
Test-based Specifications of Components and Systems

Dick Hamlet
Portland State University

Portland, OR, USA

hamlet@cs.pdx.edu

Abstract

Several program-analysis schemes now make unusual
use of information derived from execution sampling. From
finite test sets these techniques derive measures with wider
meaning, which can then be exploited in novel ways. We
call test information used beyond its actual limitations a
test-based specification. The idea is quite different from the
usual software specification, which is an a priori statement
of what a program should do. Rather, a test-based specifi-
cation is an empirical approximation to what a program ac-
tually does do. The great virtue in analysis using test-based
specifications is that (in contrast to the usual software spec-
ifications) test-based analysis is decidable and automatic.

A test-based specification system for component-based
software development (CBSD) has been implemented over
the past five years, along with an extension of fundamen-
tal testing theory to precisely describe its properties. The
CBSD tools provide an ideal context for experiments to
study test-based specification, providing insights into sub-
domain testing, composition of test results, and especially
the role that program persistent state plays in testing and
analysis. This paper describes the CBSD theory and tools,
lists insights gained, and suggests new ways to think about
and practice testing using test-based specifications.

Keywords: Component/system testing theory, test-
based specification, persistent state

1. Introduction

An engineering component, from a plumbing elbow to a
CPU chip, is expected to come with a ‘specification.’ This
specification, from a handbook or a data sheet, is a docu-
ment to be used in designing systems that employ the com-
ponent. Unlike a computer-program specification, a data
sheet is not a requirements wish-list; it is a factual state-
ment of how the component has been observed to behave,
a promise of what can be expected from it. The promise
has a statistical character because of chance variations in
manufacture, but these too can be quantified on the data-
sheet. Computer-program specifications are quite different:
(1) They are in principle exact descriptions, without any sta-

tistical variation; and (2) They might not describe actual
behavior. (1) is a positive quality; (2) is profoundly neg-
ative. The connection between program specification and
program behavior must be established by empirical testing1.
It is striking that the programming paradigm is so different
from the engineering one. Most engineers measure com-
ponent properties and use the measurements in design. In
software, we try a few cases against an abstract specifica-
tion and perhaps correct some problems, but then make no
further use of the unit test results. For programs, we use de-
tailed specifications but know that they do not hold; in engi-
neering, measurements known to hold are used even though
they lack detail2.

‘Specifications’ are the main subject of this paper, so it is
important to distinguish the computer-program ideal sense
of this term from the engineering data-sheet sense. We will
call the latter test-based specifications, and will be very
careful not to omit the adjective unless we mean an a pri-
ori description of what a program should so. When speak-
ing informally, it is usual to refer to program ‘behavior.’
Specified behavior is what a program should do; behavior
is the complete version of what it does do, and tested be-
havior is the subset of behavior that has been observed in
a test. A test-based specification and tested behavior mean
the same thing for the same test; sometimes we will say ap-
proximate behavior or test-based approximation to refer to
a test-based specification.

The software entities considered here are components
and system assemblies made from them. Test-based spec-
ifications are obtained for components, and we investigate
what can be done with these at the system level. Section 2
presents the background of component-based software de-
velopment (CBSD) with a testing theory and tools to en-
able experiments. Testing insights gained from these exper-
iments are listed in Section 3. Finally, Section 4 explores the
difference between the engineering view of test-based soft-
ware specification and the conventional view of software
specification and testing.

1Formal mathematical proof is in principle a way to establish that a
perfect description holds. It is still controversial whether such proofs will
ever be put to daily engineering use. This is a paper about testing, not
proving.

2Edward Tufte [20], quotes J. W. Tukey as suggesting that “approxi-
mately right” is much better than “exactly wrong.”

1

2. Components and Systems in CBSD
Following Szyperski [19], a ‘software component,’ is

an executable program described only by its interface and
black-box behavior using only local persistent state. A com-
ponent is a program, but viewed only through its behavior.
A software system is an assembly of components, also a
program, so any system is itself a ‘component’.

