
CURRICULUM VITAE

RICHARD GRAHAM HAMLET

October, 2007

Education

Degree Institution Year Specialty

Ph.D. University of Washington 1971 ComputerScience
M.S. CornellUniversity 1964 Engineering Physics
B.S. University of Wisconsin 1959 Electrical Engineering

Employment

Employer Years Position Discipline

Portland State Univerisity 2005- Professor Emeritus Computer Science
National Univ. of I reland, Galway 2003-04 E.T.S. Walton Fellow Mathematics
National Univ. of I reland, Galway 1998-99 FulbrightScholar Mathematics
Portland State University 1997-98 Chairman ComputerScience
University College Galway 1996 Visitor Mathematics
Portland State University 1988-2005 Professor ComputerScience
Oregon Graduate Center 1984-88 Professor Computer Science
University of Melbourne 1982 Visiting Lecturer Computer Science
IBM - FSD 1978-83 Consultant
University of Maryland 1977-84 AssociateProfessor ComputerScience
Naval Research Laboratory 1976-78 Consultant
University of Maryland 1971-77 AssistantProfessor ComputerScience
Systems Computing, Inc. 1969-70 SystemProgrammer
Computer Center Corporation 1968-69 ProgrammingDirector
University of Washington 1966-68 Systems Supervisor
University of Washington 1964-66 Research Assistant
Shimer College 1962-64 Intern NaturalSciences
Cornell University 1960-62 Teaching Assistant Physics
Cornell University 1960-61 Research Assistant Engineering Physics
University of Wisconsin 1958-59 Technician Meteorology

Refereed Publications

(All publications are sole-author except as noted.With very few exceptions, the author order is
alphabetical.)

Dissertation

Partial recursive computation, 1971, directed by Robert W. Ritchie.

Books

1. The Engineering of Software(with Joe Maybee), Addison-Wesley, 2001, 494pp.

2. Principles of Computer Programming: AMathematical Approach(with H. Mills, J. Gannon,
V. Basili), Allyn and Bacon, 1987, 669pp.

3. Introduction to Computation Theory, Intext Educational Publishers, New York, 1974, 197pp.

Book Chapters

1. Properties of software systems synthesized from components (with Dave Mason and Denise
Woit), Chapter 6 ofComponent-based Software Development: Case Studies,K-K. Lau, Ed.,
World Scientific, 2004.

2. Random testing (updated article), and Subdomain testing, inEncyclopedia of Software Engi-
neering, 2nd ed.,J. Marciniak, ed., Wiley, 2005.

3. Editors introduction, software testing and quality assurance,Annals of Software Engineering
v. 4, Baltzer Science Publishers, 1997.

4. Software quality, software process, and software testing,Advances in Computers, M.
Zelkowitz, ed., 1995, 1402-1411.

5. Random testing, inEncyclopedia of Software Engineering,J. Marciniak, ed., Wiley, 1994,
970-978.

6. Testing programs to detect malicious faults, inDependable Computing for Critical Applica-
tions 2,J. Meyer and R. Schlichting, eds., Springer-Verlag, 1992, 375-392.

7. Testing for trustworthiness, inDirections and Implications of Advanced Computing,J. P
Jacky and D. Schuler, eds., Ablex Publishing Corp, 1989, 97-104.

8. A disciplined text environment, inTe xt Processing and Document Manipulation,J. C. van
Vliet, ed., Cambridge University Press, 1986, 78-89.

9. Functional semantics of modules (with J. Gannon & H. Mills), inLecture Notes in Computer
Science186, H. Ehrig, C. Floyd, M. Nivat, and J. Thatcher, eds., Springer-Verlag, 1985,
42-59.

Articles

1. Software component composition: a subdomain-based testing-theory foundation,J. Software
Testing, Verification and Reliability(June, 2007).

2. Axiomatically checking an implementation against its formal specification (with S. Antoy),
IEEE Trans. Software Engineering SE-26(January, 2000), 55-69.

3. Evaluating testing methods by delivered reliability, (with P. Frankl, B. Littlewood, and L.
Strigini), IEEE Trans. Software EngineeringSE-24 (Aug., 1998), 586-601.
Correction,IEEE Trans. Software EngineeringSE-25 (Mar., 1999), 286.

