Theoretical Comparison of Testing Method$

Richard Hamlet

Computer Science Department
Portland State Uwersity
Portland, OR 97207 USA

(503)464-3216
hamlet@cs.pdx.edu

Abstract

Comparison of software testing methods is meaningful only

if sound theory relates the properties compared to actual
software quality Existing comparisons typically use anec-
dotal foundations with no necessary relationship to quality,
comparing methods on the basis of technical terms the
methods themselves define. In the most seriously flawed
work, one method whose effigats unknown is used as a
standard for judging other methods! Random testing, as a
method thatanbe related to quality (in both the a@n-

tional sense of statistical reliabiljitgnd the more stringent
sense of softwarassurance)opffers the opportunity for

valid comparison.

1. INTRODUCTION

Testing methods are notoriously difficult to compare,
because most testing lacks a theoretical foundation.
example, it certainly seems reasonable to test wsilye
statement of a program has begecated. Itwould be
stupid not to do so, since aveeexecuted statement could
harbor an arbitrarily badug. Buthaving achieed date-
ment caerage, what does the tester b Itis easy to
shaw that statement s@rage can be achied by mary dif-

true efficag of the methods, and so can be fundamentally
misleading. Thésubsumes” ordering is of this kind.

Empirical comparison of methods seems the obvious
solution to all these ditulties. Itstwo drawbacks are that
it depends heavily on the particular programs and environ-
ments selected for trial, and often on the redatbility of
human subjects who participate in tiveleation. Agin,
the real fault is with our lack of theory: because we do not
know how a nethod is related to software properties of
interest, we do not kmohow to control for the important
variables.

In 82 belav we aitique past attempts to compare testing
methods, showing where these are flawed in principle. In
83 we suggest a mebasis for comparison.

2. PRIOR COMPARISON OF TESTING METHODS

In situations where testing resources are scarce or where
tests must demonstrate real software qudligy practitioner
is all too avare of the need to compare methods. From the
opposite side, the wentor of a nev method is called upon

to justify it by comparison to existing methods. When the
call for comparison is loud enough, comparisons will be
brought forward, but in the absence of theoretical founda-

ferent test sets, some of which expose bugs while others dg;,,o the cannot be trusted

not. How then can the worth of statement testing be
assessed? 3Jong as the relationship between a method’s
basis (in the example, e&ring statements) and properties
of the software (here, the occurrence of bugs) remains
imprecise, meaningful comparisons between methods,
indeed comparison betweenahapplications of the same
method, cannot be made.

There are a number of apparently sensible, analytic
comparisons thatanbe made among testing methods,
which on analysis are less useful tharytseem. Thecom-
parisons are precise, but yhdilize parameters unrelated to

T Work supported by NSF grant CCR-8822869.

2.1. Empirical Comparisons

Empirical studies comparing testing methods must con-
tend with two potential irvalidating factors:

(1) (programg A particular collection of programs must be
used—it may too small or too peculiar for the results to
be trusted.

(2) (test data Particular test data must be created for each
method—the data may ¥agod or bad properties not
related to the method.

The use of human beings to generate test data is one way in
which (2) can occurBecause test generation requires the
use of information about the program or its specification, a
human being may use this information in some (uncon-
scious) waydistorting the test. It is then certainly unfair to
attribute a quality to the test method that in fact resides in

the human testers. An experimenter can attempt to control most significant factor in finding bugs was not the method,
for this “nose-rubbing effect” [11], but since human skill but the skill of the human subject.
varies widely and is little understood, control is imperfect.

The program choice (1) for an experiment may be 2.2. The*Subsumes” Ordering
biased both by program attributes and by the kind of faults The majority of precise, published comparisons between
present. Ithe programs are real ones that arose in practicetesting methods use the following ordering:
these difficulties merge; how, if the_faults are seed_ed, or Method A subsumegor included methodb iff a test
the programs arose in a training environment, the bias can that satisfiesA necessarily satisfids
be twofold. Sinceprogram characterization is not well] . .
understood, no quantitaéi measures of their properties are FO &le, a “method” in whichvery test result is
awailable. Itcertainly seems safer to trust results of a study "€duired to be correct subsumes one in which only 80% of
in which the researchers worked hard to control the environth€ results must be correct. The inclusion is strict because a
ment [1], but some unknown factor can confound the best test barely satisfying the 80% method must fail to satisfy
human efforts when understanding is lacking. the other.

Factor (2) can be handled imvaeal ways: Unfortunately only some methods, those with a com-
mon basis, can be compared usngpsumesVariants of
path cowerage can be compared, and these fall into a fairly
simple hierarct [24, 19]. But may methods are incompa-
rable—neither subsumes the other [28livial differences
can mak methods technically incomparable, as in the three
mutation variants [8, 4, 30].

a) Warst-case analysisBY investigatingall test sets that
satisfy a method, one can accurately predict the worst
that method might do. The main drawback of worst-
case analysis is that it is tedious and usually cannot be
automated. Thereave been fev followers for How-
dens areful study of path a@rage on a set of textbook

programs [13]. Furthermore, as we whia §2.3 belav The subsumes relation is more seriously flawed than by
capturing worst-case analysis as a comparison techniquimited applicability howeve. All algorithmic testing
makes all methods technically incomparable. methods are necessarily imperfect in that none can guaran-

tee correctness of programs in general [14, Ch. 4]. When
one imperfect method subsumes angttier relation
expresses nothing about the ability to expose faults or
assure qualityIt can happen thaA subsumes, but b actu-

b) Random selectionWhen a method irolves drawing
test points at random from a distribution, there should
be no bias introduced. Howsr, if the required distribu-

tion is unknown, then using programs for which itis 5y addresses these real properties betteuitively, the

given biases an experiment iavar of an atually trouble with subsumes is that italuates methods in their
impractical method. Random selection of test sets may terms, without rgard for whats really of interest.For

also be used for methods that themselvee mproba- o3 mpje; consider statement testing as methaahd letb
bilistic aspect. If the test setsveaa snooth distribu- be “haphazard” testing in which there is no requirement but
tion, sampling them yields awaage-case result. (That 5 the test set be nonempty and the results be correct.