2.1. Subdomain Testing of Components
Subdomain testing is the natural way to examine pro-

gram behavior. The input domain is divided into subdo-
mains on each of which the behavior is intuitively ‘the
same.’ A few test cases are tried in each subdomain. In
practice, a meaningful sense of ‘the same’ is hard to define
and harder to verify. Behavior on a subdomain can only be
known by extensive testing there, the very thing subdomains
were invented to avoid. Ultimately, it is failure behavior that
must be ‘the same’ for subdomain testing to work. But for
all algorithmic partitions into subdomains, subdomains may
contain some success points and some failure points [12]. If
failure points happen not to be tested a subdomain test will
succeed and lull the tester into a false belief that all is well.

2.2. Extended Testing-theory Model
The model used by Goodenough and Gerhart [4], How-

den [12], and almost all subsequent testing theoreticians,
assigns functional semantics to programs. The theory is re-
viewed here to establish a consistent notation, then extended
to include state.

A program P is taken to have a meaning that is a func-
tion mapping an input domain D to an output range R.
This idea goes back to Turing, and Mills et al. [17] sug-
gested a graphic notation: The meaning of P is a function
P : D → R. Mills’s notation is literally the ‘black-box’

meaning of P as a mapping from input to output. A specifi-
cation for a program is similarly taken to be an input-output
function3 F : D → R, and correctness of P wrt F means
that P = F . A test set T is a subset of the input domain,
T ⊆ D. For program P with specification F to fail on T

means precisely that ∃t ∈ T, P (t) �= F (t).
Subdomain testing divides the input domain D into n

subdomains Si, 1 ≤ i ≤ n, D = ∪n
i=1Si. A test set T

covers the subdomains if ∀i, T ∩ Si �= ∅. The success
of a test set is misleading if the program is not correct in
consequence.

Other program properties are easy to capture in the func-
tional theory, by imagining that a program P computes
other functions as well as P . For example, P ’s run

3If specification is defined to be a relation rather than a function, it
captures the idea that more than one result may be correct, and allows the
discussion of ‘don’t care’ inputs. However, the mathematical machinery of
relations is less intuitive than functional notation, so in this paper we use
functional specifications.

time is a function T : D → R. If desired, correctness
can be defined to include non-functional properties, for ex-
ample, that a program achieve a response-time bound Q:
∀t ∈ D, T (t) ≤ Q.

A test-based specification for a program P is a finite
function obtained from subdomain testing. Each subdo-
main is sampled and values of P are averaged over the
subdomain, defining a step function approximation to the
complete behavior.

This functional-semantics testing theory models only
programs that do not retain state from test to test. But many
testing problems are intrinsically state-related, so we extend
the theory4 to explicitly include local state.

Along with the program input domain D and output
range R, consider a new, distinct state set H . The behav-
ior of program P is defined in two parts, each depending
on state as well as input. Retaining the box notation for the
‘functional’ part of P ’s behavior,

P : D × H → R.

A similar state notation is needed, and since the state maps
onto itself, a circle seems appropriate:

©P : D × H → H.

Thus both the program output and a final value for the state
depend on input-state pairs (d, h) ∈ D × H .

A specification is a (partial) function

F : D × H → H × R.

Let P be in a special initial state h0 ∈ H . Consider a
sequence of inputs t = (x0, x1, ..., xn). The corresponding
states reached by P are:

hi =©P (xi−1, hi−1), 1 ≤ i ≤ n.

Successive functional values of the program are:

P (x0, h0), P (x1, h1), ..., P (xn, hn),

that is, the ith output ri = P (xi−1, hi−1). Similarly, the
specification F prescribes a sequence of states h′

i and out-
puts r′i:

F (xi−1, h
′
i−1) = (h′

i, r
′
i), 1 ≤ i ≤ n,

starting with h′
0 = h0.

P is correct wrt F iff for every sequence of inputs
(x0, x1, ..., xn) and the corresponding hi and h′

i as above,

4A more detailed description of the extended theory was presented at
ISSTA 2006 [7]. It can be thought of as a compromise between trace se-
mantics [14] and explicit formal states (as in Z [18], for example). How-
ever, its primary motivation is that the theory be a natural extension of
the pure-function testing theory begun by Goodenough and Gerhart, and
Howden.