4. Implementing prototype testing tools,Software--Practice & Experience,April, 1995,
347-372.

5. Are we testing for true reliability?,IEEE Software,July, 1992, 21-27.

6. Partition testing does not inspire confidence, (with R. Taylor),IEEE Trans. Software Engi-
neeringSE-16 (Dec., 1990), 1402-1411.

7. New answers to old questions, ("QualityTime" column edited by V. Shen),IEEE Software,
September, 1990, 89-90,92.

8. Editor’s introduction, Special Section on Software Testing,CACM31 (June, 1988), 662-667.

9. A first course in computer science: mathematical principles for software engineering (with H.
Mills, J. Gannon, V. Basili), IEEE Trans. Software EngineeringSE-15 (May, 1989), 550-559.

10. Theory of modules (with J. Gannon & H. Mills),IEEE Trans. Software EngineeringSE-13
(July, 1987), 820-829.

11. Probable correctness theory,Info. Proc. Letters.25 (April, 1987), 17-25.

12. Software engineering practices in the US and Japan,Computer17 (June, 1984), 57-66 (with
M. Zelkowitz, et al.).

13. Hard-to-use criteria for software engineering,J. Sys. & Software Sci., 2 (1981), 89-96.

14. Data abstraction implementation, specification, and testing,TOPLAS3 (July, 1981), 211-223
(with J. Gannon & P. McMullin).

15. Reliability theory of program testing,Acta Informatica16 (1981), 31-43.

16.Transportable package software,Software - Practice & Experience10 (Dec., 1980),
1009-1027 (with R. M. Haralick).

17. Syntax and Semantics of universal programming languages,Int. J. of Computer Math.6
(1977), 87-103.

18. Execution traces and programming-language semantics,Int. J. of Comp. & Sys. Sci.6 (Dec.,
1977), 263-279.

19.Testing programs with the aid of a compiler,IEEE Trans. on Software Eng.SE-3 (July, 1977),
279-290.

20.Testing programs with finite sets of data,The Computer J.20 (Aug., 1977), 232-237.

21. High-level binding with low-level l inkers,CACM19 (Nov., 1976), 642-644.

22. User-like executives, Software - Practice & Experience4 (Jan.-Mar., 1974), 41-50.

23. Efficient multiprogramming resource allocation and accountingCACM16, (June, 1973),
337-343.

Conference Proceedings

1. Test-based specifications of components and systems, First International Workshop on Soft-
ware Testing and Analysis, Portland, OR, October, 2007, in Proceedings QSIC 2007,
388-395.

2. When only random testing will do, Proceedings First International Workshop on Random
Testing, Portland, ME, July, 2006.

3. Subdomain Testing of Units and Systems with State, Proceedings International Symposium
on Software Testing and Analysis (ISSTA), Portland, ME, July, 2006, 85-96.

4. Defining ‘predictable assembly’, Proceedings 9th Symposium on Component-based Software
Engineering (CBSE), Vasteras, Sweden, June, 2006, 320-327.

5. Invariants and state in testing and formal methods, Proceedings Program Analysis for Soft-
ware Tools and Engineering (PASTE), Lisbon, September, 2005, 48-51.

6. On formal specification of software components and systems (with Sharon Flynn), Third Irish
Conference on Mathematical Foundations of Computer Science and Information Technology,
Dublin, July, 2004. ENTCS161, 91-107, August, 2006.

7. Experiments with composing component properties, 6th Workshop on CBSE, ICSE 2003,
Portland, OR.

8. Continuity in software systems, Proceedings International Symposium on Software Testing
and Analysis (ISSTA), Rome, July, 2002, 196-200.

9. Software components: the problem of scale, Workshop Proceedings, ICSE 2001, 4th Work-
shop on CBSE, Toronto, Canada, June, 2001, 75-80.

10. Theory of software reliability based on components (with D. Mason and D. Woit), Interna-
tional Conference on Sofware Engineering (ICSE), Toronto, Canada, 361-370, May, 2001.

11. On subdomains: testing, profiles, and components,Proc. ISSTA ‘00,Portland, OR, June,
2000, 71-76.

12. Theory of system reliability based on components (with D. Mason and D. Woit),Workshop
Proceedings, ICSE 2000, 3rd Workshop on CBSE,Limerick, Ireland, May, 2000.

