
CONTINUITY IN SOFTWARE SYSTEMS

Dick Hamlet�
Portland State University

hamlet@cs.pdx.edu

ABSTRACT
Most engineering artifacts behave in a continuous fashion, and this
property is generally believed to underlie their dependability. In
contrast, software systems do not have continuous behavior, which
is taken to be an underlying cause of their undependability. The
theory of software reliability has been questioned because techni-
cally the sampling on which it is based applies only to continuous
functions.

This paper examines the role of continuity in engineering, particu-
larly in testing and certifying artifacts, then considers the analogous
software situations and the ways in which software is intrinsically
unlike other engineered objects. Several definitions of software
‘continuity’ are proposed and related to ideas in software testing.
It is shown how ‘continuity’ can be established in practice, and the
consequences for testing and analysis of knowing that a program is
‘continuous.’

Underlying any use of software ‘continuity’ is the continuity of
its specification in the usual mathematical sense. However, many
software applications are intrinsically discontinuous and one reason
why software is so valuable is its natural ability to handle these
applications, where it makes no sense to seek software ‘continuity’
or to blame poor dependability on its absence.

1. INTUITIVE CONTINUITY
The untrustworthy nature of software systems running on digital
computers is often blamed on the lack of continuity inherent in
these systems. The absence of continuity is an ‘obvious’ fact that
is seldom precisely stated or considered. The intuitive meaning of
continuity, as it relates to the behavior of systems, can be seen from
a description of the role continuity plays in a simple mechanical
tool.

1.1 The Shovel as a Continuous System
The usual garden shovel is constructed by inserting a wooden han-
dle into a tubular socket in a metal blade. The resulting tool is very
versatile, and can be used to dig out a rock or a tree stump. In this
application, the blade of the shovel is forced under the rock, and
�Supported by NSF ITR grant CCR-0112654

the handle used to pry. The shovel acts as a lever with the fulcrum
at the top of the blade where it joins the handle (bearing against
the ground at the side of the hole), the blade being one arm of the
lever and the handle the other. Because the handle is longer, a large
upward force can be brought to bear on the rock as the handle is
pushed down.

Anyone who has used a shovel in this way knows that it is possible
to break the tool on a too-large rock. The handle breaks just where
it goes into the blade socket, or the blade itself fractures at the base
of the socket. The experienced rock digger learns to sense the limits
of a shovel, which is possible because the behavior of the shovel
is continuous. Intuitively, as more force is applied to the handle,
the stress at the weakest point of the tool rises, and does so in a
simple way: a bit more force, a bit more stress. The relationship
is not necessarily linear (although often it is, in so called elastic
behavior), but the stress changes smoothly with the force – in a
word, the change is continuous. The shovel breaks when the stress
exceeds what the materials can bear. The experienced shovel user
learns to stay in the continuous region, and can thus depend on a
shovel year after year.

Suppose that the behavior of a shovel were not continuous as de-
scribed in the previous paragraph, the stress not smoothly related to
the applied force. Then a digger might find that at a certain pecu-
liar applied force value the handle suddenly snaps, even though in
previous digging it was fine for forces both smaller and larger than
this. Such a shovel would be hopeless to use, because one would
never know when it was going to misbehave.

1.2 The Software Analogy
The analogy between software systems and shovels is obvious: if
the software is analogous to the shovel, the data inputs to the system
are like the applied force, and the system outputs are like the stress.
The system breaks (fails) when an output is incorrect. The software
system is not intuitively continuous, because no matter how much
it has been used (tested) without failure, it can happen that an input
causes it to fail, and that input can be arbitrarily close to other inputs
that did not fail. To carry things a bit farther, it is possible to test
a shovel by prying with a few different forces, and if it does not
break on these tests, to know that it will not break at intermediate
values. This is precisely what cannot be done for software.