2

(hi+1, ri+1) = ((©P (xi, hi), P (xi, hi))
= F (xi, h

′
i) = (h′

i+1, r
′
i+1),

0 ≤ i ≤ n − 1.

The definition requires P to terminate exactly where F is
defined, so that the domains of F and P match.

The orthogonal state space H can be divided into subdo-
mains for testing as is the input space; non-functional prop-
erties can similarly be formalized as additional functions,
but mapping D × H instead of D alone. The generaliza-
tion of test-based specification is also straightforward: the
two-dimensional grid of subdomains on D × H is sampled
and the resulting finite function is a step-plateau. Care is
required in the sampling method, however. To realize the

definitions of P and ©P requires test sequences applied
to program P . There seems no sensible way to choose these
sequences other than randomly [8].

In summary, the extension using P and©P to capture
state behavior extends basic testing theory as Goodenough
and Gerhart might have done.

2.3. Tools for CBSD Experimentation
A research-prototype implementation [5] of tools sup-

porting CBSD has been developed over the past five years.
In designing these tools, a conscious choice was made to
restrict the form of components and systems so that the the-
ory describing them is stripped down to essentials. This
allows the tools to efficiently accomplish what would be
impossible in a more general setting. To this end, compo-
nents are permitted only a single floating-point input and
output value, and may keep only a single float value for
state. In theoretical terms, for any component program C,

C : R × R → R, and similarly for ©C . (The rationale
is that multiple values add more to the mathematical over-
head than they return in insight. Numerical values allow
straightforward random sampling.)

To analyze a component, a person provides its executable
code and a collection of subdomains on which to test. A tool
samples sequences of inputs to obtain the plateaus of a test-
based specification. Figures 1 and 2 show tool output for
an artificial component C designed to expose insights about
test-based specification5. Fig. 1 summarizes a test measure-
ment of C , and can be thought of as part of conventional
testing of component C. It might very well be used by C’s
developer to study C and to compare its behavior with a
formal specification.

However, the purpose of our tools is not conventional
code analysis or verification, but rather the measurement of

5The tools also treat the non-functional property of run time, not used
in this paper.

 0 1 2 3 4 5 6 7 8 9 10
Input 0 1 2 3 4 5 6 7 8 9 10

State

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

Outputs

Figure 1. Functional behavior of C. Each data
point is an execution from a random sequence of
inputs. There were 188 sequences of length be-
tween 1 and 188 and a total of 17798 test points.

test-based specifications like Fig. 2 for C. The errors re-
ported have nothing to do with specified behavior desired

 0
 2

 4
 6

 8
 10

Input 0
 2

 4
 6

 8
 10

State

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Approximate Outputs

Figure 2. Output test-based specification of com-
ponent C. Each rectangular plateau approximates
the behavior in an input×state subdomain. The
tools report r-m-s error in each subdomain; here
the weighted average for all subdomains is 11%.

for C; they measure the difference between actual behavior
(Fig. 1) and test-based approximation (Fig. 2). In verifi-
cation, a component developer has to convince herself that
C is behaving according to specification; except insofar as
Fig. 1 helps to visualize the output behavior, our tools are
not involved. Rather, once she is satisfied with the behav-
ior, the tools will measure Fig. 2 and report how close this
approximation comes to the actual behavior.

Similarly, Fig. 3 shows a test-based specification of©C .

Once test-based specifications are obtained for a group
of components, they are used to predict the behavior of sys-
tem designs. In the simplest theory only the ‘structured’
constructs of series, conditionals, and loops are allowed.
(These are a sufficient set of connectors [1], although far

3

 0
 2

 4
 6

 8
 10

Input 0
 2

 4
 6

 8
 10

State

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

Approximate Result State

Figure 3. State test-based specification of compo-
nent C. Against the actual execution (not shown)
the r-m-s error has a weighted average of 6.2%.

from the many possibilities offered by practical component
frameworks.) To study a system, a person defines its struc-
ture and the components to be used. Details of the synthe-
sis prediction algorithms are presented in [9]. They work
by looking up approximate output values by subdomain in
measured tables for each component, and doing the book-
keeping to see approximately what the system will do on
those subdomains. The heart of the implementation of the
prediction algorithms is a CAD tool that synthesizes a test-
based specification for the system. No actual system assem-
bly or execution is needed, nor is any component informa-
tion used beyond test-based specifications. The calculations
are much faster than system testing.