13.Foundational theory of software component reliability,Proc. FastAbstracts, ISSRE ‘99,Boca
Ratan, FL, Nov., 1999, 35-36.

14.Keeping the "engineering" in software engineering,Proc. Quality week ‘97, San Francisco,
May, 1997.

15. Choosing a testing method to deliver reliability, Proc. ICSE 19,Boston, May, 1997, 68-78
(with P. Frankl, B. Littlewood, and L. Strigini).

16. Predicting dependability by testing,Proc. ISSTA ’96,San Diego, January, 1996, 84-91.

17.Foundations of software testing: dependability theory,Proc. 2nd Symposium on the Founda-
tions of Software Engineering,New Orleans, LA,, Dec., 1994, 128-139.

18. Connecting test coverage to software dependability,Proc. 5th International Symposium on
Software Reliability Engineering,Monterey, CA,, Nov., 1994, 158-165.

19. Exploring dataflow testing of arrays, (with B. Gifford and B. Nikolik),Proc. 15th ICSE,Balti-
more, May, 1993, 118-129.

20.Faults on its sleeve: amplifying software reliability testing, (with J. Voas),Proc. ISSTA ’93,
Cambridge, June, 1993, 89-98.

21.Testability as ease of establishing reliability,Proc. Symposium on Issues in Software Reliabil-
ity Estimation,Livingston, NJ, October, 1992, 39-52.

22. Self-checking against formal specifications, (with S. Antoy),Proc. Int. Conf. on Computing
and Information,Toronto, May, 1992, 355-360.

23. Exploring Dataflow Testing with a Novel Analyzer,Int. Conf. in Software Engineering
Abstracts, Melbourne, Australia, May, 1992, 2-4.

24. Self-checking objects, (with S. Antoy),Proc. Irvine Software Symposium,Irvine, CA, March,
1992, 29-48.

25. Comparison of Program Testing Strategies, (with E. Weyuker and S. Weiss),Proc. TAV -4,
October, 1991, Victoria, BC, 1-10.

26.Testing Programs to Detect Malicious Faults,Proc. Dependable Computing for Critical
Applications,Tucson, AZ, February, 1991, 162-169.

27. Theoretical comparison of testing methods,Proc. TAV -3, December, 1989, Key West, FL.

28. Unit testing for software assurance,Proc. COMPASS 89,Washington, DC, 1989, 42-48.

29.Partition testing does not inspire confidence, Proceedings Workshop on Software Testing,
Banff, Alberta, July, 1988, 206-215 (with R. Taylor).

30.A first course in computer science: mathematical principles for software engineering,Proc.
SEI Conference on Software Engineering Education,Springer-Verlag, 1987 (with H. Mills, J.
Gannon, V. Basili).

31.Teaching principles of computer programming,Proc. ACM 15th Annual Computer Science
Conference,St. Louis, 1987 (with H. Mills, J. Gannon, V. Basili).

32. Proposal for a software design control system (DCS),Proceedings 4th Pacific Northwest Soft-
ware Quality Conference,Portland, OR, November, 1986, 265-272 (with R. Babb).

33.Testing for probable correctness,Proceedings Workshop on Software Testing,Banff, Alberta,
July, 1986, 92-97.

34. Specification theory,Proceedings 3rd International Workshop on Software Specification and
Design,London, August, 1985, 91-93.

35. Functional semantics of modules, RELCOMEX ’84, Ksiaz Castle, Poland, May, 1984,
321-328 (with J. Gannon).

36. Critique of software measurement,The Measurement of Computer Software Performance,
Los Alamos, August, 1983.

37. Step-wise debugging,ACM Symposium on High-level Debugging, Pacific Grove, CA, March,
1983, 198-201.

38. "Determining" tests,Workshop on effectiveness of testing and proving methods, Avalon, CA,
May, 1982, 87-93.

39. Program maintenance--a modest theory,Proc. Hawaii International Conference on System
Sciences, Honolulu, January, 1982, 21-26.

40. Hard-to-use evaluation criteria for software engineering,First ACM SIGSOFT Software Engi-
neering Symposium, June, 1981.

