are for-
mally identical (a predicate satisfied by a program,

specification, and test), so her axioms can be used to com-
pare methods. The comparison of [29] has generated some
controversy; [31] suggests that the application to practical
methods does them an injustice. Axiomatic methods proba-
bly can never produce satisfactory comparisons, because of
the unsolvable nature of the correctness problem. Since
tests should in some way relate to correctness, but this can-
not be realized in general, any axiomatic characterization
will necessarily be weak, and if strengthened can only be
directed at extraneous features of test methods. Thus com-
parisons will fall between two stools: eitherthe methods
will not be distinguished by the axioms (when they deal
with essential features), or they will be distinguished, but
only on the basis of inessential features.

However, the point of Weyuker’s work is to provide a
framework for absolute evaluation, not comparison, and to
explicate the relationships between (perhaps less-than-obvi-
ous) properties of test methods. Insofar as her axioms
expose problems in the way we think about methods, they
are a useful framework.

3. PROPOSAL FOR COMPARING TESTING METH-
ODS

Any comparison of testing methods can be criticized as in
§2: if the comparison shows one method to be superior, an
example can nevertheless be found in which the superior
method is misleading and the inferior is not. Therefore it is
crucial that the terms of comparison be plausible, that they
be founded in properties of programs that go beyond inci-
dental features of test-method definition. If the terms of
comparison are unobjectionable, there cannot be unexpected
and misleading correlations between trivial properties of
methods and their judged relative quality. Program correct-
ness and its correlates such as performance are the appropri-
ate comparison properties, but except in special cases these
are not related to any effective testing method [14, Ch. 4].
The only other possibility is to treat a test as a sample of the
program’s behavior, and to perform statistical analysis of
that sample. This is the obvious way to handle the mis-
match between the infinity of points that define functional
behaviors like correctness and performance, and the finite
collections that tests must be.

3.1. ComparisonUsing Failure-rate Reliability

The first published results that can claim to be more
than an anecdotal comparison of methods are those of
Duran and Ntafos [6] comparing random and partition test-
ing according to the failure-rate reliability model. Their
paper raises questions about its many assumptions, but it is
unique in basing a comparison on properties of programs
that are of real interest (how likely is a test to excite a fail-
ure, for example), and stating the assumptions needed to
derive the result.

Partition testing is a class of methods that includes most
of those usually called “systematic,” in the sense that the

method makes a subdivision of the input space, and requires
testing within each subdomain. The archetype example is
path testing. The relation between two inputs: “they
execute the same path” divides a program’s input domain
into equivalence classes.Path testing is the method that
requires selection of data from each of these classes. Prop-
erly speaking, the partition is the relation or the division
into classes; however, the classes themselves are loosely
referred to as partitions. Not all schemes for subdividing
the input are equivalence relations, however. The subdo-
mains may overlap, which can result in test data that simul-
taneously lies in several (and thus the defining relation fails
to be transitive). Statementtesting (using the subdivision
based on two inputs executing the same statement) and
mutation testing (inputs killing the same mutant) are two
schemes with overlap. Thetechnical results apply only to
partition testing methods with true equivalence classes,
without overlap. (Theoverlap case will be discussed fol-
lowing presentation of the results.)

Duran and Ntafos attempted to characterize partition
testing in general, assuming just enough of its properties to
allow a comparison with random testing. They took the
conventional reliability model in which a program is charac-
terized by a failure rateR. When tests are drawn from the
operational distribution, the program is assumed to fail in
such a way that the long-term average of the ratio of failed
tests to total tests approachesR. This sampling defines
(overall) random testing. They further assumed the input
space to be partitioned in an arbitrary way, with each subdo-
main characterized by its own failure rate. Drawing from
the same operational distribution, but now forcing a fixed
number of points to lie in each partition, defines partition
testing. Thetwo schemes can be analytically compared by
relating the number of tests in each, the chance that the
overall tests’s points will fall in the various subdomains, and
the overall- to partitioned failure rates. Evidently the over-
all test should use as many points as the sum of those used
in the partitions.To handle the failure-rate relationship,
Duran and Ntafos assumed a distribution of partition values.
They tried a uniform distribution—the chance that a parti-
tion have a failure rate in [0,1] equally likely—and a distri-
bution that corresponds to the partitions being nearly homo-
geneous—the chance that a partition have a failure rate
close to 0 or close to 1 much higher than that the rate take
some intermediate value. Finally, the probabilities of the
overall random test points falling in each partition were
taken from a uniform distribution. Theuse of distributions
for some of the parameters means that experiments are
required, each defined by a drawing from the partition fail-
ure-rate distribution and the distribution of overall samples
among the partitions.