As a simple example, consider a system using C with
three (stateless) components Cc, Cs, and Ce in the structure:

if Cc then Cs; C else Ce fi. (1)

Cc is false on [0,1) and on [9,10); Cs has a saw-tooth out-
put; Ce has output that first rises linearly, then falls linearly.
Fig. 4 shows Cs and Ce and their measured test-based
specifications using 20 subdomains. The component behav-
iors are chosen to be comprehensible, yet complex enough
to challenge the tools. Figure 5 shows results of the CAD
synthesis for the output of system (1). The 400 plateaus in
the figure are calculated from component test-based speci-
fications in Figs. 2 and 4.

To validate the CAD tools, the actual system code is as-
sembled from the components’ code and executed with the
result shown in Fig. 6. Fig. 5 has the same general ap-
pearance as Fig. 2, but a quite different meaning. It is not
a measurement, but a theoretical prediction of approximate
system behavior, calculated from test-based specifications
of the components. The errors reported are deviations of
the prediction from actual system behavior. Even with the
simple behaviors of C, Cc, Cs, and Ce, the system behav-
ior is surprisingly complex. In Fig. 5 the only easily seen

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

O
ut

pu
t

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 2 4 6 8 10

O
ut

pu
t

Input showing subdomains

Figure 4. Behaviors of Cs (upper, r-m-s error 7.0%)
and Ce (lower, 5.6% error).

 0
 2

 4
 6

 8
 10

Input 0
 2

 4
 6

 8
 10

State

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Approximate Outputs

Figure 5. Predicted functional behavior of system
(1) made from four components.

 0 1 2 3 4 5 6 7 8 9 10
Input 0 1 2 3 4 5 6 7 8 9 10

State

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

Outputs

Figure 6. Actual measured output behavior of sys-
tem (1), from sampling assembled code for it with
120 sequences containing 7217 test points. The
weighted average r-m-s error in the calculation is
13%.

feature is the state-independent output on [0,1) and [9,10)
which results from the conditional selecting Ce.

Similarly, the CAD tool calculates system result-state

4

behavior, shown in Fig. 7 with the actual execution values
superimposed.

 0
 2

 4
 6

 8
 10

Input 0
 2

 4
 6

 8
 10

State

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

Result state

Figure 7. Calculated and measured state behavior
of this system. The weighted average r-m-s error
in the calculation is 7.8%.

The properties of calculated predictions and their use in
system testing will be further considered in Section 4.

3. Testing Insights Gained

Experimenting with CBSD tools to measure test-based
specifications and calculating system properties from them
has led to new understanding of software testing. The use
of simple artificial components is helpful in exposing un-
derlying principles, because the absence of arcane details
present in real testing makes it possible to formulate gener-
alizations.

3.1. Complicated System Behavior

Fig. 7 displays the well known fact that behavior of sys-
tems built from very simple components can be quite com-
plicated. The complication quickly escapes any attempt at
visualization, particularly when system state is a cross prod-
uct that cannot be graphed in 2-D projection. Black-box
system testing is thereby called into question, because very
dense sampling will be needed to investigate features of be-
havior like Fig. 6.

3.2. Subdomain Testing

Although subdomain testing is the primary practical
method, it suffers from a ‘stopping-rule problem.’ The
tester never knows how good the subdomains are, nor when
to stop refining them and end testing. Our CBSD tools pro-
vide useful feedback in the error reports for a component.
When an individual subdomain has a large r-m-s error, the
subdomain is ill-chosen and needs to be split or its bound-
aries shifted to better capture the behavior of the component
being measured. Graphs like Figs. 1 and 2, and Fig 4, pin-
point subdomain deficiencies. When the r-m-s errors are
small, it means that the test-based specification is accurate.