ary useful real situation could be known toseaicha opyigusly A subsumes. But b may find faults that does
distribution seems unlikelyloweve.) Even though it not. Considethe Pascal function:

may not yield a truev@rage case, using random selec-

tion to satisfy a ozerage method (instead of employing function (X real): real;
human subjects) can control the nose-rubbing effect. begl n

c) Automatic test generationSome methods (notably path IQf .)_(; (r)(;()hfg X=X
testing [23] and recently mutation testing [5]) can be end -~ 84

used with algorithms or heuristics that generate data to
satisfy the method. There can be a hidden bias throughSuppose this program is intended to compute the function of

the choice of programs, those on which a heuristic hap-t: Zv/|t|. (Theprogrammer has inadvertently used the Pas-

pens to work, forample. Alsojt must be remem- cal square function instead of the square root.) The test
bered that the results apply only to that narversion input set: {1, 0, -1} achiees satement ceerage yet uncov-
of the method using the generation algorithm. (Further ers no failure, while {3} is haphazard (and does neeco
discussion appears in §2.4.) all statements), yet does expose a failure.

It is not unfair to say that a typical testing experiment Such examples are not really pathological. Because

uses a small set ofgt@rograms, with uncontrolled human there is no necessary connection betweerrig state-
generation of the test data. That is, neither (1) nor (2) is ments and finding faults, paying attention to the former
addressed. Sudtudies can be helpful in understanding diverts attention from the latteitn this case the haphazard
methods, but thedo ot provide comparisons. Itis inter- tester ignored the absolute value part of the program, and
esting to note that an exceptional recent study [16] in whichconcentrated on the square(root), with good results. In a
real programmers tested real programs, showed that the similar way the datafles variants of path testing [24, 15]

may prae superior to full path testing (which subsumes wherep OKq s stands for the success of mett@dBut for
them), because thi€oncentrate attention on important a dhoice system, Gourlay*success” is not what we intu-
cases that might be trivially treated in the welter of all pathsitively think of as success.

The idea of “trivial” satisfaction of methods will be further

X _ Recalling the discussion of §2.2, erroneous comparison
examined in 83.2.

of methods results from the existence ofesal tests that

If we include the human process of selecting test points satisfy each method, only some of which expose present
or use mechanical means to generate test data, the subsuniiegs. For an incorrect program, call a test that succeeds
ordering shows its flaws more clearine method may be (and thus misleads the testemisleadingtest. Ifa method
so difficult to understand that in generating test points, triv- is effective, that is, if it allows a mechanical decision as to
ial choices are encouraged. Another method, easier to usewhether a tripleT, p, S) consisting of a test, program, and
may lead to more representaticata. Nothingstops the specification is satisfactgrthen it is a consequence of the
poorer more compl& method from subsuming the better, undecidability of the program-egualence problem that
simpler one. Ceerage tools exacerbate rather than alleviatemisleading tests exist for that method. At the same time, if
this problem: when a person trys to fill gaps in a hard-to- a program is not correct, then some test exposes this fact,
understand ogerage method, as required by a test tool, triv- and because most methods are monotonic (in the sense of
ial data comes naturally to mind, and the ®albsequent Weywuker [29]), ay method can be made to incorporate such

approval glosses wer the poor test quality. atest. Calla test that finds a failure in this way axposing
test. Anexposing test and a misleading test are enough to
2.3. Gourlay’s Comparison intuitively invalidate arly comparison between methods.

Suppose method were “better” tharb. Lett, be a mis-
leading test satisfying methadlandt, be an exposing test
satisfyingb. Then in fact Ais not better thab using

In his excellent theoretical framverk for testing [7],
Gourlay defines a partial ordering > N between methods

M andN, which claims to capture the intwié idea that one o o) .
method is more powerful than anothetis definition gies Gourlays intuitive cefinition. Hawvever, turning the relation

some of the same resultssabsumegor example that around, exactly the same argument applies, hence the meth-
BRANCH > STATEMENT but SRTEMENT # BRANCH ods cannot be compared.

for the two methods with those names)Ve ayree exactly We @an capture this intuitély correct property of meth-
with Gourlays intuition about method comparison (pre- ods in Gourlays theory by altering his definitions. First,
sented as matation to his Definition 11.B-1). He states that define aesting methodb be a relationwer tests, programs,
for methodM to be stronger thaN should mean that il and specifications, replacing his Definition II.A-4. (In a
exposes a failure, thell must necessarily do so as well. choice-construction testing system, the single value of
However, his Theorem I1.B-7 states that when one method Gourlay’s method definition would be the set of all tests for
subsumes anotheiis ordering holds. The results about which this relation holds. Thus the definitions are equiv-
BRANCH and SATEMENT are consistent with Theorem alent.) Callthe methoceffectivef the relation is recurse.
[1.B-7, but appear to conflict with the critique @afbsumes Second, replace his Definition I1.B-1 with one that refers to
in the previous section. testsT, not to sets of tests:

Because Gourlag'theoretical framwork is a good one, M is stronger thamN, M > N, iff:
it can be used to explicate the problem and tevshat OpOs(OT(N(T, p,s) O~ (p OKy s)) O
Definition 11.B-1 does not capture his intuitiokVith a bet- OT' (M(T', p,s) O =(p OKy 9))).

ter definition we shw that no algorithmic method iver o .

comparable to another such method. This formal result ~ Thatis, if the weaker method haya@mposing test, then
exactly captures the general case againssumegpre- evay test of the stronger method must lipasing. Thiss
sented in §2.2. precisely what Gourlay calls for in madting his definition.

