
Subdomain Testing of Units and Systems with State

Dick Hamlet∗
Portland State University

Portland, OR, USA

hamlet@cs.pdx.edu

ABSTRACT
This paper extends basic software-testing theory to software com-
ponents and adds explicit state to the theory. The resulting theory
is simple enough to abstractly model the construction of systems
from their parts (‘units’). It provides an unconventional insight into
the relationship between testing units and testing systems. Experi-
ments exploring the theory support the following conclusions:

• Units should be independent, more like what are called
“components” than subroutines or object-oriented classes.

• Units’ persistent state should be local.

• Units should be extensively tested.
A new kind of system testing is proposed: Unit-test results are

combined to approximate the system behavior. Testing the approx-
imation is cheaper and easier than testing the actual system and
more likely to expose system problems.
Category and Subject Descriptor: D.2.5 Software engineering,
Testing and debugging
General Terms: Verification
Keywords: Testing theory, unit/system testing, persistent state

1. INTRODUCTION
Software testing is a practical activity usually conducted for the

purpose of discovering failures so that they can be fixed before an
application system is released. The practice is labor-intensive and
often conducted in a haphazard way, yet it has a firmly established
place in software development, commonly consuming a large frac-
tion of a project’s time and resources. It is frequently stated that
testing desperately needs a theoretical foundation, which would
provide insight and direction to practice. There is such a theory,
which began with the work of Goodenough and Gerhard [4], a the-
ory which should be just what practice needs, because it is simple,
abstract, and revealing. Yet the theory has not been very influential,
perhaps because its results are largely negative. Having captured
the essence of testing, it shows that what we do in practice cannot
be easily justified. Two examples of such results are of interest:
∗Supported by NSF ITR grant CCR-0112654 and by an E.T.S. Walton grant
from Science Foundation Ireland. Neither institution is in any way respon-
sible for the statements made in this paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’06,July 17–20, 2006, Portland, Maine, USA.
Copyright 2006 ACM 1-59593-263-1/06/0007 ...$5.00.

Subdomain testing.Howden [8] formulated a theory of subdomain-
based testing that describes virtually all methods in use, and
showed that ideal subdomain-based methods do not exist.
Any algorithmic method must give potentially misleading re-
sults. Honest practical testers know this, although they prob-
ably never heard of Howden’s theory.

Random testing.Butler and Finelli [3] looked at the practical lim-
itations of the only alternative to subdomain testing, ran-
dom testing, and concluded that it is impractical. To conduct
a random test to establish high confidence that a program
will not fail in N hours of operation requires more thanN
hours of testing. So for strong guarantees, e.g., in aircraft
flight-control software, the required testing cannot be accom-
plished in any reasonable time. This result is not well known
to practical testers and necessarily ignored (except perhaps
in engineers’ nightmares) in safety-critical applications.

In this paper, abstract testing theory is extended to investigate
three fundamental questions:

(1) What form should the “units” of a software system take?
(2) How should state be handled in the units and in the system?
(3) How should units and systems be tested?

The theoretical answers can be worked out in complete detail for
simple but revealing experiments that suggest how to test software.

Section 2 reviews the theoretical model and extends it to include
state. Section 3 models the ‘units’ of software as executable pro-
grams, an idea that comes from the component-software world.
Section 4 reports on two experiments with the role of state in test-
ing and the relationship between unit- and system tests. Section
5 draws conclusions from these experiments, and proposes a new
kind of system testing in which combinations of component test
executions substitute for executing the actual system.

2. THE TESTING-THEORY MODEL
The model used by Goodenough and Gerhart, Howden, and al-

most all testing theoreticians, assigns functional semantics to pro-
grams. The theory is reviewed here to establish a consistent nota-
tion; the reader familiar with its ideas may want to read the new
definitions in Section 2.4 and then skip to Section 3.

2.1 Black-box Functional Semantics
A programP is taken to have a meaning that is a function map-

ping an input domainD to an output rangeR. This idea goes back
to Turing, and Harlan Mills [11] suggested a clever notation that is
a variant of one used by Kleene [9]. The meaning ofP is a func-
tion P : D → R. Mills’s notation is literally the ‘black-box’
meaning ofP as a mapping from input to output. A specifica-
tion for a program is similarly taken to be a (partial) input-output

function1 F : D → R, and correctness ofP wrt F means that
P = F . A testsetT is a subset of the input domain,T ⊆ D. For

programP with specificationF to fail on T means precisely that
∃t ∈ T, P (t) 6= F (t).

Subdomain testing divides the input domainD into n subdo-
mainsSi, 1 ≤ i ≤ n, D = ∪n

i=1Si. A testsetT covers the sub-
domains if∀i, T ∩ Si 6= ∅. The success of a testset is misleading
if the program is not correct in consequence. (It was Howden’s
result [8] that algorithmically-defined coverage techniques are in
general misleading.) Other program properties are easy to capture
in the functional theory, by imagining that a programP computes
other functions likeP . For example,P ’s run time is a function
r : D → R, whereR is the non-negative real numbers. If desired,
correctness can be defined to include such properties, for example,
that a program never run too long:∃B ∈ R,∀t, r(t) ≤ B.

These definitions abstract away from all the hard problems of
real programs, specifications, test oracles, test selection, etc.

2.2 Unit Testing
The intuition behind testing as soon as possible in the develop-

ment cycle is that it should be easier to deal with small units of
code, and that if the units work better because their problems have
been found and fixed, the system will work better.

Conventionally, units are defined by the programming language
used. For a C-like language, they are separately compiled subrou-
tines; for an object-oriented language they might be classes incor-
porating several methods and private persistent storage. For sep-
arate testing of units an input-output convention must be adopted.
The parameters of the routine/method, along with any values of
global/private-state variables are the obvious test inputs. Returned
values, along with any changed state variables, make up the output.

To actually conduct a unit test requires some scaffolding. A
driver program must be written to surround the unit with an exe-
cutable main program that takes external input, to convert that in-
put to the appropriate parameter/state values, and pass them to the
unit. The driver then fields the results and converts them back to
external, observable outputs. Drivers can be tedious to write, but
the process can be automated. Stubs pose a larger difficulty. A
unit may very well require the services of other units, and if so it
can only be tested in isolation by faking that support. No fakes
are really satisfactory, but neither is the alternative of bottom-up
integration that tests subsystems, not units.

In Section 3.1 it will be suggested that making each ‘unit’ an
executable program, as is done in the component world, is a good
way to study the unit/system relationship.

2.3 Testing in the Presence of Persistent State
Functional-semantics testing theory as presented in Section 2.1

models only programs that do not retain state from test to test. This
property can be achieved in practice by requiring that prior to the
running of each test case, some kind of ‘reset’ is done, so that
cases are independent and repeatable. Leaving out state goes too
far toward simplicity—the model cannot provide insight into state-
related testing problems. But testing theorists have been reluctant
to complicate their tidy model, and have instead tried to incorporate
state implicitly, in two ways.

