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Abstract

Most of the effort that goes into improving the quality
of software paradoxically does not lead to quantita-
tive, measurable quality. Software developers and
quality-assurance organizations spend a great deal of
effort preventing, detecting, and removing
"defects"—parts of software responsible for opera-
tional failure. But software quality can be measured
only by statistical parameters like hazard rate and
mean time to failure, measures whose connection with
defects and with the development process is little
understood.

At the same time, direct reliability assessment by ran-
dom testing of software is impractical. The levels we
would like to achieve, on the order of 106 - 108 execu-
tions without failure, cannot be established in a rea-
sonable time. Some limitations of reliability testing
can be overcome, but the "ultrareliable" region above
108 failure-free executions is likely to remain forever
untestable.

We propose a new way of looking at the software reli-
ability problem. Defect-based efforts should amplify
the significance of reliability testing. That is,
developers should demonstrate that the actual reliabil-
ity is better than the measurement. We give an exam-
ple of a simple reliability-amplification technique, and
suggest applications to systematic testing and formal
development methods.
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1. Reliability Amplification

Software quality is the focus of renewed attention, in
a world where software is becoming all-pervasive and
its quality is too often left to chance. It is a common
belief that the software industry is at risk for a disaster
or some kind, a disaster in which the blame will be
clearly laid to software, and all will be tarred with the
brush used on the unlucky developer. To guard
against such a disaster, many software organizations
are beginning to devote considerable attention to
attaining software quality. The most popular
approach is one of "process." The Software Engineer-
ing Institute (and in Europe, the International Stan-
dards Organization) have attempted to describe infor-
mally the way in which quality software should be
developed, and to indicate characteristics of an organ-
ization that can develop it.

However, attention to process and developer
organization are only the most recent fads in seeking
software quality. Software testing is a much older
method with the same intent, as are inspections of
software products. Formal methods in great variety
are being applied throughout the development cycle.
All of these ideas, from process definition and control
to systematic testing, have one failing in common:
there is no established relationship between the
method and quantitative assessment of the quality that
method is supposed to engender. This is not to say
that effort aimed at quality is wasted, or that people
trying to attain it cannot do so. It is to say that com-
mon sense and the best intentions are not an adequate
basis for trusting software, nor an adequate hedge
against disaster.

No one contests that attention to finding and
enforcing good engineering practice for software
development is well advised. Any process in which
people are continually made aware of a goal, however
imprecisely stated and imperfectly sought, is likely to
increase the chance that the goal will be attained. As
a concrete example, inspecting a software design for



problems is likely to find some, and to aid in their
early removal. But quality is not measured by effort,
however well intentioned. Discovery of many defects
can as well be caused by an oversupply at the outset
as by finding most of them. All measures of the
efficacy of defect prevention, detection, and elimina-
tion methods yield the same results when rotten
software is made only a little less rotten as when
better software is perfected. In their haste to sell the
sound ideas of software-development process control
and defect-based methods, people choose to forget
that these methods are necessary but not sufficient. It
may be impossible to develop quality software
without them; it is certainly possible to develop
unreliable software with them.

Software is an object whose behavior defines its
quality. Quality behavior is not the organization that
developed the software, nor the vigor with which
defects were attacked. Quality behavior is directly
measurable only in the field: quality software does
not fail too often, and never fails in catastrophic ways.
It may seem harsh to discount the good intentions of
developers, the clever tricks they used at great
expense to do the best job possible. But engineering
has a harsh judge in the operating environment, and
nothing excuses failure there. Insofar as we cannot
predict quantitatively the effect of our methods on the
measurable quality parameters of software, those
methods (or at least our understandings of them) are
wanting.

This paper suggests a new viewpoint for
software-engineering quality research. Development
ideas and practices should be subjected to a new kind
of reliability analysis. A method that can be quantita-
tively shown to lead to enhanced reliability is to be
preferred to one whose quantitative connection with
reliability is unknown. We suggest a further
refinement: a method is best if it amplifies reliability
measurements. That is, reliability analysis of a
development method should show that when the
method has been used, and reliability measured, the
actual reliability is necessarily better than the meas-
urement. Furthermore, the analysis should be quanti-
tative, so that the reliability improvement can be cal-
culated.