. . . . The choice construction simplified all the substance out of
It is Gourlays “choice construction” (Definition 11.A-3) his Definition 11.B-1

that causes the difficultyin a esting system using this con- _] o)
struction, a method corresponds to a collection of different With the revised definitions, and the properties of effec-

tests, but the method “BK” if any test in the collection tive methods noted alve, we havethe following theorem in
executes successfullyThus, for example, statement testing Contrast to Gourlag'll.B-7 and 11.B-8:

for a given program and specification is a method with Theorem:

mary potential tests, alb@cuting every program statement,)) _

but some may recute successfullyand some may expose a All effective, monotonic test methods are incompara-
failure. Gourlaycalls statement testir@K if at least one of ble under the ordering.

the tests is successful. He then takieg N to mean that In particular the ATH methods (including SSTEMENT

for all programsp and specifications and BRANCH) and the mutation method Gourlay consid-

pOKy sO pOKy s, ers, are incomparable, not ordered as he claims. The

revised definition abe aptures a kind of “worst-case sub-
sumes, requiring that when one method finds a bug, a
stronger method must als@Vith such a definition, no
effective method would subsume yawmonotonic method.

It is a special case of the Theorem thé not reflexve
for an effectve, monotonic method; that is, no sutbhhas
M < M. The intuitve ontent of this special case is that a
method cannot bevduated &en relative o itself; two
applications of the same method mayédfferent out-
comes. Thigertainly agrees with experience, and under-
lines the difficulty with empirical comparisons discussed in
§2.1.

Perhaps it is worth explicating Gourlaykfinition in
the same terms as algpso hat its intuitve mntent can be
seen. @ke aur (equiaent) replacement for Definition
[I.LA-4. Thenhis Definition 11.B-1 reads for a choice-con-
struction system:

M > N iff:
OpOs(dr(M(T, p,s) Op OKy s) O
OT (N(T', p, s) Op OKy 9)).

That is, if there is a successful test in the more powerful
method, then there must be one in the weaker method. Iti
more re&vealing to state this as what shouldt happen:

there should not be a misleading test in the more powerful
method, but all tests of the weaker method are exposing.
That property is certainly desirable, and perhaps an
improvement onsubsumedyut a far cry from the intuitiely

correct idea that there should not be a misleading test in th

more powerful method, but an exposing test in the weaker
one.

2.4. UsingOne Method to Judge Another

It is tempting to compare test methods direadtiya kind

of mutual coerage competition. Gen (1) a set of pro-
grams, (2) seeral test collections, each satisfying a test cri-
terion for these programs, and (3) analyzers for each crite-
rion, the test collections can be interchanged and submitte
to the analyzers. The resultsveam intuitively pleasing

form. For example, one might learn that the data for
method R aliays seems to satisfy methodoBt the data for
method P usually fails to satisfy R. The conclusion that R i

better than P seems inescapable. When one method (say I@Z

is assumed to be the standard (call M the “touchstone”

method), then P and R can be compared by seeing to what

extent the satisfy M; or, a Sngle method P can beau-
ated by the extent to which it satisfies M.

Such comparisons are analogous to validating an elec-
tronic instrument by checking its readings against another
known to be erratic. Tlywould probably not be made if

they could not be automated, but when test data is generated

and a cwerage tool is gailable, they can be. Thus mutation
in FORTRAN programs is oftenvolved (because such a
tool is easily wailable [2]), and random test data is the most
commonly generated.

S

As experiments the resultsygameaning only so far as
the programs are representatiand the test generations
free from bias, as described in §2.1. Furthermore, the sim-
plest experiments (does P satisfy M?) are no more than a
sample taken to Vrestigate thesubsumesrdering. Inscdr
as maw experiments exhibit method-P tests that are also
method-M tests and none that are not method-M tests, it is
more likely that P subsumes M. The quality of the experi-
ment determines to what extenutbsumess actually being
captured; howser, the difficulties with this ordering pre-
sented in 82.2 remain, and are the more fundamental.

The first published use of such method comparisons
appears to be Ntafaspaper defining required-element test-
ing [18]. In it he attempts to compare this method with
branch testing and a peculiar version of random testing,
using mutation as a touchstone. The work suffers from the
usual experimental difficulties described in §2.1, because a
limited number of small programs were used, and the data
for branch- and required-element testing were “minimal”
(generated by Ntafos in a way that is not described). Fur-
thermore, there wereviecases in which all mutants were
killed by ary of the methods, so the comparison is techni-
cally in terms of the fraction killed, without analyzing
which mutants constitute the fraction in each cds.
example, one of the programs was (a supposedly corrected
version of) the triangle-classification program of [23]. The
mutation system generated 286 incorrect mutants, and the
three methods (random, branch, and required-element)

é(illed respectiely (80%, 91%, and 99%) of these. The

implication is that required-element testing is thus demon-
strated to be the best of the three methods, using the muta-
tion touchstone.