1If specification is defined to be a relation rather than a function, it captures
the idea that more than one result may be correct and allows ‘don’t care’
inputs whereany result is correct. IfF is functional, when it is undefined

for input u, technically P must also be undefined atu, that is,P must
not terminate. These peculiarities of functional specifications must be bal-
anced against the more cumbersome, less intuitive mathematical machinery
of relations.

The first state circumlocution comes from software reliability-
growth modeling, where a program is executed repeatedly using
pseudo-random inputs to measure its failure rate. The pure-function
model of such tests can include state variables by artificially adding
them to the input collection. Thus when a test-case input is selected
by assigning random values to the program inputs, a random value
is also selected for each state variable. Unfortunately, this treat-
ment is intuitively wrong because state-variable values cannot be
independently chosen. In reality, state values are created in a de-
cidedly systematic way by the program in execution.

The second attempt to incorporate state is more successful. A
program with state is treated as a function mappingsequencesof
inputs to outputs. Single test cases are then input sequences that
capture successive executions without ‘reset’ along the way. There
is no need to explicitly describe state, since in terms of these in-
put sequences the program semantics remains pure-functional. The
‘reset’ is done between sequences, which are still independent trials
with a repeatable outcome. Although the second approach ‘saves’
the simple functional-semantics theory, it would be better if state
were explicitly modeled. Otherwise state-related testing issues in
the theory are no different than problems not involving state, and
every practical tester knows that position to be false.

The extension to testing theory in Section 2.4 will include and
relate these prior attempts to capture state.

2.4 Formalizing Program State
In addition to the program input domainD and output rangeR,

we introduce an explicit state setH , and give the behavior of pro-
gramP in two parts, each depending on state as well as input. Re-
taining the box notation for the ‘functional’ part ofP ’s behavior,

P : D ×H → R.
A similar state notation is needed, and since the state maps onto

itself, a circle seems appropriate:©P : D ×H → H. Thus both
the program output and a final value for the state depend on an
input-state pair(d, h) ∈ D ×H .

Private state, local to a programP , also has a peculiar abstract
aspect in specifications. Theconcrete stateH itself is directly ma-

nipulated by the code function©P . The abstract stateJ is an
entity that similarly enters specifications. The reason for making
a distinction betweenH andJ is thatJ may be a high-level, in-
tuitive state not available in the programming language. It is then
necessary torepresentvalues ofJ by some combination of pro-
gram entities inH . The connection between the two is established
by an abstraction mapA : H → J . This process of represen-
tation and abstraction is the basis for information hiding, a design
technique of the first importance. However, it does no violence to
testing theory to identifyJ with H , and we do that here.

In principle, specifications need not concern themselves with
software state at all. To describe what is required of a program
does not necessarily require a description of persistent storage it
will maintain. However, it often seems impossible to give a for-
mal description of required actions that depend on previous history
without explicitly capturing that history.

A specificationis a (partial) functionF : D ×H → H ×R.
The simplest definition of a program meeting its specification is:

A programP is state-blind correctwrt specificationF iff:

∀x ∈ D,∀h ∈ H , (©P (x, h), P (x, h)) = F (x, h).
Practical testing explores state-blind correctness by arranging

that the program under test be forced into particular states, then
various inputs tried there. Yet state-blind correctness is intuitively
incorrect, because it accords state the same status as input: it cap-
tures the false idea that state can be independently sampled.

To do better, consider sequences of inputs and the sequences of
state values that result. It is usual for a programP with state to
have a testableresetcondition that defines the need forP to ini-
tialize. (In practice the reset condition is often a missing file that
the program creates; to reset, the file is removed by some external
agent.) Starting from reset, the behavior ofP is repeatable: the
same sequence of inputs will produce the same results.

Let P be in a specialinitial state h0 ∈ H signifying reset,
and consider a sequence of inputst = (x0, x1, ..., xn). The cor-
responding states reached byP are:

hi =©P (xi−1, hi−1), 1 ≤ i ≤ n.
Successive functional values of the program are:

P (x0, h0), P (x1, h1), ..., P (xn, hn),

that is, theith outputri = P (xi−1, hi−1). Similarly, the specifi-
cation prescribes a sequence of statesh′i and outputsr′i:

F (xi−1, h
′
i−1) = (h′i, r

′
i), 1 ≤ i ≤ n,

starting withh′0 = h0.
P is sequence correctwrt F iff for every sequence of inputs

(x0, x1, ..., xn) and the correspondinghi andh′i as above,

(hi+1, ri+1) = ((©P (xi, hi), P (xi, hi))
= F (xi, h

′
i) = (h′i+1, r

′
i+1), 0 ≤ i ≤ n − 1. The defini-

tion requiresP to terminate exactly whereF is defined so that the
domains match.

The difference between state-blind and sequence correctness is
in the states that appear in the definitions. In state-blind correctness,
the proof obligation ranges over the whole setH ; in sequence cor-
rectness only some states inH need be considered, namely those
that are specified to occur, and actually do occur, in the order(s)
they occur. The latter is a subtle point: if, for example, stateh ∈ H
only appears in one sequence, then the proof of sequence correct-
ness can use any properties that have arisen in that sequence; that
sequence is the only one that need be tested to cover stateh.

State-blind correctness=⇒ sequence correctness, but not the
reverse.

Sequence correctness is essential for correctness proofs, because
an intuitively correct program usually fails to be state-blind cor-
rect. However, it might seem that for testing one should avoid the
more complicated definition and just explore the whole state set.
This intuition, although it is often followed in practical testing, is
wrong for three reasons: First, testing over all ofH increases the
number of tests required, which is already overwhelming. Second,
successful testing on states that do not actually occur gives a false
confidence in a program’s reliability. Third, when a test fails on
a state that does not actually occur, time is wasted resolving the
spurious problem.

The state spaceH can be divided into subdomains for testing as
was the input space in Section 2.1. An arbitrary division ofH may
contain subdomains that cannot or should not occur, and part of
the testing problem is to investigate state questions such as: “Can
the program reach states forbidden by the specification?”. Follow-
ing the presentation of experiments in Section 4, Section 5.3 will
further discuss testing in the presence of state.

2.5 Deficiencies of this Testing Theory
The notation of Sections 2.1 and 2.4 restricts the input domain

and the state domain each to a single variable. In the sequel these
will be further restricted to real-number representations. Many of
the difficulties that arise in testing are present for one real variable;
adding more variables adds to the mathematical overhead without
a corresponding gain in insight.

In the sequel the input domain and output range setsD andR
will be made to coincide, because it will be of interest to connect

programs by passing the output of one as the input to another. In
practice there are many variables and types at interfaces between
programs, which must be checked for agreement. In a fundamental
theory it is better to arrange that the interfaces necessarily match.

The functional computation model excludes any discussion of
concurrency or non-determinism, and it is not useful for describing
event-driven computation that happens bit-by-bit instead of in tidy
input-output pairs.

Decisions about what the theory will describe are a sort of ‘clear-
ing of the intellectual underbrush.’ We mean to investigate systems
and their parts and to focus attention on testing. The theory of this
section allows us to do that.

3. SOFTWARE COMPONENTS
The use of standardized parts characterizes successful design

in mechanical and electrical engineering; software engineers have
long felt the need of a corresponding idea for software.