Good engineering practice in software develop-
ment is obviously a necessity on the most intuitive
grounds: we cannot expect to get away with hapha-
zard construction of the most complex objects in
human history. But quantitative reliability
amplification is also necessary because direct meas-
urement of adequate software quality is impractical,
and will probably always remain so. The testing

effort required to establish a certain mean time to
failure (MTTF) with 90% confidence is at least twice
that MTTF. There are about 107 sec in a work-year.
Even ignoring all problems of test generation, test
oracles, and test-administration overhead, and making
use of overspeed execution and parallel hardware for
test, it is difficult to foresee more than about 10
tests/sec of complex software. Current practice is
perhaps three orders of magnitude less. Thus testing
for months could measure a MTTF of 103 runs in
current practice, or 106 runs at best. But the require-
ment for mass-distribution software is a MTTF of
about 107 (hundreds of runs over hundreds of
thousands of copies). Thus testing must fall short by
a factor of about 20 (or a factor of 20,000 in practice
today!). In the "ultrareliable" region—MTTF of
about 109—it will always be impractical to test pro-
grams. Thus a way must be found to quantitatively
predict that reliability is better than what can be
directly measured.

We thus imagine that each software system is
subjected to an unsatisfactory reliability
measurement—it will prove impossible to conduct
enough testing to predict the required MTTF. It is the
task of good engineering practice to amplify the
measurement. For example, suppose that a MTTF of
105 runs is required, but that testing resources allow at
best a prediction that the MTTF is greater than 103

runs. The developer’s task is to demonstrate that this
prediction is pessimistic by at least two orders of
magnitude, because the development methods used
establish the needed additional quality.

The remainder of this paper is organized as fol-
lows: Section 2 describes reliability measurement,
and Section 3 describes testability analysis. Section 4
presents a simple example of reliability amplification,
using testability analysis. Section 5 is a critique of
the models underlying conventional reliability and
testability. Section 6 considers systematic methods
usually used for unit testing, and the possibility of
using them for reliability amplification. Section 7
suggests how existing formal development methods
might be justified by reliability-amplification argu-
ments. In Section 8 the related idea of self-testing
programs is examined.

2. Conventional Reliability Measurement

Software reliability measurements through random
testing are difficult to make in practice. The most
apparent practical problem is the absence of an effec-
tive oracle for testing—a means of automatically
judging software behavior as meeting or not meeting
specifications. But from a theoretical viewpoint, the



worst difficulty is the lack of a specified operational
profile. Without an accurate profile, there can be no
validity to the test—its points are not representative
of subsequent usage. Coupled with an unspecified
profile may be doubts about what it means to select
inputs "at random," that is, without correlation. All of
these difficulties are glossed over in the usual descrip-
tion of conventional reliability testing, as follows:

To estimate software reliability, choose test
points at random according to an operational
profile. The MTTF can be directly measured,
using these test points and the oracle to detect
failures.

If no failures occur, substantial further assumptions
are needed, namely that the software has a sensible
probability of failure, related to the size of the test
that has not failed. This situation can be described
using hypotheses about (mis)interpreting the test; or,
perhaps more simply, it can be postulated that there is
a meaningful long-term failure rate Θ and that N ran-
dom tests have established an upper confidence bound
1−α that Θ is below some level θ. These quantities
are related by [Thayer et al.]:

(♦♦ ) 1−(1−θ)N ≤ α.

Thus it is always possible to trade confidence 1−α for
maximum failure-rate θ in equation (♦♦ ): A given
test size N can always be viewed as providing low
confidence that Θ is below a small θ, or higher
confidence that Θ is below a larger (worse) θ. The
MTTF, assuming Θ is constant over program runs, is
1/Θ.

An important difference between the case of a
measured MTTF and that of a calculated θ when no
failures occur, is that the former permits experimental
confirmation of its predictions (by repeating the meas-
urements, for example). When failures do not occur,
and a large MTTF is predicted as a result, no such
experiment is possible.

In principle, reliability testing can be applied to
any software system; in practice, the real-time control
systems for which MTTF is most needed have more
difficulty with an oracle and an operational profile
than do batch systems [HamletB].