The results showed that partition testing is slightly supe-
rior to random testing in the probability of finding a failure,
the ratio being about 0.9, and the spread over various exper-
iments indicated by a standard deviation of roughly 0.1 in

the ratio.

In replicating and extending the results of [6], Taylor
and Hamlet [10] carried the analysis one step farther. They
varied the assumptions that characterize partition testing, in
the attempt to understand the counterintuitive results that
partition testing is not much better than random testing.
Their work is thus a comparison of different kinds of parti-
tion testing, with conventional reliability theory as the stan-
dard.

Because Duran and Ntafos present only two examples of
their comparison, Taylor [10] first checked the stability of
their results, by varying parameters like the number of parti-
tions, the failure rate, and the number of points per partition.
The results were found to be remarkably stable: partition
testing is slightly superior, but the superiority cannot be
improved by varying these parameters.Taylor [10] then
conducted two experiments in which some “small” parti-
tions were given high failure rates and low probability of
being hit by overall random tests. These experiments pro-
duced significant differences between the methods. Under
the same circumstances, he also varied the homogeneity of
the “small” partitions. These experiments amount to an
investigation of what makes partition testing work, with
overall random reliability testing as the standard. They dif-
fer from the ones conducted by Duran and Ntafos primarily
in that the assumed failure rate is low, a situation in which it
is possible to observe variations in the efficacy of partition
testing.

The results presented in [10] can be summarized as fol-
lows:

1) If partitions are not perfectly homogeneous, then the
degree of homogeneity is not very important.

2) Partition testing is improved when one or more parti-
tions have a substantially higher probability of failure
than that overall.

3) Finerpartitions are disadvantageous if their failure rates
are uniform.

Overlap must also be considered in comparing methods.
In statement testing, for example, the natural subdomains
are composed of inputs that cause execution of the same
statement; these subdomains are not disjoint. (In particular,
since all inputs execute the first statement, one subdomain is
the entire input space.)A true partition can be formed by
intersection of the natural subdomains, however. Points
selected from overlapping natural subdomains can be
thought of as selected from the true partition, but with
increased sample density in the overlap. Insofar as the fail-
ure rate is low in these parts, a method will suffer relative to
overall random testing; as it is high, the method will fare
better. If there is no reason to believe that the overlapping
regions are prone to failure, then a method with overlap will
come out a bit worse in comparisons that it would appear,
because its true partitions are a disadvantageous refinement.

We giv e a comparison in which the theory suggests a
clear preference: specification-basedvs. design-based test-
ing. It is the virtue of specification-based tests that they can
be devised early in the development cycle. Beforecode is
written, or even designed, the software requirements/specifi-
cations can be analyzed, and the potential inputs broken into
equivalence classes by required functionality. A good
example of this kind of testing is presented in [20], where
the system to be tested has a number of commands, each
with a number of parameters, and the partitions are defined
first by command, then refined by parameter value.
“Design-based” tests (a method just invented for this com-
parison, although variants are in practical use) can also be
devised before code is written. When the program has been
divided into modules of some kind, and its overall structure
defined in terms of their interfaces and dependencies, parti-
tions can be defined according to a kind of large-grain
“statement” coverage. Two inputs are in the same subdo-
main if they inv oke the same module. (This is an overlap-
ping subdivision.)