3.1 Components as Test ‘Units’
Szyperski has framed a general definition of ‘software compo-

nent,’ taking it to be executable, described only by its interface and
black-box behavior, using only local persistent state [15]. The test-
ing theory of Section 2.4 immediately applies to Szyperski compo-
nents: A componentC is a program with black-box behaviorC

and local-only state behavior©C .
The question to be investigated here is the fundamental rela-

tionship between testing a complete system and testing its parts.
Treating both parts and system as executable programs gives us the
cleanest possible relationship between the two.

3.2 Subdomain Testing of Components
When a developer sets out to test any piece of software, it is a

daunting task. The input domain is huge and there is time to sam-
ple only an insignificant fraction of it. The specification may be
complex and usually is not precise. So the tester does not know
which inputs to try, and isn’t sure what the results should be. At
the unit level, the testing problem seems easier because the spec-
ification is limited and so is the code volume; this is the rationale
behind unit testing. On the other hand, there can be no usage in-
formation at the unit level to guide test selection—the whole input
domain has to be examined.

The natural response to this problem is to divide the input do-
main of a unit into subdomains on each of which the behavior is
intuitively ‘the same,’ and to try only a few test cases in each sub-
domain. In practice, ‘the same’ is hard to capture. It is common
to use so-called functional subdomains based on the specification.
Each such subdomain comprises a collection of inputs for which
the required behavior has intuitive similarities, e.g., “should clear
the screen.” But ‘should’ is not ‘does,’ which leads to a second
kind of subdomain decomposition based on what the program re-
ally does, e.g., “clears the screen.” Evidently, the program is cor-
rect in the intersection of such subdomains, e.g., “should clear the
screen and does do so.” The program fails outside the intersection,
e.g., by clearing the screen when it should not, or by failing to clear
it when it should. Unfortunately, a tester cannot know anything
about these subdomain intersections except by testing. Neither a
specification-based subdomain nor a program-based one can be de-
pended upon to have only inputs that are really ‘the same’: both
may contain some success points and some failure points. If failure
points happen not to be selected, a subdomain test will succeed and
be misleading according to the definition in Section 2.1.

Testing theory succinctly describes this unfortunate situation, but
offers only negative results such as: “Don’t trust subdomain test-
ing.” Some studies do a little better, for example: “Subdomains
formed by arbitrarily splitting existing ones are probably not an im-
provement” [5]. The theory stays in contact with the real world by
capturing and examining subdomain testing abstractly, but leaves
the difficult job of finding good subdomains and investigating them
to see if they are misleading, etc., to practice.

When the software under test is a component, there is some jus-
tice in telling its developer: “You are responsible for testing this
component. Do the best you can with the difficult process of sub-
domain testing.” Components are made and sold partly on the basis
of their quality. Working hard to convince oneself (and one’s cus-
tomers!) that the component does meet its specification, that its
tests are not misleading, is in the developer’s interest.

3.3 Subdomain-approximation Adequacy
The quality of a subdomain-based unit test of a componentC

can be measured by the degree to which it approximates the ac-

tual behavior ofC. If C and©C were functionally ‘the same’
across each subdomain, thenC would be accurately described by
step functions, constant on each subdomain. For numerical do-
mains, the accuracy of such a subdomain-defined approximation
can be quantified. The best constant values to choose are the av-
erages across each subdomain, for which the approximation error
is the root-mean-square deviation from actual values. A good unit
test (i.e., good subdomains) has small approximation errors. The
subdomains and averages measured in them define approximations,
and test quality is measured by the extent to which these agree with
the actualC.

In conventional unit testing, subdomains are chosen haphazardly.
Perhaps some failures are found by tests covering them, but no as-
sessment of subdomain quality is made. What is proposed here is
more stringent: to measure how good an approximation to actual
behavior the subdomains define. In the next section we study the
effect of getting the subdomains right or wrong.

4. TESTING EXPERIMENTS
This section reports on experiments testing component and sys-

tem implementations. When we began to study component-based
software, we used ‘toy’ programs as components but soon aban-
doned them. The experiments revealed nothing because the toy
programs’ behavior was too simple. Full-blown ‘real’ programs
might have shown more, but their interesting behaviors are hard
to control and they are beyond the capabilities of simple tools. We
settled on artificial implementations as the best compromise. These
components are Perl programs whose functional behavior is easy to
adjust. For example, to give a component discontinuous behavior,
an IF statement selects between two output expressions; to move
the point of discontinuity requires only changing the conditional
expression. We found that artificial components could be adjusted
to display cases with analogs in real software, but without introduc-
ing too much complexity.

4.1 Prototype Tools
To study components and their testing, a set of prototype tools

was implemented. These tools allow an experimenter to test any
executable code unit having one floating-point parameter and one
floating-point state variable and returning a floating-point value.
The tools work in two modes:

Component Analysis:The experimenter supplies a set of subdo-
mains for an implementationC. The tools find an approxi-

mation to the behavior ofC by sampling each subdomain and
computing there the average output value and the root-mean-
square error between the actual execution values and the av-
erage. This is the support needed for unit testing. When the
experimenter is satisfied with the subdomains and errors, the
component test analysis is complete.

System Synthesis:In addition to a collection of component imple-
mentations and their approximations from component analy-
sis, the experimenter supplies a control-structure system de-
sign for a system. This design connects the components us-
ing Boehm-Jacopini structured constructs of sequence, con-
ditional, and iteration [2]. The output of one component is
taken as input to the next. The tools can execute the sys-
tem using the actual component implementations, but can
also ‘execute’ the subdomain-based approximations by table-
lookup2. Thus the system predictions (from the approxi-
mated components) can be compared with the actual behav-
ior.

The rationale for carrying a unit-test approximation of compo-
nent behavior to the system level is that this is an ultimate assess-
ment of the unit-test quality. If the unit-test information is accurate
enough to make good predictions about an arbitrary system, it is
certainly adequate. Experiments reveal the relationship between
unit- and system testing.

4.2 Stateless Experiments
Because state introduces its own difficulties and insights, we be-

gin with analysis of a simple stateless componentC0. Its domain
and range are arbitrarily chosen to beD = R = [0, 100). C0 is

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

F
un

ct
io

na
l o

ut
pu

t v
al

ue
s

Input

Figure 1: Measured functional behavior of componentC0.

discontinuous and rapidly varying as shown in Figure 1.
Figure 2 shows a portion of Fig. 1 for inputs in[18, 28] and

two subdomain-based approximations toC0 . One approximation
is obtained by dividing the domain into 320 uniform-size subdo-
mains; the other uses 140 hand-adjusted subdomains. In Fig. 2
the approximation curves have been shifted vertically for clarity—
the vertical scale applies only to the middle curve. Each step in
the approximations is technically a discontinuity, but vertical lines
are shown to better group the data. The hand-adjusted subdomains
were created by starting with 80 uniform-size subdomains, noting
the r-m-s error in each, and subdividing those where the error was
2% or larger. A component tester might use such a procedure to get
good subdomains by trial.