Unfortunately, the real indication of how good subdo-
mains are doesn’t come until a system is assembled. It can
happen that some component subdomain should have been
further refined because in the system it gets heavy usage.
The subdomain division stands in for an operational profile
that weights system subdomains, and since at component-
test time the system profile is unknown, the best a com-
ponent tester can do is to minimize the r-m-s error of the
test-based specification. Then no matter how a later-applied
profile emphasizes some part of the input space, it will not
have been neglected in component testing.

Our CBSD tools support an ideal engineering procedure
for component testing. Given a testing time budget, the
tester begins with an arbitrary set of subdomains, and us-
ing feedback from the CBSD tools, refines and adjusts them
to get the best test-based specification possible within bud-
get. In this process is easy to forget that as subdomains
are refined and the test-based specification gets closer to a
component’s actual behavior, this tested behavior should be
continually checked against the formal specification to see
that the component is correct. The tester has two tasks to
perform together and the CBSD tools provide feedback on
only one of them. If there were an effective oracle, its feed-
back would elevate correctness checking to the same kind
of engineering activity. The test-based specification would
interact with an oracle by quantifying the extent of testing:
It means little that an oracle has been satisfied unless the
behavior has been captured accurately.

Comparing Fig. 1 with Fig. 2 and Fig. 6 with Fig. 5
shows how helpful the subdomain grouping can be in vi-
sualizing behavior. The data on what actually happens is
harder to visualize than its approximation.

Our experiments [10, 6, 7] have shown that r-m-s er-
rors in system prediction are roughly linear in the measure-
ment errors in component test-based specifications and in
the number of components that form the system. Discon-
tinuities in components’ behavior must be carefully inves-
tigated, but as test-based specifications become more accu-
rate so do system predictions. However, the simplest exper-
iments in composing components (such as for the system
in Fig. 6) show that subdomain testing of units as prac-
ticed today is woefully inadequate. It is common practice
to exercise a stateless unit with a dozen haphazardly chosen
subdomains, when for system predictions accurate to (say)
5%, hundreds must be selected and refined with care. Ade-
quately capturing state-dependent behavior requires tens of
thousands of good subdomains.

3.3. Persistent Local State

Practical testers know that inadequate probing of system
state is often to blame for failures missed in pre-release test-
ing. When a system fails unexpectedly, the reason is often
a latent state error. So it is not surprising that subdomain

5

testing of components with state is difficult. Indeed, this
is obvious from the dimensional change in theory (Section
2.2): The component test space is two-dimensional when
there is state. If 100 subdomains were needed to obtain
an accurate test-based specification of a stateless compo-
nent, 10000 will be needed to handle 100 × 100 subdo-
mains in two dimensions. If stateless-component testing
uses far too few subdomains in practice, things are much
worse when a component has state. In practice, state subdo-
mains may not even be identified and systematic coverage
of all input×state combinations is seldom attempted. Our
experiments have provided a number of insights about what
makes state difficult to test. But at the outset the obvious
lesson in design for testability is: confine state to as few
components as possible.

Fig. 2 vs. Fig. 3 makes a less obvious point: Explicit

study of output state ©C is less helpful in understanding

behavior than working with C . For example, in Fig. 2
there are two discontinuities in the output surface — one
along input 5 and the other along state 5. This behavior was
inserted to study the effect of discontinuities, using straight-
forward conditional statements in C’s code. A person doing
debugging might insert code in this way to trace a problem
or to correct one. However, to introduce such changes in
Fig. 3 is not so easy. Adding straightforward conditional

statements creates bizarre and unexpected changes in ©C .
About all that can be easily accomplished is to test for a
state value and adjust the result state (e.g., ‘clip’ it to 9.5 as
was done at the rear corners of Fig. 3).