Aside from the experimental difficulties, comparisons
like this can be fundamentally misleadingat of the rea-
son is that the programsvestigated were chosen to be cor-
rect. Inpractice, the whole point of testing is to learn about
a program that is probably not correct. Although Ntafos

ddoes not gie the information, the following is a possible

Interpretation of his data. Suppose that one of the four
mutants not killed by required-element testingjg;, and
suppose further thdt,g; was killed by branch testing. (It is

ing tested (instead of the correct triangle program) we
have exactly the case of a misleading test for required-ele-
ment testing and an exposing test for branch testing. The
flaw presented relies on not all mutants being killed by the
“better” method, but it extends to a more extemsbmpari-

son, too. So long as the touchstone method is not perfect in
the sense of guaranteeing correctness, programBJike

will exist, and the comparison can mislead us.

What's dsturbing about cross-method exchanges is that
there may be a hidden correlation between the methods
being compared, a correlation which is based on some fea-
ture unrelated to actual program qualifhen the

correlation determines the winnér a msleading way For specification, and test), so her axioms can be used to com-
example, Budd and Miller [3] suggest the hypothesis that pare methods. The comparison of [29] has generated some

the more times a statement i®euted by tests, the more controversy; [31] suggests that the application to practical
likely they are to expose faults in that statement. They methods does them an injustice. Axiomatic methods proba-
experimented with this idea using mutation as a touchstoneply can neer produce satisfactory comparisons, because of
and programs that varied in their degree of iteratie. the unsolvable nature of the correctness problem. Since

believe the hypothesis; indeed, repeated statenesaigion tests should in some way relate to correctness, but this can-
is assurance testing restricted to the control-point part of theot be realized in general,yaaxiomatic characterization

state space, as described in 83.2Weldoweve, the exper- will necessarily be weak, and if strengthened can only be
iment is flawed because there is a direct correlation betweedirected at extraneous features of test methods. Thus com-
mutation and state-spaceverage. Wherthe state space is parisons will fall between tgools: eithetthe methods

better coered, more mutants should be killed, so the exper-will not be distinguished by the axioms (whenytldeal

iment's autcome is predetermined, and it provides no inde- with essential features), or thwill be distinguished, but
pendent support for the hypothesis. only on the basis of inessential features.

Two special cases of cross-method comparison deserve However, the point of Viéyuker's work is to provide a
comment. lican be used tovaluate heuristics for generat- framework for absolute ealuation, not comparison, and to
ing data. A heuristic attempts to approximate some method,explicate the relationships between (perhaps less-than-obvi-
and that method may then seto judge the quality of the ous) properties of test methods. Insofar as her axioms
heuristic. DeMilloand Offutt [5] use this technique teak expose problems in the way we think about methods, they
uate a constraint-based heuristic for generating (sometimesjre a useful franveork.
mutation-adequate data. Although it may seem unexcep-
tionable to use a parent method valeate the quality of an 3. PROPOSAL FOR COMPARING TESTING METH-
approximation, the technique is suspect because it is basedODS
on experimental determination sfibsumeslt could hap-
pen that the heuristic happens to generate mutation-ade-

guate data of a peculiar kind, which is oflatility relative example can neertheless be found in which the superior
to gctuall program qualltyOther mutatlon-adeqqate data, . method is misleading and the inferior is not. Therefore it is
which might be typically found by a human being not using crucial that the terms of comparison be plausible, that they

the heuristic, could be much bett_erlat findia'tjpigs. Then pafounded in properties of programs that go beyond inci-
the observed result that the heuristic does aelaesibstan- dental features of test-method definition. If the terms of

tial fractlon of mutation ceerage, is mlgleadlng. T_he_ rea.- comparison are unobjectionable, there cannot be unexpected
son is the one that has appeared again and again in this segg, g misleading correlations between trivial properties of

tion: methodshould not bewaluated in their own terms, _methods and their judged relatiquality. Program correct-

when those terms cannot be connected to program quality. negg and its correlates such as performance are the appropri-
The second special case of using one method with ate comparison properties, but except in special cases these

another is an irestigation using random testing on struc- are not related to greffective esting method [14, Ch. 4].

tural methods. [27] suggests calculating the number of ran-The only other possibility is to treat a test as a sample of the

Any comparison of testing methods can be criticized as in
§2: if the comparison shows one method to be superior

dom tests required to attainvabage with a gien probabil- programs behavior and to perform statistical analysis of
ity. As a heoretical idea this gets at the difficult relation- that sample. This is the obvious way to handle the mis-
ship between input distribution and state-spaserage match between the infinity of points that define functional
(see 83.2 belw). Asa comparison idea, hower, it seems behaviors lile orrectness and performance, and the finite

no better than the others considered in this section. The collections that tests must be.

random test may e gdatistical validity as described in

83.1 belav, the more so the larger it is. But there seems no 3.1. ComparisonUsing Failure-rate Reliability
necessary virtue in a method that is or is not resistant to sat-

. X . The first published results that can claim to be more
isfaction by random inputs.

than an anecdotal comparison of methods are those of
Thus comparison by using methods on one another in Duran and Ntafos [6] comparing random and partition test-
general suffers from the sins of both empirical study and ing according to the failure-rate reliability model. Their

subsumeanalysis. paper raises questions about its ynassumptions, but it is
unique in basing a comparison on properties of programs
2.5. Axiomatic Comparison that are of real interest (wdikely is a test to excite a fail-

¢ ure, for example), and stating the assumptions needed to

Elaine Weyuker has attempted to devise axioms for tes ,
derive the result.