41. Critique of reliability theory,Digest of papers, IEEE Workshop on Software Testing, Ft.
Lauderdale, Fla., Dec., 1978, 56-96.

42.Test reliability and software maintenance,Proc. COMPSAC 78, Chicago, November, 1978,
315-320.

43. Compile-time testing,6th Texas conference on Computer Systems, Austin, November, 1977,
1A15-21.

44. Single-language small-processor systems,Information Processing 77, IFIP Congress August,
1977, 969-974.

45. Minicomputer software development: a radical proposal,Proc. IEEE Trends and Applica-
tions, Gaithersburg, 1976, 107-112.

46. SIMPL systems programming on a minicomputer,Digest of Papers, Ninth Annual IEEE
Computer Society International Conference, Washington, 1974, 203-206 (with M.V.
Zelkowitz).

47.A patent problem for abstract programming languages: machine-independent computations,
Proceedings 4th ACM Symposium on Theory of Computing, Denver, 1972, 193-197.

Completed Works

1. Functional analysis of programs (with H. Mills), submitted toComputing Surveys,Nov.,
1984.

2. What Can Programs Do?, under contract to Van Nostrand-Reinhold, 1981, 250pp.

Non-refereed Publications

(All publications are sole-author except as noted.With very few exceptions, the author order is
alphabetical.)

Books

1. Structured Computability, Lecture Note LN-6, Department of Computer Science, University
of Maryland, College Park, 1978.

2. SIMPL-XI: An Introduction to High-Level Systems Programming, Lecture Note LN-4, Depart-
ment of Computer Science, University of Maryland, College Park, 1976.

3. Introduction to Theory of Computation, Computer Science Center, University of Maryland,
College Park, 1972 (Lecture Note LN-3.) Revised edition, 1973 (Lecture Note LN-3’.)

4. The Electromagnetic Theory,Shimer College, 1963.

Newsletter Articles

1. Unstructured Go"del numbers, SIGPLANNotices15 (June, 1980), 8-9.

2. A further note on symmetric keyword pairs, SIGPLANNotices15 (June, 1980), 7.

3. Testing traversable stacks, SIGPLANNotices5 (Jan., 1980), 58-65, (with J. Gannon et al.).

4. Report on Florida Testing conference,Software Engineering Notes4 (April, 1979), 17-18.

5. Ignorance of ALGOL 68 considered harmful, SIGPLANNotices12 (April, 1977), 51-56: cor-
rectionibid (September, 1977), 17-20.

6. Application of dovetailing to program testing, SIGACTNews8 (April, 1976), 25-26.

7. Using the PDP-11 as B5500 for teaching systems programming, SIGPLANNotices11 (May,
1976), 47-52.

8. Other people’s monitors, SIGPLANNotices8 (July, 1973), 21-22.

Reviews

(More than 40 short reviews of computer science articles appeared inComputing Reviews,
1971-1982.)

1. Review of Kfoury, Moll, and Arbib,A Pro gramming Approach to Computability,Springer-
Verlag, 1982,Math. Reviews,1984.

2. Review of Chen, "On the relationship between computed functions and fixpoints of nondeter-
ministic recursive definitions,"Math. Reviews, 1983.

3. Review of Glushkov, "Incompleteness theorem of formal theories from programmer’s view-
point," Math. Reviews, 1980.

4. Review of Machtey, et al., "Simple Go"del numberings, isomorphisms, and programming
properties,"Math. Reviews, 1978.

Technical Reports (not otherwise published)

1. Computer-assisted writing, Portland State University, Portland, 1989 (TR 89-10).

2. Testing programs to detect sabotage, Portland State University, Portland, 1989 (TR 89-8).

3. Unit testing for software assurance, Portland State University, Portland, 1989 (TR 89-7).

4. Release testing for probable correctness, Oregon Graduate Center, Beaverton, 1984 (TR CS/E
85-003).

5. Functional analysis of programs, Oregon Graduate Center, Beaverton, 1984 (TR CS/E
84-006) (with H. Mills).

6. Debug testing and confidence testing, Oregon Graduate Center, Beaverton, 1984 (TR CS/E
84-004).

7. The software industry:a state of the art survey, Computer Science, University of Maryland,
College Park, 1983 (TR-1290) (with M. Zelkowitz et al.).