People are used to state remaining hidden and they bet-
ter understand its role as the second part of the domain of
C : D × H → R. The reason state is hard to under-

stand lies in the crucial difference between state and in-
put as parameters determining program behavior. Input is
an independent variable a tester controls, and output is its
dependent variable. But state is not an independent vari-
able. It can’t be sampled directly because its values are not
arbitrary— they are determined by the program and are self-
dependent. State behavior is intuitively less ‘functional.’ As
a simple example, a component P with an identity P is
created by assigning the input to the output. But a similar
assignment of input state to output state results in a constant

©P : each state is the same as the previous one and hence
no possibility but the initial state.

When components are combined, their states combine as
a cross product. The system state for a series of C1 (states
H1) and C2 (states H2) is pairs from H1 × H2. If in a con-
ditional if Cc then Ct else Cf fi all three components
have state, the system state is Hc × Ht × Hf . When fur-
ther system combinations occur the dimension continues to
increase, so for example, two conditionals in series might
have a six-fold state. Since the number of test subdomains

rises as the product, even three components each needing
100 state subdomains will produce a million system state
subdomains. Again, the obvious advice for testability is to
reduce the number of system components with state.

Current practice in testing systems with state uses ‘state-
coverage’ algorithms that are often erroneous [7]. First, the
states of a specification are used instead of states that actu-
ally arise in the implementation. Drastic errors in behavior
can remain hidden from imaginary states that should have
been implemented but weren’t, and code-coverage metrics
don’t provide any check on failure to cover real states. Sec-
ond, states are sampled explicitly, not implicitly using input
sequences as in Section 2.2. It is incorrect to randomly se-
lect state values, since they are under complete program-,
not tester-, control. Worse, a state selected for test may
never actually be entered by the program. Externally setting
such an infeasible state creates a phony execution that is an
artifact of the test. Successful testing on infeasible states
gives a false confidence in a program’s reliability. On the
other hand, when a test fails on an infeasible state, time is
wasted on a spurious problem. It is hard to escape the con-
clusion that state-coverage testing as currently practiced is
a procedure performed without basis. Engineers need well
defined procedures, but when there is no necessary con-
nection between actions taken (testing) and goals (to un-
derstand behavior, to find failures or increase confidence in
their absence) a prescribed procedure is no more than make-
work.

4. Using Test-based Specifications
Test-based specifications are a necessary part of CBSD,

because they make honest engineering artifacts of software
components. Section 2.3 has described how system predic-
tions can be made from test-based specifications and imple-
mented by CAD tools.

4.1. Performance of CAD Tools
In the CBSD paradigm where component test-based

specifications are measured then combined algorithmically,
the huge collection of cross-product system states is not
sampled (except for validation such as in Fig. 6). The
prediction algorithms trade storage for execution time. In
the simplest case, let there be two components, each with
N input subdomains and S state subdomains. Then the
actual system storage is S + S, while the tables that hold
the test-based specification take space NS2. To sample the
(NS)2 system subdomains for average execution time R
takes R(NS)2. The prediction algorithm requires table-
lookup and a number of copying operations. If the copying
time and table-lookup overhead time is m per operation, the
prediction time6 is m(N log N)NS2. Cancelling common

6The reader must take these estimates on faith because of the stringent
page limitations for this paper. The stateless case is presented in detail in

6

factors, the prediction retains a factor m log N , while the
system execution retains factor R. Roughly, the prediction
factor m log N is on the order of 1 µs for nanosecond in-
structions and N under 1000, while the system execution
factor is arbitrary.

The loop system construction is a special case in which
the prediction can do even better. Actual loops can require
an arbitrary execution time to test, and a non-terminating
loop has to waste a lot of time before a tester decides to
abort it. The prediction implemented in our CBSD tools
requires a time independent of execution (depending only
on the number of subdomains, roughly as above), and
has the wonderful property that it decidably predicts non-
termination [9].

We have been comparing the time to make a com-
plete system prediction to that required to completely
subdomain-test the system. For a single point, the
execution-time comparison is also in the calculation’s favor.
To execute the actual system requires a sum of component
execution times, which may include an arbitrary repetition
factor for a loop. To ‘execute’ the prediction requires only
looking up an input subdomain (from N possibilities) and
k state subdomains (from S possibilities each). The total
look-up time is roughly m(N log N + k(S log S)). Taking
k = 3 in line with the advice to restrict components with
state, and N = S = 128, the prediction time is about 4 ms,
vs. an arbitrary execution time.