Table 1 summarizes the two approximations of Fig. 2. The col-
umn headed “>2%” counts subdomains in which the r-m-s error
2A theory has been developed [7] that allows system properties to be cal-
culated directly from the component approximations, but the table-lookup
‘execution’ is equivalent (if less efficient).

-40
-20

 0
 20
 40
 60
 80

 100
 120
 140
 160

 18 20 22 24 26 28

F
un

ct
io

na
l v

al
ue

s

Input

Figure 2: Measured behavior of C0 (middle curve) approxi-
mated using uniform-sized subdomains (curve displaced down)
and using hand-adjusted subdomains (displaced up).

Subdomain Functional r-m-s Error (%)
Approximation count Ave Max >2%
uniform 320 0.6 30.4 11
hand-adjusted 140 1.2 1.95 0

Table 1: Comparison between uniform and hand-adjusted sub-
domain approximations to the behavior ofC0.

exceeds 2%. Although on average both subdomain divisions are
good approximations, the hand-adjusted one has fewer bad subdo-
mains despite using fewer than half as many subdomains.

4.2.1 System Synthesis from Components
The prototype tools can synthesize system properties for an ar-

bitrary control structure built up from sequences, conditionals, and
loops. The simplest and most revealing structure is sequence. When
two components are composed so that the first invokes the second,
it makes the greatest demand on unit testing of both components.
The primary reason is that the input-domain distribution of values
seen by the second component when in the system is distorted by
the functional behavior of the first component. An adequate unit
test of the second component should take this into account, but
it cannot, since components are unit tested in isolation, without
knowledge of the system that will later be formed. The only de-
fense against getting it wrong at the system level is a good choice
of subdomains at the component-test level.

The simplest experiment that can be performed is to putC0 in
sequence with itself to formC0; C0. Other experiments with a
variety of system structures [6] have shown that a well chosenC0

using the simplest system structure reveals the same interesting fea-
tures as does a more complex system. Figure 3 shows the behavior
of this system (sampled 500 times), which is surprisingly complex.
One of the component discontinuities (near 22) has apparently dis-
appeared and four new discontinuities have appeared. Figure 4 dis-
plays the functional predictions from the unit tests using uniform-
and hand-adjusted subdomain approximations, expanded for the
dotted-boxed region of Fig. 3. The superiority of the approxi-
mation using hand-adjusted subdomains is evident—the uniform-
subdomain prediction and the system testing of Fig. 3 both miss
a spike around before input 22 (the component discontinuity there
did not disappear, and there are five, not four, new discontinuities).
The 140 test points from the hand-adjusted subdomains do the best
job of system testing, and it is as good with those points to use the
approximated component code as the actual system.

This investigation of component unit-test quality reflected at the
system level suggests a new paradigm for system testing. The com-

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

F
un

ct
io

na
l o

ut
pu

t v
al

ue
s

Input

Figure 3: Measured behavior ofC0; C0.

-50

 0

 50

 100

 150

 200

 19 19.5 20 20.5 21 21.5 22 22.5 23 23.5 24

F
un

ct
io

na
l o

ut
pu

t v
al

ue
s

Input

Figure 4: Functional behavior of C0; C0 (middle curve) ap-
proximated using uniform subdomains (shifted down) and
hand-adjusted subdomains (shifted up) as in Fig. 2.

ponent subdomains have been adjusted by their developers to mini-
mize (using whatever test resources were available) the error in ap-
proximating component behavior. The synthesis experiment shows
that these subdomains are good ones for system test and to use
them with the component approximations is very cheap—only one
test point per subdomain is required3. This novel way of system
testing will be further discussed in Section 5.2.

4.3 Components with State
When a componentC has local persistent state, unit-level test-

ing can still probe its behavior. By selecting a test point(x, h) in
the (input× state) spaceD ×H , and executing componentC, the

tester obtainsC (x, h) and©C (x, h), that is, the output func-
tional and state values forC on input(x, h). From the results of
many such test pairs two surfaces can be plotted showing howC be-
haves. Component subdomain analysis uses two subdomain collec-
tions, one subdividing the input space and the other subdividing the
state space. These collections can be systematically sampled and
values averaged across each subdomain to yield a surface of step
plateaus that approximates the actual functional surface, and an-
other that approximates the state surface. Proceeding in this way is
the testing analog of state-blind correctness (Section 2.4), because
it explores the state space as if it were an independent dimension,
without regard for howC really sets its state. For convenience, we
also call such tests ‘state-blind.’

Alternately, the tester might resetC, supply an input sequence,
and observe the resulting points on the behavior surfaces. Many
such sequences allow the two surfaces to be plotted. Each in-
put/state pair that arises in a sequence falls in some rectangular

3By calculating system properties from the approximations as described
in [7], one would not have to execute even these few system tests. For
example, the upper curve in Fig. 4 can be predicted from the upper curve in
Fig. 2 without execution.

subdomain; keeping track of pairs by the subdomain produces a
collection over which an average is taken to get the approximation.
This procedure is the testing analog of sequence correctness, which
we call ‘sequence testing’.

The difference between state-blind- and sequence testing is clearly
shown if the latter plotted surfaces have gaps, above subdomains in
which no sequence-test pairs fall.

To illustrate, we modify the artificial componentC0 from Sec-
tion 4.2, to create componentC1 that uses state in some common
ways4. C1 uses statesH = [−1, 1] to remember two things. The
sign of stateh ∈ H signals one of two ‘modes.’ In the ‘positive
mode’ C1 is similar to C0 . In the ‘negative mode’C1 has a sim-
pler functional behavior, constant in the input. The magnitude of
the state value|h| scales the output, but only to factors between 0.5
and 1.0 and only in the positive mode. The state itself is changed
by inputs in the range[0, 20]. Any inputx ∈ [10, 20) sets the scale
factor to20/x; anyx ∈ [0, 10) toggles the mode.

ComponentC1 mimics in a simple way the state usage of a
command-line text editor. An editor has the two modes ‘input’,
in which almost every input character is accepted and stored, or
‘command’ mode, where input characters cause editing actions. A
special input toggles the editor mode. The two different output
functions ofC1 for positive and negative state values model this
behavior. Along with a binary mode value, an editor also uses state
values to do its work; for example, an editor has string-storage state
to remember prior search and substitution strings in its edit mode.
The use of state as a scaling factor inC1 (but only in one mode)
models a simple version of this.

First we apply state-blind testing toC1, using a state setH =
[−1.2, 1.2) and 5880 test points drawn systematically from the
cross product space[0, 100) × H . Figure 5 shows the functional
output surface forC1. At the front of the graph the mode (state)

 0 10 20 30 40 50 60 70 80 90 100

Input Space

-1.5-1-0.5 0 0.5 1 1.5 State Space

 0

 20

 40

 60

 80

 100

 120

Functional values

Figure 5: Measured state-blind functional behavior ofC1.

is positive, where theC0-like behavior similar to Fig. 1 appears,
scaled down as the state goes toward 0. At the rear of the graph is
the constant, not-scaled, negative-mode behavior5.