3. Testability Analysis

In the context of reliability, notions of "testability"
based on peculiar properties of testing methods must
be rejected. For example, it makes no sense to call a
program "testable" when branch coverage (say) is
easy to obtain, because the relationship between
branch coverage and program failure is unknown.
Our definition insists on a correlation between test

outcome and program quality:

The testability of a program P is the probability
that if P could fail, P will fail under test.

Making testability conditional on P ’s failure is
important, to leave open the possibility that a program
has high testability, yet never fails. The definition
also implies the use of a particular testing method; if
the method changes, the testability could change.
And finally there is an implication that testability is
concerned with the quality of being defect-free rather
than with mere reliability, since the definition speaks
of possible failures rather than likely failures.

Any assessment of testability must be based on
a model of the fault/failure relationship. The follow-
ing simple model of this relationship has been pro-
posed [Voas]:

Each textual location in a program is considered
as a possible location of a fault. At a given
location, a possible fault could result in a failure
if and only if:

An input results in execution reaching the loca-
tion. (The execution condition.)

The data state that results from execution is in
error. (The infection condition.)

Infection results in an observable incorrect out-
put. (The propagation condition.)

This model is very simplistic, because it imagines that
faults occur at single locations; however, it can be
used to define a practical approximation to testability.

If we confine the possibility of a program’s
failure to this simple fault model, and imagine three
independent probabilities of execution, infection, and
propagation (which we call the conversion probabili-
ties), then the probability that a fault will turn into a
failure is the product of the three conversion probabil-
ities. In terms of this model, the definition of testabil-
ity becomes:

The testability of a program P is the probability
that if P contains fault(s), P will fail under test.

A lower bound on testability of a program is obtained
as the least conversion-probability product over all
locations in the program. Since it is not known which
(if any) locations contain faults, the probability of
seeing a failure is at least as large as the probability
that one could result from the least-apparent fault.
Intuitively, a program with high testability "wears its
faults on its sleeve;" faults are likely to be revealed as
failures. A program with low testability hides its
faults in the sense that they are unlikely to come to
light under test. Low testability can result from a low
probability of execution, infection, or propagation, or



from a combination.

It is possible for a program to have a testability
near 1, yet in fact contain no faults. Such a situation
arises when any possible faults would almost certainly
appear as failures (that is, all three conversion proba-
bilities are near 1 at all locations), but in fact no loca-
tion contains a fault. Without a model of fault-to-
failure conversion, we cannot describe the desirable
situation of a correct program with high testability.

The conversion probabilities of the Voas model
can be estimated, and the analysis can be automated
[Miller et al.], driven by an input profile from which
points are drawn. Conventional program instrumenta-
tion at each location can determine the frequency with
which the location is executed by points drawn from
an operational profile, thus estimating the execution
probability. The infection probability can be
estimated by making mutations of the source code at
each location, and monitoring the state (as in weak
mutation testing) to detect changes (if any). The base
states are those that result from data drawn from the
operational profile. Finally, the propagation probabil-
ity can be estimated by introducing random perturba-
tions into these base states, and observing whether or
not outputs are affected. Estimating the conversion
probabilities allows an estimate of the testability
lower bound to be calculated as the least value of their
product over all program locations.

Testability estimation uses many of the ideas of
testing, but is fundamentally different. The program
output is not compared to a specification, so no oracle
is required. The analysis yields not an estimate of the
failure probability (as a test would), but rather an esti-
mate of how likely it is for potential faults to turn into
failures. Thus in the situation that the program is very
unlikely to fail, and it does not fail under test, testing
can only estimate a failure probability of 0; on the
other hand, testability can be high or low.

Glenford Myers is credited with the insight that
the purpose of testing is to expose failures, not to find
nothing wrong [Myers]. The idea of testability gives
Myers’ argument a new twist. Imagine two programs,
one PL with low testability, and the other PH with
high testability. Which program should a developer
seek to create? A developer’s first response might be
that PL is better. It will be difficult to cause PL to
fail, so it will appear to be of high quality, and (say)
pass its acceptance tests. PH is worse in this view
because it is more likely to fail under test. Why, this
developer might ask, should programs be designed to
fail? Such a developer has missed Myers’ point. At
the completion of whatever testing can be afforded,
neither program will have failed in its final, release

version. For PL this might be because whatever faults
it contains are hidden; for PH it is more likely that
there are less faults to find. Thus we can add testabil-
ity to Myers’ advice as follows:

Design for high testability, then test to uncover
failures. When no more are found, there are less
likely to be hidden ones that have been missed.