Design-based testing is the better method according to
the reliability-theory comparison. Results 2) and 3) above
apply. In specification-based partitions, there is less reason
to believe that the failure rates will differ than in design-
based partitions. The designers’ subjective estimates of the
difficulty of implementing each module, and the ability of
the programming staff assigned, are very good indications
of where to look for failures in the design-based partition.
Furthermore, specification-based partitions strive for cover-
age of functionality, which is evidently a refining criterion
not related to failure rate. The design-based partitions on
the other hand can be refined as implementation proceeds,
using improved information. Codemetrics may point to
fault-prone modules or parts thereof, and most important,
programmers can make subjective estimates of where there
might be trouble because the coding task was perceived to
be of uncertain quality. Thus the theory predicts that testing
effort should be devoted to design-based tests rather than
specification-based ones.

We end this section with a collection of assertions about
practical methods and their comparison, which the theory
supports for the reason given in parentheses. Anumber of
these are counterintuitive and suggest further analysis and
experimentation:

a) It is a mistake to refine a partition just to make its tests
more like each other. (The finer partitions will be more
homogeneous but will likely have uniform failure rates.)

b) Combiningtesting methods to create intersections of
partitions, for example by refining a structural partition
with a specification-based one as suggested in [25], will
not be an improvement over either method used alone.
(There is no reason to believe that the finer partitions
include any with high failure rates, and a high-failure
partition may be diluted).

c) Dataflow testing methods, particularly those that involve
more of the program context [15], should be superior to
full path testing. (The dataflow partitions are failure
prone because they concentrate on difficult program-
ming situations; full path testing refines the dataflow
partitions without any evident increase in the expected
failure rate.)

d) Specification-basedtesting that takes no account of
potential difficulties in design and implementation is not
much good. (See the comparison with design-based
testing immediately above.) The “cleanroom” project
[26] used specification-based testing, and so could be
improved with design-based testing.

e) Any tests that have been used in walkthroughs or as typ-
ical cases for design and implementation, are useless for
later finding failures. (Thepartitions they define are
likely to have low failure rates because they hav ebeen
thought through in the development process.)

f) Special-values testing is valuable because the special
values represent cases that are likely to fail. Hencea
special value that fits item d) or e) above is not so use-
ful. (To be valuable, the singleton special-value parti-
tion should be an extreme case of high failure probabil-
ity.)

3.2. ComparisonUsing Defect-rate Assurance

Statistical reliability is a better comparative testing mea-
sure than the subsumes relation considered in §2.2. It is
universally applicable, and its intended meaning—how
likely the software is to fail in normal usage—seems clearly
related to quality. Howev er, the plausibility of conventional
reliability for software has been called into question. The
flaws in software reliability theory are:

R) It assumes a long-term average failure rate, for which
there is little supporting evidence. Rather, it is observed
that software failures come in bursts with stable periods
between. Thisphenomenon is probably related to the
usage distribution (D) below.

D) It assumes an operational distribution of input values,
presumed to be the one describing normal usage of the
software, which may have no existence in reality. Usage
may have so many “modes” (for example, novice/expert
users) that no distribution is typical. More important,
the lack of a distribution exposes a larger conceptual
flaw: software quality does not intuitively depend on
normal usage.We judge quality by how well the soft-
ware behaves under unusual circumstances.

I) It assumes independent samples drawn from the opera-
tional distribution. Intuitively, making unbiased input
choices does not guarantee increasing confidence in the
results, because it can happen that the program’s internal
behavior is nearly the same for quite different inputs.
Because software is deterministic no assurance is gained
by repeating tests in this way.

W) Whatever one may think of the theory’s assumptions,
the derived results are not intuitively correct. For exam-
ple, the size and complexity of programs, specifications,
and their input domains, do not enter in any way.

The operational distribution (D) above is at the heart of the
difficulty with the conventional theory. The results must be
expressed in the form, “...the probability of failurein nor-
mal usage is...”. Thusthe comparison suggested in §3.1 is
also flawed—methods are compared only in their ability to
expose a failure under normal use. Insofar as this basis
misses the mark, the comparison does too.