Figure 6 shows state behavior forC1. For inputs above 20C1

makes no state changes, that is, the state function is identity. Figure
6 shows this as a sloping plane viewed from the underside. In the
input interval[0, 10), C1 reverses the state sign, that is, the function
is an identity plane with slope -1, at the right of Fig. 6.C1’s state
behavior in[10, 20) where the scale factor is adjusted is harder to
visualize and describe. Perhaps what Figure 6 best illustrates is that
people are not good at visualizing state functionally.
4Even with a simple artificial component, it is difficult to intuitively grasp
the state behavior, which must be complex enough to pose interesting dif-
ficulties in component analysis (this Section) and in system construction
(Section 4.3.1).
5The angled plane joining surfaces at state 0 is an artifact of the plotting.

 0 10 20 30 40 50 60 70 80 90 100

Input Space

-1.5-1-0.5 0 0.5 1 1.5 State Space

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

Output State

Figure 6: Measured state-blind state behavior ofC1.

Figs. 5 and 6 do not capture howC1 really behaves. Its states
donotstray outside[−1, 1], and therefore scale factors greater than
1.0 are never applied as they appear to be in Fig. 5. The restriction
to avoid scale factors in the[0, 0.5) rangeis actually observed, so a
band of states in the middle of each figuredoes notoccur. It is not
that componentC1 would not behave as the figures show if it were
placed in the states shown. It does in fact behave that way: the
figures are execution measurements. What is wrong is the state-
blind testing samples: some of the states should not be sampled
because they are impossible.

Sequence sampling gives an accurate assessment ofC1. Fig-
ure 7 shows the output using 130 random input sequences starting

 0 10 20 30 40 50 60 70 80 90 100

Input Space

-1
-0.5

 0
 0.5

 1 State Space

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

Functional values

Figure 7: Measured sequence functional behavior ofC1.

from reset. It can be seen that the state is confined to[−1,−0.5)∪
(0.5, 1], and scale factors are limited correspondingly. About 34%
of the test points in Fig. 5 are wasted on states that never arise.

If the actual state behavior of a component is not understood at
unit-test time, it leads to an explosion of problems at system-test
time. For example, if Fig. 5 is taken to beC1’s output andC1 is
placed in a system, the spurious scale factors above 1.0 may lead
to apparent system failures that are even more time-consuming to
track down than real failures.

To approximate the behavior ofC1, 392 subdomains were cre-
ated in[0, 100) × H , and the random test sequences tracked by
subdomain. No points fell in 132 of these subdomains. Figure 8
shows the approximation, which is a surface of plateaus above the
subdomains that arose. The weighted average r-m-s error in Fig. 8
relative to Fig. 7 is 2.2%.

4.3.1 Systems from Components with State
When components with persistent state are combined into a sys-

tem, the resulting system behavior is more difficult to display and
understand than in the stateless case of Section 4.2. For state-

 0 20 40 60 80 100

Input Space

-1-0.5 0 0.5 1 1.5 State Space

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

Approximated Output Values

Figure 8: Approximation to functional behavior of C1.

less components, systems take exactly the same form as their con-
stituent components: stateless systems have a single input, a single
output, and they are described approximately by step functions on
a collection of subdomains (derived from the subdomains of their
components). In contrast, a system built from components with
private persistent state(s) differs in form from a single component.
The system state is a cross product of the component states, a dif-
ferent entity for different numbers of components. This complex
system state is a challenge to grasp intuitively and to present graph-
ically. To display system behavior forn components would require
(n + 2)-dimensional graphs: (n + 1) independent dimensions for
states and the input, and one dependent dimension for the result.

It is not obvious how state-blind testing of a system with state
should be carried out. In contrast, sequence testing of a system
is straightforward. System reset means resetting all the compo-
nents. An input sequence is supplied to the first component in the
system. The connections between components route inputs to the
other components, creating sequences for them. (Not every com-
ponent receives the same length sequence: conditionals split se-
quences between their alternatives and loops expand one input into
a subsequence.) As it receives inputs, each component creates and
maintains its own state. Thus sequence testing of a system with
state is just the same as sequence testing one component. We will
use only testing with randomly generated input sequences in the
remainder of this paper.

If each component’s code within a system is replaced by a step-
function approximation, then executing these (by table-lookup) ap-
proximates the system behavior. Comparing sequence tests of the
actual behavior with the same tests on the approximation system is
the ultimate assessment of quality for the subdomain-based tests of
the components.

Unfortunately, even though systems and approximations of sys-
tems can be easily sequence tested, the problem of visualizing the
results remains. To see exactly what is happening requires higher-
dimensional Euclidean spaces than humans can perceive. The best
that one can do is to define some measure of the complex, compos-
ite state of a system to use in displays. Integer-valued states can be
coded to a single value with a bijective pairing function [14], so that
each different cross-product system state has a unique value. Pair-
ing functions necessarily introduce an undesirable nonlinear distor-
tion, because two values must be paired to a value something like
their product. For real-valued states, no bijective pairing is possi-
ble. In one special case a good intuitive display is possible: if only
a small number of state values arise, they can be labeled with the
actual system cross-product state value.

We construct an artificial example in which state plays a reveal-
ing role, using the ‘editor-like’ componentC1 described above with

a ‘front-end-like’ componentC2 that controlsC1. C2 uses its state
only to keep track of a few discrete modes. It ‘shadows’ the two
modes ofC1 so that it knows whatC1 should do if invoked. It
has a mode to invokeC1 (butC1 is not permitted to change state),
another which explicitly forcesC1 to toggle its state (but only a
limited number of times), and another which models a user dialog
not involvingC1. BecauseC2 is used as a conditional test, it needs
two (stateless) filter programsC3 andC4 to adjust values passed
on. Figure 9 is a flowchart of the system control structure.

C2

C4 C3

C1

Figure 9: A simple system built from components.

For completeness the detailed state- and functional behavior of
C2 measured by sequence testing are shown in Figs. 10 and 11.
(Note that only eight states actually arise.) Since the modes are

Input Space

State Space

-6
-4
-2
 0
 2
 4
 6
 8

Output State Values

-100
-80

-60
-40

-20
 0

 20
 40

 60
 80

 100

-6 -4 -2 0 2 4 6 8

Output State Values

Figure 10: Measured state behavior ofC2.

discrete, no surface is fitted to the behavior, but the measured points
are quite dense, and modes are traced by dotted lines6. Consider
one ofC2’s eight modes, state +3 in Fig. 10 (third from the right).
In this modeC2 mostly believes thatC1 will be in its positive mode.
C2 stays in state +3 except when it receives a negative input in
[−80,−60), then going into state -4. In Fig. 11 again look at state
+3. For positive inputsC2’s output is 1, that is, it takes the right
branch in Fig. 9. For negative inputs it takes the left branch in
Fig. 9 (output 0), except for input in[−80,−60) which again goes
right (output 1). The actions in[−80,−60) are the case in which
C2 is instructed to force a mode change inC1, which occasions the
described control flow and state change.

Table 2 summarizes the informal component specifications. Be-
cause in the systemC3 avoids the output range(0, 20), it never
allows C1 to adjust its scale factor.C1 is thus confined to two
modes (1 and -1) that model ‘input’ and ‘command’ modes of an
editor.