There is also a deeper sense in which continuity applies to shovels
but not to software. The parameters that define an individual shovel
in a batch produced by some manufacturing process also enter into
the behavior of the shovel in a continuous way. This means that it is
possible to take a sample from the shovel production line, test these
few shovels, and then statistically predict how the entire population



of shovels is likely to behave. (For example, to assign a probability
and confidence to the proposition that no shovel will break for any
applied force in a given range of values.) This statistical sampling
is called ‘life testing,’ and it is the original source for the theory
of software reliability [13], in which the sampling is analogous to
a random software test. The use of life-testing theory is techni-
cally invalid for software, because the samples are not drawn from
a continuous distribution.

2. FORMAL DEFINITIONS OF SOFTWARE
‘CONTINUITY’

The definition of a continuous real function is the most intuitively
appealing, and describes the behavior of many physical systems
like the shovel.

DEFINITION: A real functionf is continuousat x0 iff: Given
any� > 0; 9Æ > 0 such that

8x (jx� x0j < Æ =) jf(x)� f(x0)j < �): (1)

Or,

lim
x!x0

f(x)! f(x0):

The � � Æ form of the definition is better suited to the purpose of
defining notions of continuity for software.

Notions of left- and right- and piecewise-continuous functions are
similarly defined.

2.1 Continuity on Discrete Sets
As might be expected, there has been previous work on ‘discrete
continuity.’ The idea is a starting point for so-called digital topol-
ogy, which emerged from image processing. Rosenfeld’s seminal
paper [12] considered the case of a function from discrete pixels to
the same, an image transformation. In the one-dimensional case the
function domain and range sets are integer intervals, which Rosen-
feld takes to be finite. Intuitively, the functions to be considered
approximate real-valued functions by taking as value at an input
pixel, the nearest output pixel to the real-function’s value. Points
areneighborsin this space iff their Euclidean separation is no more
than 1; that is, iff the points are the same or they are successive
integers. Rosenfeld’s definition is:

DEFINITION: An integer functionf defined on a finite interval
of the integers isdiscretely continuousiff:

Given any� � 1; 9Æ � 1 such that

8x (jx� x0j � Æ =) jf(x)� f(x0)j � �): (2)

The changes in this definition, in comparison with definition (1),
are appropriate to the discrete space and its Euclidean distance.

Rosenfeld proves that discretely continuous functions are charac-
terized by carrying neighbors into neighbors. He also establishes
elementary properties of the definition, among which are:

1. If f is discretely continuous the continuity is uniform. (That
is, for all pointsx0 the sameÆ works for the same� in (2).)

2. A discretely continuous function has the intermediate-value
property. (That is, iff(x) < m < f(y); 9z such that
f(z) = m:)

3. The composition of discretely continuous functions is dis-
cretely continuous.

4. Most arithmetic combinations of discretely continuous func-
tions (e.g., the sum) are not necessarily discretely continu-
ous.

Property 1) is stronger than for the definition on the reals; property
4) is weaker; the others are the same. The proofs of these properties
are straightforward. Intuitively, the discretely continuous functions
fail to be closed under arithmetic operations because� values can-
not be adjusted arbitrarily as they are in the proof for the real case.

Further properties of discretely continuous functions were estab-
lished by Rosenfeld and more recently by Boxer [4]. For example,
the only continuous 1-1 functions are combinations of translations
and reflections.

2.2 Floating-point Continuity
As approximations to mathematical real values, floating-point quan-
tities in digital systems cover a finite range defined by the exponent-
field size, and have limited precision defined by the mantissa-field
size. This is exactly what is needed to capture physical measure-
ments. The floating-point subset of the reals is characterized by the
existence of a minimum fractional spacing
 which is the granular-
ity of the mantissa,
 = 2�M for a binary field ofM bits. Soft-
ware can vary
 by using a multiple-word mantissa, even beyond
that supported by the hardware operations if necessary.

There are two ways to look at the approximate nature of floating-
point values. The program specification may explicitly mention the
approximations; or, the specification may be expressed in continu-
ous terms, with the understanding that its statements about values
apply only approximately. The former is a more cumbersome but
more precise version of the latter. A specification statement like:

The program will computef to within 0.05%,

really means something like the following1:

For all realx such thatf(x) 6= 0, program inputs will ap-
proximatex with error at mosthx, and for all input values
z such thatjx� zj < hx the program outputvz at z will
satisfyj(f(x)� vx)=f(x)j < :0005:

The intuitive content of the requirement is that when any valuex
arises in the operation of the system, the program will operate on an
input approximation tox limited by the hardware, and the output
will be similarly limited, but the calculated value will nevertheless
be close enough tof(x).