"Design for testability" is a recognized goal in
hardware development, whose essential idea is that
internal states of a chip should be made visible on the
pins for testing. The analogous idea for software has
been explored [Hoffman], but "design for testability"
in the sense of this section is a rather different idea.
The software designer who wants testability near 1.0
must seek to avoid small conversion probabilities.
That is, programs should not contain code that is sel-
dom executed in normal use. They should not use
expressions that collapse state (for example with
mod functions, or reducing a complex set of values to
a Boolean condition), particularly when producing
output. A simple example of both mistakes is a
seldom-invoked Boolean function with several real
inputs. Such a function has a low execution probabil-
ity because of its infrequent usage; it has low
infection/propagation probabilities because the many
state possibilities its inputs represent are collapsed
into {true, false} in the result.

Developers cannot always avoid low testability;
for example, a problem may require Boolean decision
functions to handle low-frequency cases. Then the
design must encapsulate the low-testability code into
routines that can be verified by means other than test-
ing. This advice makes additional development work,
but it also saves testing of components (and with poor
design, whole systems) that are intrinsically unte-
stable.

4. Reliability Amplification using Testability

Reliability testing is flawed precisely because the
significance of a successful test can only be predicted
using a dubious model. When tests drawn from the
operational profile do not fail, the only estimate avail-
able for the failure rate is 0. As described in Section
2, by assuming a conventional failure model, it is pos-
sible to predict confidence in an upper bound on the
failure rate, e.g., "99% confidence that the failure rate
is below 10−4/run" (which would require 46,000 test
runs from equation (♦♦ )). The number of test runs
needed precludes establishing high confidence in low
enough bounds [Butler & Finelli]. Figure 1 shows the
situation after a successful random test of N points
has established confidence C that failure rate θ
exceeds the actual failure rate Θ. A particular value
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Figure 1. Reliability testing
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of θ such as h in Figure 1 establishes confidence
1−(1−h )N that the actual failure rate Θ is below h .
For the same number of test points, a better bound
such as h ′ can be selected, but with lower confidence.

The developers may believe that in fact the
software is more reliable than the smallest upper
bound for which testing with adequate confidence is
practical. Testability provides a way to quantify this
belief, and to amplify the reliability measurement.
Suppose that a lower bound on the testability of a pro-
gram has been estimated to be h . That is, if the pro-
gram has faults, the probability that it will fail for a
certain operational profile is greater than h . Figure 2
shows the probability that failure rate θ exceeds actual
rate Θ.
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Figure 2. Testability analysis
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In reality, there will be some uncertainty about the
testability, resulting in the "actual" curve; ideally, we
can take the transition to be a unit step function at h .

If reliability testing with the same profile estab-
lishes θ = h as an upper bound on the actual failure

rate Θ, we have a "squeeze play" [Voas & Miller]:
from testing there is some confidence that Θ is below
h . But from testability we believe that if there are
faults, a failure rate above h will be observed. Hence
we have some confidence that there are no faults, that
is, that the software is correct. Figure 3 shows the
testing curve 1−C = (1−θ)N from Figure 1, and the
testability curve as an idealized step function.
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Figure 3. Squeeze play
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From testing, the probability that Θ lies above h is
(1−h )N . That is, the probability that Θ lies in the
interval [h ,1] is (1−h )N . From testability, assuming a
unit step at h , the probability that Θ lies in the inter-
val (0,h ) is 0. Thus the probability that Θ lies in (0,1]
is (1−h )N . This is the probability that the software
can fail, hence the probability of correctness is
1−(1−h )N . (For a more realistic testability curve like
the "actual" one in Figure 2, this estimate would be
reduced by a non-zero probability from the interval
(0,h ).)