8. Functional semantics, Computer Science, University of Maryland, College Park, 1983
(TR-1238) (with H. Mills).

9. Step-wise debugging, Department of Computer Science, University of Melbourne, Parkville,
1982 (TR 82/16).

10. Three approaches to program testing theory, Department of Computer Science, University of
Melbourne, Parkville, 1982 (TR 82/15).

11. Survey of program testing theory, Department of Computer Science, University of Mel-
bourne, Parkville, 1982 (TR 82/14).

12.Testing of concurrent programs and partial specifications, Department of Computer Science,
University of Melbourne, Parkville, 1982 (TR 82/13). (Also position paper for a panel ses-
sion at Hawaii International Conference on System Sciences, Honolulu, January, 1983.)

13. Theoretical issues in software engineering, Department of Computer Science, University of
Melbourne, Parkville, 1982 (TR 82/8).

14. Error propagation and elimination in computer programs, Computer Science, University of
Maryland, College Park, 1981 (TR-1065) (with L. Morell).

15. The structure of specifications and implementations of data abstractions, Computer Science,
University of Maryland, College Park, 1979 (TR-801) (with M. Ardis).

16.Transportable "package" software, Computer Science, University of Maryland, College Park,
1978 (TR-706) (with R.M. Harlick).

17. Compiler-based systematic testing, Computer Science, University of Maryland, College Park,
1975 (TR-423).

18. On execution traces with an application to the problem of understanding programs, Computer
Science, University of Maryland, College Park, 1975 (TR-421).

19. Support of small computers by large, Computer Science, University of Maryland, College
Park, 1975 (TR-368).

20. Syntax and semantics of abstract programming languages, Computer Science, University of
Maryland, College Park, 1975 (TR-367).

21. Friedberg programming languages. Computer Science Center, University of Maryland, Col-
lege Park, 1974 (TR-337).

22. Universal abstract programming languages. Computer Science Center, University of Mary-
land, College Park, 1974 (TR-295).

23. On descriptors and normal state, a note on the Burroughs B5500, Computer System Research
Project Technical Note 73-21, University of Maryland Computer Science Center, College
park, 1972.

24. On programs and partial recursive functions, University of Washington, Computer Science
Group, Seattle, 1970 (Technical Report 70-09-02).

Invited Talks

1. "Testing-based Theory of Predictable Assembly", 2nd workshop on predictable software com-
ponent assembly, Manchester, U.K., September, 2005.

2. "Lessons about Testing and Formal Specification from Software Component Theory",
keynote talk, Microsoft/University of Washington Summer Institute on Testing, Skamania,
WA, August, 2004.

3. "Software Component Synthesis Theory: a Subdomain-testing Approach", workshop on pre-
dictable software assembly, University of Manchester, U.K., May, 2004. (Alsodelivered at
Centre for Software Reliability, City University, London, and CRN, Pisa, Italy.)

4. "Science, Computer ‘Science’, Mathematics, and Software Development", keynote address,
Quality Week ‘02, San Francisco, September, 2002. (Won the ‘best talk’ award.)

5. "Checking Formal Specifications by Testing", keynote address, Irish Workshop on Formal
Methods, National University of Ireland, Galway, July, 1999.

6. "Mathematics, Science, Software Engineering," keynote address, First Irish Workshop on
Algebra and Topology in Computer Science, Cork, July, 2000.

7. "Software and Society," Fulbright Alumni lecture, National University of Ireland, Galway,
March, 1999.

8. "Testing to Deliver Software Reliability", Department of Mathematics, National University of
Ireland, Galway, October, 1998.

9. "Keeping the ‘Engineering’ in Software Engineering," keynote address, Quality Week ‘97,
San Francisco, May, 1997.
Preliminary version, keynote address, Pacific Northwest Software Quality Conference, Port-
land, OR, October, 1996.

10. "Software Quality, Process, Testing," Carnegie-Mellon University, Pittsburgh, PA, February,
1995.

11. "Survey of current research in testing for quality," Pacific Northwest Software Quality Con-
ference, Portland, OR, October, 1994.