It is usual to express software quality in a way quite dif-
ferent from the reliability view. For instance, in touting the
quality of the space-shuttle flight software, it is said to have
less than 0.1 defect per thousand lines of code. Such a mea-
sure is intrinsically related to quality, because its expression
is independent of usage, and because it is directly related to
the process that produces software, and the mistakes that
might be made in that process.A sampling theory can be
constructed [9] based on defect rate. This theory will be
called anassurancetheory in contrast to thereliability the-
ory of §3.1. (Parnas [21] calls softwaretrustworthywhen it
meets an assurance test in this sense. He argues that trust-
worthiness is the only appropriate measure of quality, but
that it requires an impractical number of tests to guarantee.)

In the the assurance theory, assumption (R) is replaced
by the assumption of a defect rate. Assumptions (D) and (I)
are replaced as follows:

D´)
It assumes that textual faults are uniformly distributed
over the state space of the program, which consists of all
control points, and all values of variables at those points.
That is, a fault is defined as a state-space value that
leads to a failure. Thisis an improvement on (D)
because the distribution is fixed, and because it is plausi-
ble that programmers make mistakes at any such point
with equal probability. The objection to this view is that
the notion of “fault” is not well defined [22, 17].

I´) To sample for defects means to sample the state space
independently. It is precisely because samples from the
input domain do not penetrate uniformly to the state
space that (I) is called into question. However, tests are
necessarily conducted through the input domain, and to
require that they obey some unknown distribution there
is impractical.

The assurance theory argues that (D´) is often sensible in
practice, and that (I´) is correct however unattainable. The
assurance theory does improve on (W): programsize and
cardinality of the input domain enter appropriately. The
number of testsN required to guarantee a given defect rate
is roughly proportional to the program sizeM and domain
sizeD, and inversely proportional to the number of faults

per line f . For 99% confidence and large
D

f
, the propor-

tionality constant is about 10−4 fault/line2: N ≈ 10−4 MD

f
.

For example, a 50K-line program with a million-point
domain requiresN ≈ 5 × 1010 tests to guarantee less than
0.1 fault per thousand lines.

The assurance theory does not suggest a practical testing
method, both because the independent samples it requires
cannot be identified in the input domain, and because there
are far too many tests required. However, if the theory is
correct, it does provide a standard for comparing other
methods. Hamlet[10] attempts such a comparison. Assum-
ing that tests are selected so that the state space is uniformly
sampled, it is shown that partition testing is farinferior to
overall random testing, and that the disadvantage is magni-
fied by more partitions or by lower fault rates.

Again we must examine the theory and our intuition
about partition testing, to find the assumptions that influence
these results.Tests in general do not directly sample the
state space as the theory assumes, and intuitively, the selec-
tion of inputs that excite varied program states is most diffi-
cult when the whole domain is used.Partitions that reflect
an input distribution into the state space with little distor-
tion, would outperform any overall testing scheme (because
the latter would produce such bad coverage of the state
space). Thisobservation has implications for the level at
which assurance testing should be done.

Distortion in state-space sampling occurs because pro-
gram control points cannot be reached with all values of the
variables there. Control predicates are part of the reason for
restricted state values; assignments to part of the state are
the other. If specifications were available at the statement
level, ideal assurance testing could be conducted by first
determining the range of possible variable values at a state-
ment, then sampling with a uniform distribution over that
range. Howden has suggested “functional” testing in which
each code unit is individually tested against a local specifi-
cation [14, Ch. 5]; an assurance test could be conducted for
these units.A system “designed for testability” would
strive for units with their own specifications, whose input
spaces provide a direct mirror of their state spaces. Uni-
formly distributed random tests for such units would consti-
tute an ideal assurance test. Even in the absence of low-
level functional specifications and designed-in state-space
access, assurance testing should probably be unit testing
rather than integration testing [12]. At the integration level,
reliability testing (with partitions defined by interface
parameters!) may be more appropriate.

We apply the assurance theory to two (overlap) partition
methods, branch testing and mutation testing.