adequay criteria [29]. Although there are philosophical
differences, an adequacriterion and a test method are for- Patition testing is a class of methods that includes most
mally identical (a predicate satisfied by a program, of those usually called “systemati the sense that the

method makes a subdivision of the input space, and requirehe ratio.
testing within each subdomain. The archetype example is
path testing. The relation betweerotimputs: “the

execute the same path” divides a prograinput domain

into equvalence classesPah testing is the method that
requires selection of data from each of these classes. Prop

erly speaking, the partition is the relation or the division Their work is thus a comparison of different kinds of parti-

into classes; hower, the classes themselves are l00sely jon testing, with coventional reliability theory as the stan-
referred to as partitions. Not all schemes for subdividing 45,4

the input are equalence relations, hower. The subdo-

mains may verlap, which can result in test data that simul- Because Duran and Ntafos present only aamples of
taneously lies in seral (and thus the defining relation fails their comparison, Taylor [10] first checked the stability of

to be transitie). Statementesting (using the subdivision their results, by varying parameterselike number of parti-
based on twinputs eecuting the same statement) and tions, the failure rate, and the number of points per pz_irtmon.
mutation testing (inputs killing the same mutant) are two The_ res_ults_were found_ to be remarka_bly_ stable: partition
schemes withwerlap. Thetechnical results apply only to t€sting is slightly superipbut the superiority cannot be

In replicating and extending the results of [6], Taylor
and Hamlet [10] carried the analysis one step fartihibey
varied the assumptions that characterize partition testing, in
the attempt to understand the counterintaitesults that
partition testing is not much better than random testing.

partition testing methods with true egalence classes, improved by varying these parametersay Io‘r‘ [10] t”hen _
without overlap. (Theoverlap case will be discussed fol- ~ conducted tw experiments in which some “small” parti-
lowing presentation of the results.) tions were gien high failure rates and Vo probability of

being hit by eerall random tests. These experiments pro-

I?ur:_;m and Ntafos atte_mpFed to character|ze partlthn duced significant differences between the methods. Under
testing in general, assuming just enough of its properties 0yhe same circumstances, he also varied the homogeneity of

allow a omparison ,W'th randc_)m te_stlng. Thtook t.he the “small” partitions. These experiments amount to an
corventlonal re_Ilablllty model in which a program is charac- investigation of what makes partition testing work, with
terlzed. by a fgllu_re rgtR. When tests are drawn from th? overall random reliability testing as the standard. ytig
operational distribution, the program is assumed to _fa'l N fer from the ones conducted by Duran and Ntafos primarily
such a way that the long-termeeage of the ratio of failed in that the assumed failure rate iw)@ stuation in which it

tests to total tests approacf&sThls sampling defln_es is possible to obseewariations in the efficgcof partition
(overall) random testing. Thefurther assumed the input

space to be partitioned in an arbitrary ywaigh each subdo- testing.) ,

main characterized by its own failure rate. Drawing from The results presented in [10] can be summarized as fol-
the same operational distribution, butorcing a fixed lows:

number of points to lie in each partition, defines partition 1) If partitions are not perfectly homogeneous, then the
testing. Thewo schemes can be analytically compared by degree of homogeneity is not very important.

relating the number of tests in each, the chance that the
overall testss points will fall in the various subdomains, and
the overall- to partitioned failure rates. Evidently theeo

all test should use as mapoints as the sum of those used

2) Partition testing is impreed when one or more parti-
tions hae a sibstantially higher probability of failure
than that gerall.

in the partitions.To handle the failure-rate relationship, 3) Finerpartitions are disadvantageous if their failure rates
Duran and Ntafos assumed a distribution of partition values. ~are uniform.
They tried a uniform distribution—the chance that a parti- Overlap must also be considered in comparing methods.

tion have a hilure rate in [0,1] equally likely—and a distri- In statement testing, for example, the natural subdomains
bution that corresponds to the partitions being nearly homo-are composed of inputs that causecetion of the same

geneous—the chance that a partitioneha hilure rate statement; these subdomains are not disjoint. (In particular,
close to 0 or close to 1 much higher than that the rate take since all inputseecute the first statement, one subdomain is
some intermediatealue. Finallythe probabilities of the the entire input spaceA true partition can be formed by
overall random test points falling in each partition were intersection of the natural subdomains, hesue Points

taken from a uniform distriliion. Theuse of distributions selected from werlapping natural subdomains can be
for some of the parameters means that experiments are thought of as selected from the true partition, but with
required, each defined by a drawing from the partition fail- increased sample density in thesdap. Insoér as the fail-
ure-rate distribution and the distribution ofeall samples ure rate is lwv in these parts, a method will suffer relatio
among the partitions. overall random testing; as it is high, the method will fare

The results showed that partition testing is slightly supe-better If there is no reason to belethat the eerlapping
rior to random testing in the probability of finding a failure, regions are prone to failure, then a method wwitrlap will
the ratio being about 0.9, and the spreeat various exper- ~ come outa bit worse in comparisons that it would appear,
iments indicated by a standard deviation of roughly 0.1 in because its true partitions are a disadvantageous refinement.

We gve a momparison in which the theory suggests a
clear preference: specification-basesd design-based test-
ing. Itis the virtue of specification-based tests thay tiaa
be devised early in the @dopment gcle. Beforecode is
written, or &en designed, the software requirements/specifi-
cations can be analyzed, and the potential inputs broken into
equialence classes by required functionaliy good
example of this kind of testing is presented in [20], where
the system to be tested has a number of commands, each
with a number of parameters, and the partitions are defined
first by command, then refined by parameter value.
“Design-based” tests (a method justdanted for this com-
parison, although variants are in practical use) can also be
devised before code is written. When the program has been
divided into modules of some kind, and it@@ll structure €)
defined in terms of their interfaces and dependencies, parti-
tions can be defined according to a kind of large-grain
“statement” ceerage. To inputs are in the same subdo-
main if they invoke the same module. (This is anedap-
ping subdivision.)