In practice, the testability estimate h is a pro-
perty of the software, while the size of the test N can
be increased with more testing effort. Table 1
displays some numerical values of these parameters.
The squeeze play always works, and works very well
for a practical range of testability estimates and test
sizes. When it works less well it is because a high-
confidence upper bound on Θ lies far above the testa-
bility estimate h .

5. Critique of the Amplification Example

The reliability amplification presented in Section 4 is
a practical scheme for software validation through
testing and testability measurements. The two com-
plementary techniques are used to achieve what nei-
ther could alone: a confidence bound for the correct-
ness of a program.
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Table 1. Practicality of the squeeze play
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However, we are the first to admit that many
details of the models in Sections 2 and 3 are a poor
abstraction of reality. Conventional reliability testing
gives an overly optimistic bound on the failure rate,
because it fails to take into account the effect of an
incorrect operational profile, and possible correlation
between test points that "do the same thing" relative
to failures [HamletA]. Testability analysis is obvi-
ously in its infancy, and its ways of estimating the
conversion probabilities are crude approximations,
justified only because they make automatic measure-
ments possible. Testability also relies on an opera-
tional profile, although the distortion that results from
an incorrect profile is less clearly optimistic than for
reliability testing. Simple mutations do not model
faults very well, casting doubt on the infection part of
the analysis. The state perturbations used have no
necessary relation to perturbations that can occur in
actual executions. The three conversion probabilities
are not independent as assumed. The most glaring
defect of the model is the assumption that each fault is
tied to a single program location. Real faults that
result in low-frequency failures are more likely to be
distributed, involving interaction between program
locations that are unobjectionable in isolation.

These flaws in the fault-to-failure conversion
model introduce an uncertainty into the testability
estimates that is impossible to quantify. There should
be a confidence bound attached to the testability esti-
mate, but the statistical effect of the number of inputs
used for analysis will certainly be swamped by
outright mistakes in the model. On the other hand,

testability analysis obtains probability estimates,
rather than confidence in unmeasurable bounds as in
reliability testing, so some confidence in the measure-
ments can be obtained in practice by repeating them
and observing the stability. Sometimes the
fault/failure model does surprisingly well. For exam-
ple, its propagation component can handle omitted
assignment statements. At the location of a missing
assignment to variable (say) X, perturbing X in the
state simulates the missing statement. If the infection
fails to propagate, the testability of the location is
low. An experiment to measure the ability of propa-
gation to predict missing assignments gave a correla-
tion of .96 between predicted and measured failure
rates [Voas].

Whatever the flaws in the models of Sections 2
and 3, we emphasize that the idea of reliability
amplification does not depend on those details. A
more plausible reliability theory for software is
needed, and a better understanding of the fault-failure
relationship. Better foundational theory will make
reliability amplification more accurate. But even the
simple-minded example of Section 4 represents an
improvement over testing-only verification schemes.
An underlying fault/failure model is central to a better
understanding of reliability amplification. We believe
that the heart of the theoretical problem is finding a
proper home for the failure rate, and we believe that it
should be assigned to the program computation and
its data-state values, instead of to points of the input
domain.

6. Reliability Amplification Based on Systematic
Testing

The bulk of software testing is "systematic," that is,
directed by a testing method of some kind, and not
"random." The descriptive adjectives are biased
against "random," which has the peculiar hacker’s
meaning of "not well organized." But for reliability
predictions, "systematic" is not what tests should
be—the statistical predictive power is lost when test
inputs follow a pattern. Thus most of practical testing
is not testing for reliability, and when tests succeed
(as they eventually must, and the software is released)
there is little statistical implication that this success
will be replicated in use [Hamlet & Taylor].

There is, however, a widespread belief that sys-
tematic testing is essential to software quality, and
that true reliability cannot be attained without it. In
particular, there is spirited resistance to reducing
structural and functional unit testing—the systematic
methods in widest use—in favor of random reliability
testing at the system level. Practical developers do



not trust the statistical methods. The basis of their
belief is that systematic methods find defects causing
system failure with a frequency too low to detect with
random tests, but too high to risk release. This is pre-
cisely the description of reliability amplification: sys-
tematic testing is thought to probe the failure-rate
region that random tests cannot reach, and thus to
enhance whatever reliability can be established.
However, this argument has never been made precise,
so systematic testing continues to receive only anec-
dotal support.