6In subsequent graphs the projection may be rotated to give the clearest
view of the surface.

Input Space

State Space

 0
 0.2
 0.4
 0.6
 0.8

 1

Functional Values

-100
-80

-60
-40

-20
 0

 20
 40

 60
 80

 100

-6 -4 -2 0 2 4 6 8

Functional Values

Figure 11: Measured functional behavior ofC2.

Component State? Type Informal Specification
C1 yes imp See Fig. 7
C2 yes cond See Fig. 11
C3 no imp Compresses positive inputs to

the output range [20,100); any
negative input gives output 0.

C4 no imp Absolute-value function.

Table 2: Components used in the system of Fig. 9.

Figure 12 displays the system state behavior, each composite
state labeled with a pair of state values for(C1, C2) in order. For

-100-80-60-40-20 0 20 40 60 80 100(-1,-6)(1,7)(-1,-4)(1,5)(1,3)(1,2)(1,1)(1,0)

(-1,-6)
(1,7)

(-1,-4)
(1,5)
(1,3)
(1,2)
(1,1)
(1,0)

Composite Output State Values

Input Space

Composite State Space

Composite Output State Values

Figure 12: Measured state behavior of the system of Fig. 9.

example, in the mode at the left of Fig. 12 the composite state is
(1,0): C1 is in state 1 whileC2 is in state 0. Most system inputs
leave the composite state unchanged. It can be seen that the state
shadowing is working: in the composite states that arise the two
component states always have the same sign. System state behav-
ior almost mimics that ofC2, but one difference is of interest: In
Fig. 10 the state-0 curve (third from the left) has a linear segment
around input 0, while in Fig. 12 the corresponding curve (left-most)
has three discrete steps in the segment. In the system, some feasible
states of the component have become infeasible.

Figure 13 shows the system outputs that occur in each of the
eight system modes. For negative system inputs, the output is the
absolute value, reflecting the ‘user dialog’ throughC4. For positive
inputs, the output is that of the ‘editor’C1, which is constant in
negative modes (right-most and third from right in Fig. 13) and the
shape of Fig. 1 in positive modes (the other six modes).

If this were a real system, Figs. 13 and 12 would be diligently
studied by the system testers to see if the behaviors meet system
specifications. For our purposes it is enough that the behavior is
complex, because we now wish to try the approximation experi-

-100
-80
-60
-40
-20

 0
 20
 40
 60
 80
 100

(-1,-6)(1,7)(-1,-4)(1,5)(1,3)(1,2)(1,1)(1,0)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Functional Values

Input Space

Composite State Space

Functional Values

Figure 13: Measured functional behavior of the system of Fig.
9.

ments that in the stateless case showed that component measure-
ments were sufficient to predict system behavior.

The four componentsC2, C3, C1, andC4 are described by sub-
domains (in the input space for the stateless ones and in the cross-
product of input and state for the others). Approximation plots like
Fig. 1 and Fig. 8 are obtained, and the subdomains refined until
the r-m-s error is just over 2% for C1 and C3, about 13% for C4,
and for C2 the approximation is perfect7. Then the approximation
tables are ‘executed’ in the system combination of Fig. 9 and the
results compared with the execution measurements from Fig. 13.

Again there is difficulty is displaying potentially hyper-dimen-
sional data. The trick of explicitly labeling a few system states in
graphs like Fig. 13 isn’t as useful for subdomain-based approxima-
tions, because state subdomains are rectangles (in general,N -di-
mensional boxes for a system withN components that have state)
that do not necessarily map into connected lines in the plotted state
dimension. Nevertheless, Fig. 14 shows the output behavior of the
approximate system formed from the approximated components.

-100

-50

 0

 50

 100

(-1,-6)(1,7)(-1,-4)(1,5)(1,3)(1,2)(1,1)(1,0)

 0 10
 20 30
 40
 50 60
 70 80
 90

 100

Functional Values

Input Space

Composite State Space

Functional Values

Figure 14: Approximation to Fig. 13 using approximating com-
ponents.

The plateaus’ sides in the state dimension are arbitrarily placed to
span each mode. In the (1,7) mode (second from right in Fig. 14),
the actual system data is plotted for comparison.

Displays like 14 quickly become incomprehensible in all but the
simplest examples. Recalling that there is no difficulty in obtaining
data about the actual and approximate behaviors, just in display-
ing them, suggests a different method of comparing the two that
generalizes to any number of system components. Figure 15 dis-
plays one sequence of test data like those used to plot Fig. 13 and
Fig. 14. In Fig. 15 functional values appear as vertical lines above
7The choice of subdomains is a compromise between accuracy and values
that produce good graphical displays.

-100
-80

-60
-40

-20
 0

 20
 40

 60
 80

 100(-1,-4)(1,5)(1,3)(1,2)(1,1)(1,0)
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Functional Values

Input Space

Composite State Space

Functional Values

Figure 15: Behavior of the system of Fig. 9 for one input se-
quence. The two points plotted above each vertical line are the
predicted and actual values.

a path in the base (input× state) plane. The path describes one
sequence of length 50 used to test the system. The sequence of in-
put points given to the actual and approximate systems is the same,
but the state sequence that results might be different (which would
result in different paths in the base plane), and the output may dif-
fer (different impulse heights). For this sequence, the actual and
approximate states coincided, and the output values differed only
slightly in most cases, as shown by two crossbars at the top of each
impulse.

A plot like Fig. 15 quickly becomes so crowded that the approx-
imation quality cannot be visualized, but the data can be analyzed
in a way that generalizes to arbitrary systems: For the entire set of
sequences tested and each test point in each sequence, compute the
distance between actual and approximate points in the (output×
state) space. For the test displayed in Figs. 13 and 14, the average
error distance is 10.7%. Relatively poor subdomains were chosen
for C4 in this case to make the figures clearer; if the subdomains
are divided until all component r-m-s errors are below 2%, the av-
erage error distance for the system is 2.5%. Thus small errors in
approximating its components leads to small errors in the approx-
imate system. In this example the approximation tracks the eight
modes in the state perfectly. In a system with a more complex state,
state errors in the approximation can lead to larger discrepancies.

5. DISCUSSION:
TEST UNITS OR TEST SYSTEMS?

Testing theory as presented in Section 2.4 and component-based
experiments in Section 4.3 expose the difficulty of testing any pro-
gram. This difficulty can be summarized as one of finding and
examining subdomains of the (input× state) space of the program,
subdomains that characterize its behavior and do not mislead the
tester into thinking all is well when it is not. Successful tests can
mean that software is understood and under control; all too often
they only mean that the test coverage is dreadful.

Only a few simple examples have been examined, but they sug-
gest an unorthodox idea: creative, human-intensive testing should
be done primarily at the unit level, but done far more extensively
than in current practice. Then at the system level, testing can be
a more routine checking activity. The system-level tests will be
judged against the system specification, but the test points used
will be those that were found to well approximate the unit behav-
ior. Furthermore, the actual system need not be executed; it can be
replaced by an approximate system of component approximations.

5.1 System- and Unit Testing
The twin facets of emphasizing unit- or system-testing are these:

Unit. At the unit level testing is knowledge-driven. The unit is
small, it can be studied in detail, and the tester can be in
good intellectual control.