<)

f)
Design-based testing is the better method according to
the reliability-theory comparison. Results 2) and 3)vabo
apply In specification-based partitions, there is less reason
to believe that the failure rates will differ than in design-
based partitions. The designers’ subjectstimates of the
difficulty of implementing each module, and the ability of
the programming sthfssigned, are very good indications
of where to look for failures in the design-based partition.

Dataflav testing methods, particularly those thatdiwe
more of the program context [15], should be superior to
full path testing. (The dataflopartitions are failure
prone because theoncentrate on difficult program-
ming situations; full path testing refines the dataflow
partitions without ay evident increase in the expected
failure rate.)

) Specification-basa@sting that takes no account of

potential difficulties in design and implementation is not
much good. (See the comparison with design-based
testing immediately abve.) The “cleanroom” project

[26] used specification-based testing, and so could be
improved with design-based testing.

Ary tests that hae keen used in walkthroughs or as typ-
ical cases for design and implementation, are useless for
later finding &ilures. (Thepartitions thg define are

likely to have low failure rates because thieavebeen
thought through in the g@elopment process.)

Special-alues testing is valuable because the special
values represent cases that are likelyaib fHencea
special value that fits item d) or e€) a&bads not so use-

ful. (To be aluable, the singleton special-value parti-
tion should be an extreme case of high failure probabil-

ity.)

3.2. ComparisonUsing Defect-rate Assurance

Statistical reliability is a better compaketitesting mea-

Furthermore, specification-based partitions/stfor cover-
age of functionalitywhich is evidently a refining criterion
not related to failure rate. The design-based partitions on
the other hand can be refined as implementation proceeds,
using impraed information. Codenetrics may point to
fault-prone modules or parts thereof, and most important,
programmers can malauibjective estimates of where there
might be trouble because the coding task was pectt

be of uncertain qualityThus the theory predicts that testing
effort should be deted to design-based tests rather than
specification-based ones.

We end this section with a collection of assertions about
practical methods and their comparison, which the theory
supports for the reasorvgn in parentheses. Aumber of
these are counterintuigt and suggest further analysis and
experimentation:

a) Itis a mistak to refine a partition just to makits tests
more like each other (The finer partitions will be more
homogeneous but will likely ke wniform failure rates.)

b) Combiningtesting methods to create intersections of
partitions, for example by refining a structural partition
with a specification-based one as suggested in [25], will
not be an impreement wer either method used alone.
(There is no reason to belethat the finer partitions
include an with high failure rates, and a high-failure

partition may be diluted).

sure than the subsumes relation considered in 82.2. Itis
universally applicable, and its intended meaning—how
likely the software is to fail in normal usage—seems clearly
related to quality Howeve, the plausibility of comentional
reliability for software has been called into question. The
flaws in software reliability theory are:

R) Itassumes a long-termexage failure rate, for which
there is little supportingudence. Ratheit is observed
that software failures come in bursts with stable periods
between. Thiphenomenon is probably related to the
usage distribution (D) belo

It assumes an operational distribution of input values,
presumed to be the one describing normal usage of the
software, which may k& o existence in reality Usage
may hae © mary “modes” (for example, novice/expert
users) that no distribution is typical. More important,
the lack of a distribution exposes a larger conceptual
flaw: software quality does not intuily depend on
normal usageWe judge quality by hw well the soft-

ware beha&es under unusual circumstances.

D)

It assumes independent samples drawn from the opera-
tional distritution. Intuitively, making unbiased input
choices does not guarantee increasing confidence in the
results, because it can happen that the progrizwernal
behavior is nearly the same for quite different inputs.
Because software is deterministic no assurance is gained
by repeating tests in this way.

W) Whatever one may think of the theory'assumptions,
the denved results are not intuitely correct. For exam-

o4 @

tionality constant is about Ibfault/line?: N =1 ;

ple, the size and complexity of programs, specifications,For example, a 50K-line program with a million-point

and their input domains, do not enter ity aray.

The operational distribution (D) ab®is at he heart of the
difficulty with the cowentional theory The results must be
expressed in the form, “...the probability of failunenor-

mal usaeis..”. Thusthe comparison suggested in 83.1 is
also flawed—methods are compared only in their ability to
expose a failure under normal use. Insofar as this basis
misses the mark, the comparison does too.

It is usual to express software quality in a way quite dif-
ferent from the reliability vie. For instance, in touting the
quality of the space-shuttle flight software, it is said «eha

less than 0.1 defect per thousand lines of code. Such a me

sure is intrinsically related to qualityecause its expression

domain required\ = 5 x 10'° tests to guarantee less than
0.1 fault per thousand lines.

The assurance theory does not suggest a practical testing
method, both because the independent samples it requires
cannot be identified in the input domain, and because there
are far too maptests required. Hower, if the theory is
correct, it does provide a standard for comparing other
methods. Hamldtl0] attempts such a comparison. Assum-
ing that tests are selected so that the state space is uniformly
sampled, it is shown that partition testing isifderior to
overall random testing, and that the disadvantage is magni-
g@d by more partitions or by lower fault rates.