Systematic methods are related to the testability
analysis described in Section 3. Insofar as testing is
required to satisfy a systematic criterion, the tester
must pay more attention to low-testability locations,
because there the criterion will be hard to satisfy. For
example, at a location where the data state is insensi-
tive to infection, weak mutation coverage will be
difficult to attain. However, systematic methods are
not used to find insensitive locations. Instead, the tes-
ter works hard to satisfy the test method everywhere.
Can we then quantify the improvement in reliability,
if any?

Systematic methods can be assessed statisti-
cally. For partition methods, measures such as the
probability that at least one failure will be exposed,
can be derived by a combination of analytic and simu-
lation methods, in terms of the failure rates in the sub-
domains for the partition [Duran & Ntafos, Hamlet &
Taylor, Weyuker & Jeng]. When an actual partition
test is conducted, and no failures are observed, it
establishes confidence bounds on these failure rates,
just as an overall random test does for the whole
domain. However, the failure rate and its confidence
bound observed through the overall operational
profile are not simply related to failure rates in the
subdomains, because the relationship must be
expressed in terms of the probabilities that points
from the operational profile fall into each subdomain.

Suppose a partition of the input space creates k
subdomains S 1,S 2,

. . . ,Sk , and the probability of
failure in subdomain Si is constant at θi . Imagine an
operational profile D such that points selected accord-
ing to D fall into subdomain Si with probability pi .

Then the failure rate Θ under D should be Θ =
i =1
Σ
k

pi θi .

However, for a different profile D ′, different pi ′ may

well lead to a different Θ′=
i =1
Σ
k

pi ′θi . For all profiles,

the failure rate cannot exceed θmax =
1≤i ≤k
max{θi },

because at worst a profile can emphasize the worst
subdomain to the exclusion of all others. By partition
testing without failure, a bound can be established on

θmax, and hence on the overall failure rate for all dis-
tributions. (This analysis is a much-simplified
approximation to an accurate calculation of the upper
confidence bound for the partition case [Tsoukalas et
al.].)

In one sense, then, partition testing merely mul-
tiplies the reliability-testing problem. Instead of hav-
ing to bound Θ using N tests from an operational
profile, we must bound θmax using N tests from a uni-
form distribution over the worst subdomain; but, since
we don’t know which subdomain is worst, we must
bound all k θi , which requires kN tests. However,
the payback is a profile-independent result. That is,
partition testing can be the basis of a reliability esti-
mate that applies to all profiles.

The testability analysis of Section 3 can be
applied to partition testing, but now in a profile-
independent manner. The estimate of execution fre-
quency comes from uniformly selecting points in a
partition subdomain; other parts of the analysis are
unchanged. (In some cases, the partition definition
forces an execution frequency of 1.0, for example, in
a functional partition when a code location is always
used for a unique function. However, it is still neces-
sary to actually sample the partition, to obtain a set of
states needed for infection and propagation analysis.)

When testability analysis has been carried out
separately in each subdomain, a certain confidence
has been established in the software’s correctness.
The partition may also be used to focus attention on
subdomains with low-testability locations. Either the
code may be redesigned to improve its testability, or
additional reliability testing in the subdomain may be
conducted to achieve a given confidence in correct-
ness. If the partition is functional, the amplified relia-
bility can be used as a "quality profile" of the
software: the confidence in correctness for each sub-
domain indicates how much each function can be
trusted, based on testing and testability measurements.

We believe that the discussion above captures
an intuition that partition testing amplifies reliability
measurements. Partition testing shifts emphasis from
the operational profile to partition subdomains. If a
subdomain has a high failure rate, but is neglected by
the operational profile, then potential failures there
may be invisible to an overall reliability measure-
ment. (That is, testability measured through the
overall operational profile will be low for locations
used by the subdomain; the low testability masks the
high failure rate.) Sampling the subdomain directly
brings the failure rate into the measurable region.
Hence when no failures are observed in a partition
test, it provides evidence about a failure region



unobservable through the operational profile.