The natural input-space subdomains for branch testing
are those in which inputs execute the same conditional with
the same branch outcome.We ask how well tests chosen
from these subdomains cover the state space. Branch cover-
age involves at least two points in the state space of each

conditional expression; this means two points in the state
space of the basic block preceding that conditional. How-
ev er, the state at the location immediately following the
branch is only required to assume a single value. Thereis
no necessary state-space connection between the subdo-
mains; it can happen that together the subdomains force no
more than the minimum coverage of two states for each
conditional. Thissituation was referred to in §2.2 as “triv-
ial” satisfaction of a method. Intuitively, the letter of the
method is satisfied, but by data that has little chance of
exposing a failure. Inany kind of path testing, the program
is forced down the path, but with values of the variables that
do not necessarily explore a large state space on that path.

The natural subdomains for mutation testing contain
those inputs that kill the same mutant. Intuitively, some
mutants can be killed only by unusual states, and different
mutants may require different states. Thus to kill all
mutants at one control point means that the state there must
be extensively explored. (Itmight be made a design crite-
rion for mutation operators that they force a wide explo-
ration of the state space.)Failures that arise only from a
combination of faults defeat mutation, because the mutants
at one fault point do not require the state to vary quite
enough; it is only when another fault point is reached that
the earlier variation can be seen to be too narrow. Thus
mutation should be a better assurance method than branch
testing, but it falls short of perfection.

This discussion suggests a tool to measure the software
assurance to be expected from test data, whatever the test
origin. Theprogram under test can be instrumented, in the
same way that profiles are obtained, to show the state-space
coverage. Whenthe coverage is poor, it may be that the test
could be improved, or perhaps the state space is constrained
in some peculiar way. The tester must make the decision,
since the problem is unsolvable in general. However, when
two tests are compared, the better one from the assurance
point of view is the one with the better state-space coverage.

The notion of state-space coverage suggests a modifica-
tion of thesubsumesrelation that may better correspond
with reality: one method is better than another if its state-
space coverage is better. Precisely, method A is better than
method B iff for all programs the states covered by any B
test are necessarily covered by all A tests. This “state-space
subsumes” has the property that any failure exposed by a
poorer method must also be exposed by a better one, since
the state responsible must be covered by the latter. Thus it
does not suffer from the deficiency described in §2.2-2.3.
However, only methods that are not monotonic could be
poorer, unless the better one were perfect at exposing fail-
ures, so the analytic application of this idea is not promis-
ing. Onthe other hand, using the tool proposed in the previ-
ous paragraph, an experiment could be devised to investi-
gate state-space subsumption. If the defect-rate assurance
theory is correct, such experiments would be measuring real
efficacy of the methods, although of course the results are

still subject to the difficulties described in §2.1.

4. SUMMARY

We hav eargued that a plausible comparison of testing meth-
ods must be based on reliability or assurance sampling as
the standard. Reliability theory suggests partition methods
that concentrate failures, at the expense of partition cover-
age and homogeneity. Assurance theory indicates that test-
ing must be done at or below the unit level in order to con-
trol the state-space coverage. Thequalitative comparisons
presented here suggest further investigation of methods
using these standards.

Acknowledgements

Elaine Weyuker noticed that “partition” methods are usually
not true partitions. Bruce Gifford suggested examination of
Gourlay’s work in this context, and he recognized that the
Theorem of §2.3 applies to a single method.

References

1. V. Basili and R. Selby, Comparing the effectiveness of
software testing strategies,IEEE Trans. Software Eng.
SE-13 (December, 1987), 1278-1296.

2. T. A. Budd, The portable mutation testing suite, TR
83-8, Department of Computer Science, University of
Arizona, March, 1983.

3. T. A. Budd and W. Miller, Testing numerical software,
TR 83-18, Department of Computer Science, Univer-
sity of Arizona, November, 1983.

4. R. DeMillo, R. Lipton, and F. Sayward, Hints on test
data selection: help for the practicing programmer,
Computer11 (April, 1978), 34-43.

5. R. A. DeMillo and A. Jefferson Offutt VI, Experimen-
tal results of automatically generated adequate test
sets,Proceeding 6th Pacific Northwest Software Qual-
ity Conference,Portland, OR, September, 1988,
210-232.