Again we must examine the theory and our intuition

is independent of usage, and because it is directly related t@bout partition testing, to find the assumptions that influence

the process that produces software, and the mistakes that
might be made in that procesad.sampling theory can be
constructed [9] based on defect rate. This theory will be
called amassuranceheory in contrast to theeliability the-

ory of 83.1. (Parnas [21] calls softwarastworthywhen it

these resultsTests in general do not directly sample the
state space as the theory assumes, and wetyjtihe selec-
tion of inputs that excite varied program states is most diffi-
cult when the whole domain is uselatitions that reflect

an input distribution into the state space with little distor-

meets an assurance test in this sense. He argues that trusttion, would outperform anoverall testing scheme (because

worthiness is the only appropriate measure of quddity

the latter would produce such badre@ge of the state

that it requires an impractical number of tests to guarantee.ppace). Thisbservation has implications for thedkat

In the the assurance thepagsumption (R) is replaced

by the assumption of a defect rate. Assumptions (D) and (I)

are replaced as follows:
D)
It assumes that textual faults are uniformly distributed

over the state space of the program, which consists of alf
control points, and all values of variables at those points

That is, a fault is defined as a state-space value that
leads to adilure. Thisis an impre@ement on (D)

because the distribution is fixed, and because it is plaus

ble that programmers makristakes at ansuch point
with equal probability The objection to this vie is that
the notion of “fault” is not well defined [22, 17].

I”) To sample for defects means to sample the state space
independently It is precisely because samples from the
input domain do not penetrate uniformly to the state
space that (I) is called into question. Heweretests are

which assurance testing should be done.

Distortion in state-space sampling occurs because pro-
gram control points cannot be reached with all values of the
variables there. Control predicates are part of the reason for
restricted state values; assignments to part of the state are
he other If specifications werewailable at the statement

evel, ideal assurance testing could be conducted by first
determining the range of possible variable values at a state-
ment, then sampling with a uniform distributioveothat

fange. Havden has suggested “functional” testing in which
each code unit is individually tested against a local specifi-
cation [14, Ch. 5]; an assurance test could be conducted for
these units.A system “designed for testability” would

strive for units with their own specifications, whose input
spaces provide a direct mirror of their state spaces. Uni-
formly distributed random tests for such units would consti-
tute an ideal assurance test. Even in the absence of low-
level functional specifications and designed-in state-space

necessarily conducted through the input domain, and to 5ccess, assurance testing should probably be unit testing

require that the obey some unknown distribution there
is impractical.

The assurance theory argues that)(@ often sensible in
practice, and that ()'is correct howeer unattainable. The
assurance theory does impeom (W): programsize and
cardinality of the input domain enter appropriatélhe
number of testd required to guarantee avgn defect rate
is roughly proportional to the program sizeand domain
sizeD, and inversely proportional to the number of faults

D
per line f. For 99% confidence and Iarg?e, the propor-

rather than integration testing [12]. At the integratiorele
reliability testing (with partitions defined by interface
parameters!) may be more appropriate.

We gply the assurance theory toa\pverlap) partition
methods, branch testing and mutation testing.

The natural input-space subdomains for branch testing
are those in which inputxecute the same conditional with
the same branch outcom®/e sk hav well tests chosen
from these subdomains\a the state space. Branchveo
age ivolves at least tw points in the state space of each

conditional expression; this meanstpoints in the state still subject to the difficulties described in §2.1.
space of the basic block preceding that conditional. How-
eva, the state at the location immediately following the 4. SUMMARY

branch is only required to assume a singlei. Theres We haveargued that a plausible comparison of testing meth-
no necessary state-space connection between the subdo- 4 myst be based on reliability or assurance sampling as
mains; it can happen that together the subdomains force N e standard. Reliability theory suggests partition methods
more than the minimum gerage of o dates for each 4t concentrate failures, at the expense of partitiverco
pondltlpnal. _Th|$|tuat|on was ref_erred to in 82.2 as “triv- age and homogeneityssurance theory indicates that test-
ial” satisfaction of a method. Intwtly, the letter of the ing must be done at or beldhe unit lerel in order to con-
method is satisfied, but by data that has little chance of trol the state-space verage. Thegualitative comparisons

exposing ailure. Inary kind of path testing, the program - yesented here suggest furthemstigation of methods
is forced down the path, but with values of the variables thaEsing these standards.

do not necessarily explore a large state space on that path.

The natural subdomains for mutation testing contain ~ Acknowledgements

those inputs that kill the same mutant. Inty, some Elaine Weyuker noticed that “partition” methods are usually

mutants can be killed only by unusual states, and different not true partitions. Bruce Gifford suggested examination of

mutants may require dlffe_rent states. Thus to kill all Gourlays work in this context, and he recognized that the
mutants at one control point means that the state there MUSFheorem of §2.3 applies to a single method.

be extensiely explored. (Itmight be made a design crite-
rion for mutation operators that théorce a wide explo-

ration of the state spaceRsilures that arise only from a -) _
combination of faults defeat mutation, because the mutants1- V. Basiliand R. SelbyComparing the effeateness of

References

at one fault point do not require the state to vary quite software testing strategid&EE Tans. Softwag Eng.
enough; it is only when another fault point is reached that SE-13 (Decembe987), 1278-1296.
the earlier variation can be seen to be too marithus 2. T. A Budd, The portable mutation testing suite, TR
mutation should be a better assurance method than branch 83-8, Department of Computer Science,grsity of
testing, but it falls short of perfection. Arizona, March, 1983.