Partition testing for reliability amplification is a
new idea placing new constraints on the partition sub-
domains, however. An arbitrary division of the input
domain is inappropriate, and it is instructive to exam-
ine the reasons. The primary assumption of the
theory is that θi , the subdomain failure rates, are con-
stant. A related assumption is that the operational dis-
tribution D actually scatters points uniformly within
each subdomain. These assumptions justify taking

the overall failure rate Θ as the weighted sum
i =1
Σ
k

pi θi .

In practice, the assumptions are false. It can easily
happen that D concentrates on some part of a sub-
domain Si ; if θi is not constant as assumed, but higher
where D concentrates, the contribution of Si to Θ will
be greater than pi θi . In an extreme case, suppose that
a program fails at test point F . Partitions that place F
in a shrinking subdomain, and an operational profile
that peaks on that subdomain, will lead to Θ → 1.0 in
the limit. Any other partition or profile will underes-
timate Θ and yield a false confidence in the program’s
correctness. (This extreme case contains the essence
of the argument that no statistical theory is appropri-
ate for software design flaws.)

Thus to use partition testing for reliability
amplification, it is essential that each subdomain have
a constant failure rate. This is a generalization of the
well known criterion that subdomains should be
"homogeneous" in the sense that all points should fail
or all should succeed. Constant θi means that the pro-
bability of failure for each point in Si should be the
same. The usual assumption of a constant overall
failure rate Θ for an entire software input domain is
not at all plausible; perhaps the theoretical
significance of partition testing is to be able to arbi-
trarily subdivide the domain, seeking Si for which
constant θi can be justified. However, just how this
subdivision should be accomplished is a difficult
question that requires further investigation. It does
not seem very likely that (say) path-equivalence sub-
domains have constant θi .

7. Reliability Amplification Through Formal
Methods and Software Process

The intuitive feeling that systematic testing can
increase reliability, analyzed in Section 6, also under-
lies the current preoccupation with "formal methods"
and "software process." Following successful practice
in other engineering disciplines, we would like to
think that formalizing the procedures of software
development will lead to improved quality. The evi-
dence for quality improvement by process is so far

anecdotal, but includes a number of case studies
whose participants are enthusiastic about the methods
used.

It is probably impossible to make a rigorous,
quantitative analysis of even the most formal develop-
ment methods, since human beings have a wide lati-
tude of choice in each application. However, the
framework of reliability amplification does suggest
the kind of supporting arguments that should be
advanced by proponents of development methods: a
method plausibly improves software quality if it can
be shown that its use, in conjunction with reliability
testing, quantitatively argues for a lower failure rate
than that which is actually measured.

The danger in methods directed at "zero defects"
is that instead of amplifying reliability, they might
only reduce testability. That is, a development
method might not have much effect on the fault inser-
tion rate, but might make faults more difficult to
uncover by testing. For uncritical applications, such a
development method would be advantageous, since
the low-testability faults will not come to light. But
for applications requiring ultrareliabilty, the method
would be counterindicated—it creates a false
confidence based only on inadequate reliability test-
ing. Since methods are necessarily evaluated well
below the ultrareliability region, their proponents
must address the testability question.

Intuitively, a method that knowingly gains relia-
bility at the expense of testability is irresponsible
engineering. An analogy in aeronautical engineering
would be designing an airframe to perform well in
simulation and wind-tunnel tests, when it is known to
be of doubtful quality in practice because those results
do not scale well. An engineer should worry a good
deal about methods that can mislead in this way, and
the only tools available for protection are theoretical:
plausible arguments must be given to show that relia-
bility is amplified, not "improved" because its meas-
urement is misleadingly.

To give a revealing example of a reliability-
amplification argument, analysis of cleanroom
development [Cobb & Mills] is the obvious choice.
Briefly, cleanroom design and implementation uses
top-down design, but with continual attention to the
functional state transformations being computed by
the developing code. Particular reliance on the formal
analysis is forced by a prohibition on testing during
design and implementation. Conventional system
reliability testing is used as the final step in develop-
ment.