12. "Amplifying software reliability," Queens University, Kingston, Ont., January, 1994.

13. "How and why to build prototype testing tools," McMaster University, Hamilton, Ont., Jan-
uary, 1994; AT&T Bell Laboratories, Murray Hill, NJ, October, 1992.

14. "Nobody loves reliability except me and thee, and I’m not too sure about me," (after-dinner
speech) Int. Symposium on Software Reliability, Denver, CO, November, 1993.

15. "Why I don’t trust reliability," (Panel), Workshop on software reliability, Boulder, CO,
November, 1993.

16. "Not much software reliability from software testing," (Panel), Int. Symposium on Software
Reliability, Raleigh, NC, October, 1992.

17. "Theory of software testing and software reliability," National Institute of Science and Tech-
nology, Gaithersburg, MD, October, 1992.

18. "Software testing for software reliability," Int. Conf. on Software Engineering, Melbourne,
May, 1992.

19. "Experiments with prototype testing tools," University of Maryland, College Park, October,
1991.

20. "Self-checking Objects," Mentor Graphics Corp., Wilsonville, OR, August, 1991

21. "Can tested software be trusted?", Software Research Quality Week, San Francisco, CA, May,
1991

22. "Software reliability and testing," keynote address, Software Reliability Symposium, Denver,
CO, May, 1991.

23. "How and why to build prototype testing tools," Purdue University, W. Lafayette, IN, Octo-
ber, 1990.

24. "Survey of program testing with an application to detecting sabotage," University of Victoria,
Victoria, BC, Canada, October, 1989.

25. "Testing techniques for quality assurance," Aston-Tate, Inc., Walnut Grove, CA, September,
1989.

26. "An overview of software testing," OCATE workshop on realtime testing, Beaverton, OR,
September, 1989.

27. "Foundations of program testing; can tested software be trusted?" Software Research Quality
Week, San Francisco, CA, May, 1989; Tektronix Computer Research Laboratory, Beaverton,
OR, February, 1989.

28. "What works in software testing," Aston-Tate, Inc., Los Angeles, CA, July, 1989.

29. "Software testing: theory and practice," OCATE workshop on realtime testing, Beaverton,
OR, June, 1989.

30. "Testing software for quality," 1989 Northwest quality and reliability conference, Portland,
OR, April, 1989.

31. "Theory of modules," Portland State University, Portland, OR, June, 1988.

32. "A proposal for computer-assisted writing," Oregon State University, Corvallis, OR, February,
1987.

33. "How not to evaluate software," Seattle University, Seattle, WA, February, 1987.

34. "Software evaluation," Intel Professional Development Seminar, Portland, OR, March, 1986.

35. "Adversaries in software development," keynote address, Pacific Northwest Software Quality
Conference, Portland, OR, September, 1985.

36. "Functional semantics of modules," Technical University of Kielce, Kielce, Poland, May,
1984; University of Arizona, Tucson, AR, October, 1984.

37. "What is a program?," University of North Carolina at Charlotte, Charlotte, NC, March, 1984.

38. "Software engineering: technical discipline or management technique?" Oregon Graduate
Center, Portland, OR, November, 1983; Seattle University, Seattle, WA, February, 1984.

39. "Software engineering: I. Specification; II. Testing; III. Maintenance," University of Wollon-
gong, Wollongong, New South Wales, Australia, November, 1982.

40. "Theoretical issues in software engineering; I. The software engineering cycle; II. Specifica-
tion; III. Testing," Winter School in Theoretical Computer Science, Brisbane, Queensland,
Australia, July 1982.

41. "Testing Theory," University of Illinois, Urbana, IL, April, 1982.

42. "The technical side of testing," Wang Institute, Tyngsboro, MA, March, 1982.

43. "Program maintenance," Wang Institute, Tyngsboro, MA, March, 1982.

44. "Testing vs. proving; machines and people," Courant Institute, New York University, New
York, N.Y., March 1982; University of Sydney, Sydney, New South Wales, Australia, Septem-
ber, 1982.

45. "What is a program and why doesn’t it work?", St. Olaf College, Northfield, Minnesota, June
1981.