4.2. Conventional Specifications
There is a two-fold role for the usual kind of specifica-

tion (that is, a description of what some program is sup-
posed to do) in the CBSD process. First, when a compo-
nent developer tests code, the results are checked against
the specification before the component is released and be-
fore its test-based approximation is recorded. Second, sys-
tem results (as predicted by CAD tools) are checked against
a system specification. The two checks are complementary,
and the quality of the first affects the latter. Should there
be a system failure in the prediction but component tests
did not fail, the system structure is likely to be at fault, and
tracing a failed system test at component granularity should
be profitable. Because the prediction is an approximation,
it may be a good idea to repeat failed tests using the actual
system code [7] to check that they are really failures.

But more important is the significance of a system pre-
diction that agrees with the system specification. System
structures are far less complex than is the aggregate of sys-
tem code. There are therefore fewer ways for the structure
itself to produce misleading coincidental success. The sys-
tem is more likely to be that testers’ dream: if it fails, it fails
almost everywhere. This is the sense in which system tests
are spot checks rather than part of an elaborate test plan.

reference [9].

In contrast, the conventional model of system develop-
ment is to expend some resources on unit testing, then en-
ter full-blown system test against the system specification.
Leaving aside the fact that executing a system is slower than
CAD calculation, the usual system test differs in principle
from a check of CAD prediction. If the system should fail
and be modified, the system test is usually restarted from
scratch7. Since the quality of unit testing is not usually
quantified in any way, there can be no separation of possible
failures between the component and system levels. Hence
when a system test fails, the problem may be anywhere in
the code and the component structure is no help. When a
system test is successful, it is no more than an isolated point
in a huge sample space.

4.3. Composing Test-based Specifications
Although not yet adapted to CBSD, several schemes

have been proposed for obtaining something akin to our
test-based specifications. The best known is Daikon [3],
which uses test samples to find pre- and post-conditions the
program satisfies for those tests. These constitute a test-
based specification in Floyd-Hoare logical form. Similarly,
Henkel [11] finds test-based specifications in the form of
algebraic axioms. Meinke [16] gives a procedure for lo-
cating a test that fails for a given program; so long as his
procedure has not found this test point, it induces a series
of increasingly accurate test-based specifications, and can
be used to define a natural set of ‘functional subdomains’
based on a given formal specification. Finally, several pa-
pers [13, 2, 15] describe variations on what are being called
bounded exhaustive test (BET) methods. BET methods
look for program failures, but along the way they gener-
ate test sets that could be used with any scheme to get a
test-based specification.

One of the best ways to understand a complex transfor-
mation M is to formalize it and study its ‘decomposition
theory.’ The essential idea is to investigate homomorphic
properties of M . M applies to an entity X that can be bro-
ken into subentities x1, x2, ..., for which there is a natural
combination operation ⊕:

X = x1 ⊕ x2 ⊕ ...

The study of M seeks another operator ⊗ that combines
M -values in a homomorphic way:

M(X) = M(x1 ⊕ x2 ⊕ ...) = M(x1) ⊗ M(x2) ⊗ ...

In our case, the entities are programs, M is the operation
of taking a test-based specification. Combination ⊕ is com-
ponent assembly, and ⊗ is the prediction algorithm for the
system of assembled components. To check the homomor-
phism, suppose a system were directly subdomain tested to

7Regression testing might be profitably studied using a component
model, but at present its theory is too cumbersome for practical use.

7

create a test-based specification G, as if the system itself
were a component (this is G = M(X)). What is the re-
lationship between G and the predicted system behavior Q
calculated by our CAD tools from the system’s component
test-based specifications (that is, M(x1) ⊗ M(x2) ⊗ ... =
Q)? So long as the deviation of Q from actual system be-
havior is small, the deviation of G should also be small (in
the theory they differ only as the mean of squares differs
from the square of the mean), and Q and G should be even
more similar. Fig. 8 displays G and Q for the example
system of Section 2.3. The average difference over the 400

 0
 2

 4
 6

 8
 10

Input 0
 2

 4
 6

 8
 10

State

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Approximate Outputs

Figure 8. Comparison between measured system
test-based specification (G, dashed) and CAD pre-
diction from component test-based specifications
(Q, solid).

subdomains is 7.5%. The prediction error in Q is 13% (Fig.
6), and the measurement error in G is 24%. Thus the homo-
morphic property holds approximately even for relatively
poor approximations.