This discussion suggests a tool to measure the software3. 1. A. Budd and WMiller, Testing numerical software,
assurance to be expected from test data, wratee test TR 83-18, Department of Computer Science Vemi
origin. Theprogram under test can be instrumented, in the sity of Arizona, Neember 1983.

same way that profiles are obtained, tonshte state-space
coverage. Wherthe coverage is poqrit may be that the test
could be impreed, or perhaps the state space is constrained
in some peculiar wayThe tester must makhe decision,

R. DeMillo, R. Lipton, and.Fsayward, Hints on test
data selection: help for the practicing programmer,
Computerll1 (April, 1978), 34-43.

since the problem is unsolvable in general. Hmyavhen 5. R. A. DeMillo and A. Jefferson Offutt VI, Experimen-

two tests are compared, the better one from the assurance tal results of automatically generated adequate test

point of view is the one with the better state-spaceecage. sets,Proceeding 6th Pacific Northwest Softer&ual-
ity ConferencePortland, OR, Septemhei988,

The notion of state-spacevaage suggests a modifica-
tion of thesubsumeselation that may better correspond 210-232.
with reality: one method is better than another if its state- 6. J. Duran and S. Ntafos, Amaluation of random test-
space ceerage is betterPrecisely method A is better than ing, IEEE Trans. Softwag Eng. SE-10 (July1984),
method B if for all programs the statesweoed by ay B 438-444,
test are necessarilywaed by all A tests. This “state-space
subsumes” has the property thay éailure exposed by a
poorer method must also be exposed by a better one, since
the state responsible must be@ed by the latterThus it

J. GourlayA mathematical frameork for the irvesti-
gation of testing|EEE Trans. Softwae Eng. SE-9
(November 1983), 786-709.

does not suffer from the deficigndescribed in §2.2-2.3. 8. R.Hamlet, Testing programs with the aid of a com-
However, only methods that are not monotonic could be piler, IEEE Trans. on Softwar Eng. SE-3 (July 1977),
poorer unless the better one were perfect at exposing fail- 279-290.

ures, so the analytic application of this idea is not promis- g9 R.Hamlet, Probable correctness thebrg. Proc.
ing. Onthe other hand, using the tool proposed in the previ- | etters25 (April, 1987), 17-25.

ous paragraph, an experiment could be devised/éstin

gae state-space subsumption. If the defect-rate assurance
theory is correct, such experiments would be measuring real
efficag/ of the methods, although of course the results are

R. Hamlet and R. TayldPartition testing does not
inspire confidenceRroceedings Second Workshop on
Softwae Testing \erification,and Analysis, Banff,

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24,

25.

26.

Canada, July1988, 206-215.

R. Hamlet, Editos introduction, special section on
software testingCACM 31 (June, 1988), 662-667.

R. Hamlet, Unit testing for software assuraire;
ceedings COMPASS 88/ashington, DC, June, 1989,
42-48.

W. Howden, Reliability of the path analysis testing
strategyl|EEE Trans. Softwas Eng. SE-2(1976),
208-215.

W. Howden,Functional Pogram Testing and Analysis,
McGraw-Hill, 1987.

J. Laski and B. Korel, A data Waoriented program
testing strategyEEE Trans. Softwae Eng. SE-9
(May, 1983), 347-354.

L. Lauterbach and ViRandall, Experimentahalua-
tion of six test techniqueBroceedings COMPASS 89,
Washington, DC, June, 1989, 36-41.

J. D. Musa, "Qualitytime" column, Faults, failures, and
a metrics revolution, IEEE Softwae, March, 1989,
85,91.

S. C. Ntafos, Anvaluation of required element testing
strategiesProc. 7th Int. Confon ®ftware Engineer-
ing, Orlando, FL, 1984, 250-256.

S. C. Ntafos, A comparison of some structural testing
strategieslEEE Trans. Softwae Eng. SE-14 (June,
1988), 868-874.

T. J Ostrand and M. Balcehe category-partition
method for specifying and generating functional tests,
CACM31 (June, 1988), 676-687.

D. L. Parnas, A. van Schouwn, and S. Kwan, Evalua-
tion standards for safety critical software, TR 88-220,
Department of Computing and Information Science,
Queens$ University, Kingston, Ontario, Canada.

D. Parnas, personal communication.

C. V Ramamoortly, S. F. Ho, and WT. Chen, On the
automated generation of program test d&gE
Trans. Softwae. Ehg. SE-2 (Dec., 1976), 293-300.

S. Rapps and E&juker, Selecting software test data
using data flov information,|IEEE Trans. Software
Eng. SE-11 (April, 1985), 367-375.

D. Richardson and L. Clarke, A partition analysis
method to increase program reliabiliBroc. 5th Int.
Conf on Sftware Engineering San Diego, 1981,
244-253.

R. W Selby, V. Basili, F Baker Cleanroom software
development: arempirical aluation,|EEE Trans.
Softwae Eng. SE-13 (Sept., 1987), 1027-1038.

27.

28.

29.

30.

31.

P. Thevenod-Fosse, Statistical validation by means of
statistical testing, Dependable Computing for Critical
Applications, Santa Barbara, CA, August, 1989.

M. WeiserJ. Gannon, and .mMcMullin, Comparison
of structural test ogerage metricslEEE Software
(March, 1985),80-85.

E. J. Veyuker, Axiomatizing software test data ade-
qguag, IEEE Trans. Softwae Eng. SE-12 (December,
1986), 1128-1138.

S. J. Zeil, The EQATE testing strategyroceedings
Wakshop on SoftwarTesting,Banff, Canada, July,
1986, 142-151.

S. H. Zweben and J. S. Gourleyn the adequacof
Weyuker's test data adequaexioms, |EEE Trans.
Softwae Eng. SE-15 (April, 1989), 496-500.