46. "Data abstraction--implementation, specification, and testing," University of Victoria, Victo-
ria, British Columbia, May, 1979; University of Washington, Seattle, Washington, May, 1979;
University of Melbourne, Parkville, Victoria, Australia, June, 1982; Monash University, Clay-
ton, Victoria, Australia, July, 1982; University of Queensland, Brisbane, Queensland, Aus-
tralia, July, 1982; University of Wollongong, Wollongong, New South Wales, November,
1982; University of Adelaide, Adelaide, South Australia, Australia, November 1982.

47. "Potential of program-testing tools," Navy technology-transfer conference, Falls Church, Vir-
ginia, April, 1978.

48. "SIMPL experiments with a PDP-11," University of Waterloo, Waterloo, Ontario, January,
1977.

49. "Program testing by compiler," Naval Research laboratory, Washington, D.C., March, 1976.

Grants and Fellowships

(Principal investigator except co-p.i. as noted.)

Source Description Year Amount

Science Foundation, Ireland Formal methods 2003-2004 $200,000
National Science Foundation Software Components 2001-2005 $300,000

REU Supplement 2002 $7,500
REU Supplement 2003 $6,500

EPSRC (U.K.) Visiting fellowship 1999 Stg9,000
Fulbright research scholarship Software engineering 1998-1999 $30,000
Te xas Instruments Institutional 1996 $12,000
Oregon Reg. Strategies Board Testing Laboratory 1994-1995 $134,958
(with W. Harrison)

National Science Foundation Testing theory 1991-1993 $180,539
Tektronix Foundation Curriculumdevelopment 1989-1992 $360,000
(with W. Harrison, L. Shapiro)

National Science Foundation Software testing 1988-1990 $97,544
REU Supplement 1989 $8,300
RUI Supplement 1989 $20,800

Air Force Office of Scientific Research Logic programming 1986-1987 $47,000
Allyn & Bacon Book preparation 1985 $7,000
Australian Government Overseas scholar grant 1982 A$5,000
International Business Machines Software productivity 1982-1983 $125,000
(with R. Yeh et al.)
Renewal 1984 $35,000

Air Force Office of Scientific Research Data abstraction/testing 1979-1980 $52,000
(with J. Gannon)
Renewal (with V. Basili et al.) 1980-1982 $220,000
Renewal 1982-1983 $240,000
Renewal 1984-1985 $299,000

National Science Foundation Transportable image processing1978-1979 $105,000
(with A. Rosenfeld)
Renewal 1980-1981 $75,000

General Research Board 1975 $2,500
Defense Mapping Agency Compiler development 1974-1975 $25,370
Radio Corporation of America Fellowship 1960-1961 $2,500

Research in Progress

Program testing theory.

I am inv estigating the foundations of program testing, particularly a statistical theory of program
"dependability." This theory seeks to predict the quality of software independent of its usage, and do
so with measurements that are feasible in practice. The present focus of the research is on software
components.

Teaching Achievements

Theses directed

Degree Student Thesis/paper(P) title Date

Ph.D. Borislav Nikolik Reliability of Programs Specified with Equational Specifications 1998
(joint advisor, Zary Segal)

Ph.D. Clifford Walinsky Constructive Neg ation in Logic Programs 1987
Ph.D. LarryMorell Theoryof Error-based Testing 1983
Ph.D. MarkArdis DataAbstraction Transformations 1980

M.S. JamesCampbell Dataflow Regression Testing 1990
M.S. RichardBroussard Prototypefor a Document-preparation Environment 1986
M.S. ThomasHudson StepwiseDebugging 1984
M.S. AlbertLang, Jr. An Inv estigation of the General Programming Charts 1978
M.S. Kevin Casey UNIVAC 1108 to DEC 1070 SIMPL-X Bootstrap (P) 1976
M.S. Steve Kaiser OperatingSystem Command Languages 1975
M.S. JohnBarkley 1974A Central Laboratory Automation Facility (P)
M.S. RobertRockwell Survey of Monitor-Subordinate Processor Systems 1974
M.S. HelenCarter 1974Code Optimization of Arithmetic Expressions in Stack Environ-

ments
M.S. MaryFitzgerald ANote on ALGOL 68 Syntax and Semantics (P) 1973

Courses taught

(Almost all the courses numbered above 400 were developed—and redeveloped—each time they
were taught. In addition, a textbook and complete supporting materials were written for an introduc-
tory course (CMSC 122), for an intermediate course (CMSC 452), and for two graduate courses
(CMSC 600 and CMSC 640).I also designed a systems-programming language for CMSC 600, and

implemented it on the PDP-11.)