In case studies the only failures found are those
that would be detected by almost any input. This



suggests that in fact the reliability is better than that
measured—perhaps the software is defect-free after
obvious bugs are removed. However, the argument
advanced by cleanroom proponents rests on the intui-
tive appeal of their method, and on the weak empiri-
cal evidence of case studies. Reliability amplification
suggests a framework for a stronger supporting argu-
ment, and also suggests modifications to improve the
cleanroom method.

The interesting cases for analysis lie in the
failure-rate region below that measured by the system
reliability test. Failures in this region will not be
detected; what assurance can we give that cleanroom
development makes them less likely? In cleanroom
terms, a failure arises from implementation of an
incorrect function, which is the composition of func-
tional implementations of the top-down development
process. Because the formal development process
considers each function in isolation, coincident
failures—those in which an erroneous state value out-
put by one function happens to be erroneously han-
dled by the next to which it is input—are unlikely.
That is, the method addresses both infection probabil-
ity and propagation probability by separating the
analysis into compositional steps.

This analysis suggests two improvements in the
cleanroom method:

(1) Propagation probability would be more directly
addressed if attention were paid not only to the
functions computed, but to values outside their
domains. That is, the informal examination
would not only seek to show that each function
is correct on its domain, but that if it receives
erroneous input states these will be detected.

(2) Cleanroom does not address execution probabil-
ity at all. It could do so by requiring structural
partition tests as indicated in Section 6, in addi-
tion to operational-profile-based system tests, as
exit criteria for development. (It is argued
[Cobb & Mills] that structural tests are inferior
in finding failures that users will first encounter.
But if the software is reliable enough that there
are no early-encounter failures, structural tests
are better at finding the problems that can only
appear under extended use; those may well be
the first that users encounter with high-quality
software.)

Our analysis is not deep or precise—we are not
experts in the cleanroom methodology. We mean
only to suggest the kind of analysis to which formal
methods should be subjected.

8. Reliability Amplification and Self-testing

A number of researchers are investigating the idea of
"self-testing" programs, in which consistency checks
are automatically applied as the software executes. In
one approach [Blum] an input is first treated directly,
then decomposed, given to the same software, and the
results recombined to check the original result. For
example, matrix multiplication can be decomposed by
partitioning the matricies. If a program continually
gives the same result from randomly chosen decom-
posed versions of an original input, it is correct for
that input with high probability. In a more conven-
tional approach [Antoy], an abstract-data-type imple-
mentation is given an axiomatic specification execut-
able by rewriting, and the specification is executed in
parallel with the ADT, checking each value of the
type produced, even when the ADT is embedded in an
application. Finally, a suggestive empirical study
[Leveson] comes to the preliminary conclusion that
consistency checking of internal data structures is a
better means of detecting software failure than is mul-
tiversion programming.

Self-testing programs are not obviously related
to reliability amplification. However, we can imagine
a self-testing program being reliability tested. Self-
testing serves as an oracle for random testing, which
may make the reliability measurement practical, but
can we argue for amplification? In each approach,
each test point actually tests more than a single out-
come. Blum tries input decompositions, Antoy
verifies internal results from ADTs, and Leveson sug-
gests internal-state consistency checks. These extra
pieces of information can be used in an argument,
similar to that given in Section 7 for the cleanroom
method, that failure not observed on a single test point
has a wider significance. However, it seems unlikely
that any of these techniques can yield orders of mag-
nitude amplification factors, since they multiply each
test’s significance by at most a small factor, and do so
only at extra testing expense.

9. Conclusions

We have suggested a framework of "reliability
amplification" for validation of software, to establish
statistical confidence that software is correct. Testa-
bility measurements can show that the software
"wears its faults on its sleeve," that any fault will
likely appear as a failure. Reliability testing shows
that failures are not likely. The conclusion is that
there are no faults, with a confidence derived from the
reliability measurement. This idea was quantitatively
applied to systematic testing methods, and qualita-
tively applied to a software process methodology.



Much work remains to be done in improving the
models for testability and reliability. Design for testa-
bility is a new idea that can be applied at many levels,
from the statements of programming languages
through modules and subsystems. Partition-based
reliability amplification is promising, both as a practi-
cal way to divide and conquer a hard problem, and as
a theoretical approach to plausible assumptions about
failure rates for software.
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