The drawback at unit level is a complete ignorance of the
way in which the unit will later be employed, particularly in
component development, since future applications may vary.
The technical form taken by this problem is that in applica-
tion the unit will face a usage profile that depends strongly
on both the system usage and the system structure, both un-
known. So no unit-test profile can be adequate.

System. System-testing’s great advantage is that the tested pro-
gram and its usage are really the ones of interest, so there is
no difficulty about testing the right things. Any information
that is needed for an accurate test is in principle available.

The payment for operating in full reality is that system test-
ing is seldom an activity in intellectual control. The spec-
ification for a complete system can be extremely complex
and may have significant ambiguities or incompleteness. The
code has been assembled from many sources into a whole
whose complexity is overwhelming, beyond what any per-
son can fully grasp.

A concise way to describe these two sides of the testing problem is
to say that in unit test we know all about a program but aren’t sure
what’s important; in system test we know what’s important but it is
hard to be sure of anything about the program. In deciding where
to expend more effort, the clear engineering choice is: at unit level.
Engineers need to know what to do and how to do it routinely [1,
16]. A principle is only useful to an engineer if it comes with a way
to use it. There is of course another side to this engineering bias:
prescribed activity has to be validated in principle, lest the engineer
engage in ineffective make-work.

Subdomain testing itself is a solution to the lack of eventual us-
age information at the unit/component level. Technically, the prob-
lem is the disparity between the input profile used for unit testing,
and the profile that the component will actually face when it is in
place in a system. If these profiles are different, testing at the unit
level can be expected to mean nothing at the system level. What a
component sees in place depends on: (1) The system profile, and
(2) The component’s place in the system control structure and the
behaviors of the other components. Any profile can be thought
of as a weighting of subdomains. Indeed, the practical profiles
long advocated for software reliability engineering by Musa [12]
are precisely such weightings. The unit tester, using full informa-
tion about the unit specification and its code, decides on a set of
subdomains, based on making the unit behavior ‘the same’ on each
subdomain. If this subdomain breakdown is successful, then the
weights later placed don’t matter—the unit behavior has been cap-
tured accurately for all possibilities.

This rosy view of the efficacy of unit testing may of course go
wrong. If there is an error in ‘sameness’ of some unit-test subdo-
main, and the profile that component sees when in a system weights
this subdomain heavily, then the system can fail because this com-
ponent fails, having received an input that was not represented in
its unit test.

5.2 A New System-testing Paradigm
We propose to use the results of unit-testing components as a

way to structure system testing, reducing its cost both in terms of
execution time and the creative human effort required.

When a system is assembled from components suppose that each
component has been unit tested as were the examples in Sections
4.2 and 4.3, which brings into existence a collection of artificial
components, each a subdomain decomposition of its input domain
and a step-/plateau-function approximation defined on these subdo-
mains. We suppose that the component developers have expended
considerable effort to make these approximations as close to the
actual components as they can, using tools like those described in
Section 4.

System testing is then conducted not with the actual components,
but with the approximations. The advantages are:

Speed.Each approximation component executes by table-lookup
no matter how slow the actual component might be.

Coverage.It is unnecessary to test more than one point in any sub-
domain. The subdomains are by definition homogeneous and
any point is like any other.

Test selection.Any test selection method can be used, but the ran-
dom sequences of Section 4.3 are a choice requiring very
little creative effort.

Test adequacy.The quality of a system test can be mechanically
measured. On the assumption that the unit-test approxima-
tions are of good quality, the only dangerous situation occurs
when some subdomain of some component is hit much more
frequently than others as the system executes. Conventional
instrumentation can measure the subdomain hit rates. (The
tools used in Section 4 provide this feature.)

The sole disadvantage of using the approximated components
is nevertheless a substantial one: The system-test results may be
wrong. However, they are not likely to be misleading in that tests
falsely appear to succeed. The approximate components’ behav-
iors are distortions of their actual behaviors, which should make
the approximate system fail to meet specification when the real-
component system would succeed or fail in a different way. So the
second part of the scheme proposed here is to execute the actual
system on any test cases where the approximation system fails and
to analyze only actual-system failures.

5.3 Component/System Persistent State
When programs have persistent state, as almost all useful pro-

grams do, it magnifies the difficulty of testing. One measure of this
is that the number of relevant subdomains is theproductof the num-
bers in the input- and state domains. This explosion in needed cov-
erage is strong support for pushing testing to the unit/component
level where there is some hope of keeping intellectual control. It is
crucial in confining the creative part of testing—devising and ex-
ploring appropriate subdomains—to component level that state be
also confined to components8.

Imagine for a moment that a system were permitted global state,
persistent values that could be used and set by all of its compo-
nents. How could those components be unit tested? To partition
state into appropriate subdomains for test requires knowledge of
how a unit will use that state. For state confined to the unit this is
difficult enough, as the experiments of Section 4.3 show. If state
were global, accurate partitioning for unit testing would be impos-
sible, because it would depend on all the other units that will even-
tually make up a system. The problematic nature of global state

8It is also the conventional wisdom that persistent state should be local to
the units that make up a system. ‘Information hiding’ is the name Parnas
gave [13] to this design idea, which is seen in most versions of object-
oriented design, and reflected in Szyperski’s definition of a software com-
ponent [15].

is really just another form of the testing-profile problem. Subdo-
mains at the unit level must capture whatever a unit might do; if
its state can be changed in arbitrary ways by unknown agents (the
other parts of a future system) unit subdomains make no sense.

Thus a proper state for a system made from components is the
cross product of the local states of these components. The state
subdomains for system testing are then defined as cross products
of the component-test subdomains. Just as some input subdomains
are explored in unit testing that can never occur once a particular
system is built, so some feasible component-state subdomains may
never participate in a particular system’s actual state. That is, the
cross product of the feasible component-state subdomains is typi-
cally a strict superset of the feasible system states. (An example
was described in the discussion following Fig. 12.) It is hopeless
to try to explore by testing a complex system state in a state-blind
way; the payment is to do more work at unit level than is strictly
needed for any particular system that will follow later.

The theoretical study of exploring state by testing has barely be-
gun. The testing examples in Section 4.3 and Section 4.3.1 are
program-based: states investigated are those thatdo arise in exe-
cutingC1, C2, and a system on input sequences. In practice, it is
usual to look at specification-based states. Unfortunately, conven-
tional specification-based testing practice is particularly deficient
with regard to state coverage. Here’s what is usually suggested:

A collection of specification-based states is devised by hand.
There are two ways to try putting the program into one of
these specification states: (a) Invert the abstraction mapping
(A in Section 2.4) to find by hand a representative imple-
mentation state and externally create this persistent value;
(b) Devise a test sequence by hand that should according to
the specification place the program in the specification state9.
Program behavior is explored by a test collection in which
each test point begins in what should be a specification state.