The same question can be formulated for other test-based
specification schemes, using the same operator ⊕ to build
systems from components. For example, how would com-
posing component Daikon test-based specifications accord-
ing to Floyd-Hoare propositional-logic rules (a good candi-
date for ⊗) compare with a system Daikon test-based spec-
ification? How is the BET set for a system made from
components related to the BET sets for those components?
(That is, what is ⊗ for the various BET schemes?) Studying
component decomposition of these theories would be a way
to understand them better.

References

[1] C. Boehm and G. Jacopini. Flow diagrams, turing machines,
and languages with only two formation rules. Comm. of the
ACM, 9:366–371, 1966.

[2] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated
testing based on java predicates. In Proceedings ISSTA ‘02,
pages 123–133, Rome, 2002.

[3] M. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dy-
namically discovering likely program invariants to support
program evolution. IEEE Trans. on Soft. Eng., pages 99–
123, Feb. 2001.

[4] J. B. Goodenough and S. L. Gerhart. Toward a theory of test
data selection. In Proceedings of the international confer-
ence on Reliable software, pages 493–510, 1975.

[5] D. Hamlet. www.cs.pdx.edu/∼hamlet
/components.html.

[6] D. Hamlet. Tools and experiments for a testing-
based investigation of component composition. Sub-
mitted to ACM TOSEM, October, 2006. Copy at:
http://www.cs.pdx.edu/∼hamlet/TOSEM.pdf.

[7] D. Hamlet. Subdomain testing of units and systems with
state. In Proceedings ISSTA 2006, pages 85–96, Portland,
ME, July 2006.

[8] D. Hamlet. When only random testing will do. In Pro-
ceedings First International Workshop on Random Testing,
Portland, ME, July 2006.

[9] D. Hamlet. Software component composition: subdomain-
based testing-theory foundation. J. Software Testing, Verifi-
cation and Reliability, June 2007. (In press.).

[10] D. Hamlet, M. Andric, and Z. Tu. Experiments with com-
posing component properties. In Wallnau [21].

[11] J. Henkel and A. Diwan. Discovering algebraic specifica-
tions from java classes. In Proceedings ECOOP ‘03, Darm-
stad, 2003.

[12] W. E. Howden. Reliability of the path analysis testing strat-
egy. IEEE Trans. on Soft. Eng., 2:208–215, 1976.

[13] D. Jackson. Alloy: a lightweight object modeling notation.
ACM Transactions on Soft. Eng. Methodology, pages 256–
290, Apr. 2002.

[14] R. Janicki and E. Sekerinski. Foundations of the trace as-
sertion method of module interface specification. IEEE
Trans. on Soft. Eng., 27:577–598, 2001.

[15] D. Marinov and S. Khurshid. Testera: a novel framework
for automated testing of java programs. In Proceedings 16th
IEEE Int. Conf. on Automated Software Engineering, pages
22–34, San Diego, 2001.

[16] K. Meinke. Automated black-box testing of functional cor-
rectness using function approximation. In Proceedings IS-
STA ’04, pages 143–153, Boston, 2004.

[17] H. Mills, V. Basili, J. Gannon, and D. Hamlet. Principles of
Computer Programming: A Mathematical Approach. Allyn
and Bacon, 1987.

[18] J. M. Spivy. The Z Notation: A Reference Manual. Prentice-
Hall, 1989.

[19] C. Szyperski. Component Software. Addison-Wesley, 2nd
edition, 2002.

[20] E. Tufte. Beautiful Evidence. Graphics Press, 2006.
[21] K. Wallnau. http://www.sei.cmu.edu/pacc (links

to CBSE proceedings).

8