6. J. Duran and S. Ntafos, An evaluation of random test-
ing, IEEE Trans. Software Eng. SE-10 (July, 1984),
438-444.

7. J. Gourlay, A mathematical framework for the investi-
gation of testing,IEEE Trans. Software Eng. SE-9
(November, 1983), 786-709.

8. R. Hamlet, Testing programs with the aid of a com-
piler, IEEE Trans. on Software Eng.SE-3 (July, 1977),
279-290.

9. R. Hamlet, Probable correctness theory,Info. Proc.
Letters25 (April, 1987), 17-25.

10. R. Hamlet and R. Taylor, Partition testing does not
inspire confidence,Proceedings Second Workshop on
Software Testing, Verification,and Analysis, Banff,

Canada, July, 1988, 206-215.

11. R. Hamlet, Editor’s introduction, special section on
software testing,CACM31 (June, 1988), 662-667.

12. R. Hamlet, Unit testing for software assurance,Pro-
ceedings COMPASS 89,Washington, DC, June, 1989,
42-48.

13. W. Howden, Reliability of the path analysis testing
strategy,IEEE Trans. Software Eng.SE-2(1976),
208-215.

14. W. Howden,Functional Program Testing and Analysis,
McGraw-Hill, 1987.

15. J. Laski and B. Korel, A data flow oriented program
testing strategy,IEEE Trans. Software Eng. SE-9
(May, 1983), 347-354.

16. L. Lauterbach and W. Randall, Experimental evalua-
tion of six test techniques,Proceedings COMPASS 89,
Washington, DC, June, 1989, 36-41.

17. J. D. Musa, "Qualitytime" column, Faults, failures, and
a metrics revolution, IEEE Software,March, 1989,
85,91.

18. S. C. Ntafos, An evaluation of required element testing
strategies,Proc. 7th Int. Conf. on Software Engineer-
ing, Orlando, FL, 1984, 250-256.

19. S. C. Ntafos, A comparison of some structural testing
strategies,IEEE Trans. Software Eng. SE-14 (June,
1988), 868-874.

20. T. J. Ostrand and M. Balcer, The category-partition
method for specifying and generating functional tests,
CACM31 (June, 1988), 676-687.

21. D. L. Parnas, A. van Schouwn, and S. Kwan, Evalua-
tion standards for safety critical software, TR 88-220,
Department of Computing and Information Science,
Queen’s University, Kingston, Ontario, Canada.

22. D. Parnas, personal communication.

23. C. V. Ramamoorthy, S. F. Ho, and W. T. Chen, On the
automated generation of program test data,IEEE
Tr ans. Software. Eng.SE-2 (Dec., 1976), 293-300.

24. S. Rapps and E.Weyuker, Selecting software test data
using data flow information,IEEE Trans. Software
Eng. SE-11 (April, 1985), 367-375.

25. D. Richardson and L. Clarke, A partition analysis
method to increase program reliability,Proc. 5th Int.
Conf. on Software Engineering, San Diego, 1981,
244-253.

26. R. W. Selby, V. Basili, F. Baker, Cleanroom software
development: anempirical evaluation,IEEE Trans.
Software Eng. SE-13 (Sept., 1987), 1027-1038.

27. P. Thévenod-Fosse, Statistical validation by means of
statistical testing, Dependable Computing for Critical
Applications, Santa Barbara, CA, August, 1989.

28. M. Weiser, J. Gannon, and P. McMullin, Comparison
of structural test coverage metrics,IEEE Software
(March, 1985),80-85.

29. E. J. Weyuker, Axiomatizing software test data ade-
quacy, IEEE Trans. Software Eng. SE-12 (December,
1986), 1128-1138.

30. S. J. Zeil, The EQUATE testing strategy,Proceedings
Workshop on Software Testing,Banff, Canada, July,
1986, 142-151.

31. S. H. Zweben and J. S. Gourlay, On the adequacy of
We yuker’s test data adequacy axioms,IEEE Trans.
Software Eng. SE-15 (April, 1989), 496-500.