The deficiencies in such a scheme are clear. (1) The specifi-
cation may have unreachable states, perhaps obscured by a state-
machine formalism that does not capture data dependences. Testing
an implementation is the way least likely to discover specification
problems. (2) The program states and state transitions may fail to
mimic the specification, either by design or because mistakes were
made in implementation. Conditioning with an input sequence that
shouldlead to some imagined state ((b) above) then takes the pro-
gram to an unknown actual state. (3) The abstraction mappingA is
usually many-to-one, so an implementation state selected to repre-
sent a specification state ((a) above) may not be one that is typical
or even feasible. (4) The set of program states that can occur is not
explored; they may include states with no specification equivalent,
reached in unimagined ways.

It is not an unfair summary of current specification-based state
exploration to say that it is unexamined. The tester continually
confounds what the program should do with what it does do, and
never really knows what states have been (or have not been) tried.

5.4 Quality of System and Component Tests
The experiments of Section 4 support the position that good sys-

tem predictions can be made from the results of unit testing, as
described in Section 5.2. We do not recommend interpreting these
results to say that system testing is superfluous—that it only repeats
a poor fraction of the unit-level test work. It is, however, instructive
to imagine an independent subdomain-based test being conducted
on a system, and to trace it into the unit-test results. Because things

9The test sequences can be mechanically generated if the specification uses
a state-machine formalism. The machine itself defines ‘specification state’.

are so complicated at the system level, the subdomains used are
likely to be much larger and less related to behavior than ones at
the unit level. Whatever system test points come from these diffuse
subdomains will find their way into the various unit subdomains,
but coverage of unit subdomains will be sparse. Thus the likeli-
hood that anything new will be learned about the components from
such a system test is low. The argument establishes that the imag-
ined system test may be a poor one. What it leaves out is that the
results will be judged by the system specification and only such
judgments stand a chance of catching system-design flaws. Unit
tests of components can do nothing whatever to expose mistakes in
combining those components to realize a larger purpose.

We recommend the following interpretation of our experiments:
System testing is essential, but it can be better carried out based on
unit-test results as described in Section 5.2. An example appears
in the experiments with the stateless componentC0 in the series
systemC0; C0 in Section 4.2. Figure 4 shows that there is some
messy system behavior near input 22, behavior that arises only at
the system level. Without conducting the system test, this behavior
would never be seen; conducting the system test without using the
unit results (as in Fig. 3) would also fail to expose it.

The success of the system testing scheme proposed in Section 5.2
depends on the accuracy of the system approximation using the ap-
proximate components obtained from unit-test analysis. If the pro-
posed scheme is to be used in practice, there can be no validation
that the unit approximations are good enough; they must be trusted.
A few experiments are far less convincing than a proper theoretical
error prediction, but the latter has not yet been attempted.

5.5 Related Work
Karl Meinke has proposed a very clever different testing-based

program approximation for a different purpose [10]. He requires
a first-order formal specification for programP and searches for a
test point on whichP fails, roughly as follows: Given a function
f that is a piecewise polynomial approximation toP , a pointx
can be algorithmically found such thatf(x) is incorrect according
to P ’s specification. Perhapsx causesP to also fail; if so, Meinke
has succeeded. If not, he adds(x, P (x)) to f to formf ′, a more
detailed approximation. The process is iterated until either a real
failure is found or the piecewise approximation becomes so accu-
rate that the tester believes there are no real failures.

Meinke’s procedure produces a set of subdomains (the ‘pieces’
of the approximation) that can claim to objectively capture a ‘func-
tional’ breakdown ofP ’s domain, itself an important theoretical
accomplishment. The work presented in this paper does not re-
quire a formal specification, but the payment is that our tester must
construct subjective subdomains by hand. The experiments of Sec-
tion 4 use piecewise approximation with constant steps. The tools
we have implemented can also use linear pieces (not quadratic be-
cause linear is the highest degree at which the composition of two
piecewise approximations is a same-degree approximation).

6. SUMMARY
The functional-model testing theory has been extended to make

state explicit and subdomain testing has been examined in the light
of the theory. The setting of software components combined into
systems is a good one for study, since its ‘units’ are complete pro-
grams each with local persistent state. Prototype tools have been
implemented to study components and their composition. Exper-
iments show that it is possible to make good system-level predic-
tions from unit-level tests, but only if the latter are much more ex-
tensive than in current practice.

The conclusion drawn from the theory and experiments is that
component testing, if properly done, can support and simplify the
system-testing process. The difficult parts of system testing are
replaced by perhaps equally formidable difficulties at component
level, but the difference is that understanding is far better at compo-
nent level and one can hope to quantify the system software quality
that will result, as it has not been possible to do with conventional
system-level testing.

Acknowledgments
Zheng Tu, Milan Andric, Ben Buford, John Christmann, Alex Cor-
rado, Paul Draghicescu, and Michael Plump worked on prototype
tools. I thank Sharon Flynn for useful discussions of the state prob-
lem. One anonymous referee alerted me to Meinke’s paper [10].

7. REFERENCES
[1] William Addis. Structural Engineering: The Nature of

Theory and Design. Ellis Horwood, 1991.
[2] C. Boehm and G. Jacopini. Flow diagrams, turing machines,

and languages with only two formation rules.Comm. of the
ACM, 9:366–371, 1966.

[3] R. W. Butler and G. B. Finelli. The infeasibility of
experimental quantification of life-critical software
reliability. IEEE Trans. on Soft. Eng., 19(1):3–12, January
1993.

[4] John B. Goodenough and Susan L. Gerhart. Toward a theory
of test data selection. InProceedings of the international
conference on Reliable software, pages 493–510, 1975.

[5] D. Hamlet and R. Taylor. Partition testing does not inspire
confidence.IEEE Trans. on Soft. Eng., 16:1402–1411, 1990.

[6] Dick Hamlet, Milan Andric, and Zheng Tu. Experiments
with composing component properties. In Wallnau [17].

[7] Dick Hamlet, Dave Mason, and Denise Woit. Theory of
software reliability based on components. InProceedings
ICSE ‘01, pages 361–370, Toronto, Canada, 2001.

[8] W. E. Howden. Reliability of the path analysis testing
strategy.IEEE Trans. on Soft. Eng., 2:208–215, 1976.

[9] S. C. Kleene.Introduction to Metamathematics. Elsevier,
1980.

[10] Karl Meinke. Automated black-box testing of functional
correctness using function approximation. InProceedings
ISSTA ’04, Boston, 2004.

[11] H. Mills, V. Basili, J. Gannon, and D. Hamlet.Principles of
Computer Programming: A Mathematical Approach. Allyn
and Bacon, 1987.

[12] J. D. Musa. Operational profiles in software-reliability
engineering.IEEE Software, pages 14–32, 1993.

[13] David L. Parnas. On the criteria to be used in decomposing
systems into modules.Comm. of the ACM, December 1972.

[14] Hartley Rogers.Theory of Recursive Functions and Effective
Computability. MIT Press, 1987.

[15] Clemens Szyperski.Component Software. Addison-Wesley,
2nd edition, 2002.

[16] Walter G. Vincenti.What Engineers Know and How They
Know It. Johns Hopkings University Press, 1993.

[17] Kurt Wallnau.www.sei.cmu.edu/pacc (links to CBSE
proceedings).