Shimer College
Natural Science I - Chemistry
Natural Science II - Biology
Natural Science III - Physics
Natural Science IV - Physics and biology
Humanities II - Introduction to literature
Mathematics I - Logic
Mathematics III - Calculus
Mathematics VI - Advanced calculus
Mathematics VII - Complex variables

University of Maryland
CMSC 103 Introductory algorithmic methods
CMSC 122 Computer Science II
HONR 140 The digital computer
CMSC 210 Language and structures of computers
CMSC 314 Introduction to computer languages and systems
CMSC 330 Programming language constructs
CMSC 415 Systems programming
CMSC 430 Compiler design
CMSC 440 Structure of programming languages
CMSC 450 Elementary logic and algorithms
CMSC 452 Elementary theory of computation
CMSC 455 Formal languages
CMSC 498 Computer executive software
CMSC 600 Programming systems
CMSC 630 Theory of programming languages
CMSC 640 Automata and computability
CMSC 750 Theory of computability
CMSC 798 Seminar in ALGOL 68
CMSC 798 Seminar in programming languages
CMSC 798 Seminar in software engineering
CMSC 818 Practical systems programming
CMSC 818 Seminar in operating systems
CMSC 838 Testing and certification
CMSC 838 Software engineering
CMSC 858 Computational complexity

University of Melbourne
Software testing seminar

Oregon Graduate Center
CS/E 480 Introduction to theoretical computer science
CS/E 500 Introduction to software engineering
CS/E 504 Program verification
CS/E 513 Operating system principles
CS/E 533 Automata and formal languages
CS/E 581 Software testing and verification

Portland State University
CS 554 Software engineering
CS 300 Introduction to software engineering
CS 510ST Software testing

CS 581 Theory of computing
CS 303 Operating systems
CS 431-32 Operating systems
CS 556 Software lifecycle--implementation and testing
CS 595 Programming languages seminar
CS 510TV Testing and verification
CS 458 Design of programming languages
CS 410IL Structure of programming languages
OMSE 525 Software quality
OMSE 535 Implementation and testing

Membership in Professional Societies

Association for Computing Machinery
Special interest groups SIGACT, SIGPLAN, SIGSOFT, SIGOIS

IEEE Computer Society
Computer Professionals for Social Responsibility

Service to Profession

Reviewer forCACM, IEEE Software, IEEE Computer, IEEE Trans. on Software Engineering, Math.
Rev., TOPLAS, TOSEM, Software--Prac. & Exp., Computer J.NSF, AFOSR.

Co-chair, Doctoral Symposium, ICSE 2003.

Program Committee Co-chair, COMPASS, 1997.

General Chair, ISSTA, Seattle, 1993.

Program committee: CBSE Workshop, 2002-; FATES, 2002-2004; DCCA, 1996; ISSRE, 1994;
ISSTA, 1992, 1996, 2002; PNSQC, 1990-2000; Quality Week, 1994-2000.

Editorial boardIEEE Trans. on Software Engineering1994-2000,J. Systems & Software1992-2001,
J. Software Testing, Verification, and Reliability, Software Quality J.

Service to University, College, Department

Departmental

Graduate Committee (Chair) 1999-2003

Promotion and Tenure Committee Chair 1988-89, 1991-6, 1998-.

Colloquium Committee, 1988-89, 2004-2005.

Recruiting Committee, 1989-90, 1992-93, 1997-98.

Established Faculty Seminar, 1989.

Service to Community

Pacific Northwest Software Quality Conference
Board member, 1987-1991, 1996-1998.
Vice President, 1987-89
Program chair, 1987-89, 1992, 1997

Mentor for Apprenticeships in Science and Engineering, 1990-2004.

Judge for Northwest Science Expo (highschool science talent contest), 1986-1992.

Organized OCATE Realtime Workshop, June, 1989 (with Bob Glass).