DEFINITION: A program computes afloating-point continuous
functionF if F approximates a continuous function to the
fractional accuracy given in the program specification.

The definition leaves open the possibility that a program might
compute a floating-point continuous functionF , butF might not
be the function it was specified to compute. The definition does
make the specification the arbiter of the required accuracy.

Floating-point continuity is a natural extension of discrete continu-
ity in that by interpreting the mantissa as an integer and taking the

1The excluded casef(x) = 0 must be appropriately included, and
the restriction to a real interval would also be present in any actual
specification, but including these technicalities would obscure the
point about approximating continuity.



required accuracy to be one mantissa unit, the two notions are intu-
itively the same, but discrete continuity has no concept that corre-
sponds to the specification’s ability to require an arbitrary accuracy.

The floating-point-continuous functions are closed under composi-
tion, but not under arithmetic operations like addition, for the same
reasons that establish these properties for discrete continuity.

In the remainder of this paper, statements such as “the computed
value isf(0)” are to be taken to mean that the floating-point ap-
proximation holds for an accuracy given in the specification. It can
of course happen that the digital nature of the computation is the
very reason why the program fails to obtain a sufficiently accurate
result, always a thorny problem for the numerical analyst. But this
special case is no different in principle from one in which any in-
correct result is obtained.

2.3 Testing for Trustworthiness
The rationale for trusting a tested mechanical system at some us-
age pointx is that its (tested) good behavior at points nearbyx,
along with the continuity atx of functions describing its proper-
ties, guarantee that it will behave properly atx. A bit more than
this is required, because assurance is needed that the behavior can-
not vary too wildly. It can be as dangerous to have a narrow ‘spike’
in a continuous function as to have a discontinuity. Suppose that a
mechanical system has a functionZ that describes a system prop-
erty. Z satisfies a Lipschitz conditionatx0 iff there is a parameter
B0 > 0 such that:

9b > 0; 8x (jx� x0j < b =) jZ(x)� Z(x0)j � B0):

Intuitively, the function cannot change value arbitrarily in some
neighborhood of each point for which it satisfies a Lipschitz con-
dition. A real function that is continuous atx satisfies a Lipschitz
condition atx; but the converse is not true, since the limited varia-
tion requires nothing about the behavior inside the bound.

In testing a mechanical system whose property functionZ satisfies
a Lipschitz condition, one proceeds as follows:

Let the failure limit ofZ beLZ , which for simplicity take as
a maximum magnitude. Test the system using pointsfx1; x2;
:::; xkg whose Lipschitz constants are respectivelyfB1; B2;
:::; Bkg and whose neighborhoods overlap to cover the usage
range. At each test pointt, Z(t) must be within the failure
limits reduced byB = max1�i�k Bi, that is:

8i; 1 � i � k (jZ(xi)j < LZ �B):

There is some justification in callingB the safety factor2 for Z.
The testing regimen then guarantees that the system cannot fail, for
it has been tried at points near enough to each other, and the worst
variation between points has been allowed for by the safety factor.

2.4 Failure Continuity
The software analog of the mechanical behavior of the previous
section would be something like this:

2In engineering practice, safety factors are usually multiplicative
rather than additive, but using a real ‘factor’ in the definition of
limited variation raises irrelevant difficulties whenZ can take zero
values. Petroski’s excellent book [10] gives case studies in which
safety factors saved (or did not save) flawed designs. Addis [1] even
makes a case for safety factors saving designs whose theoretical
calculations are scientifically indefensible.

DEFINITION: Let a programp have specificationS. p is failure
continuousatx0 iff 9b > 0 such that:

p(x0) 6= S(x0) =) 8t; jx0 � tj < b (p(t) 6= S(t)):

That is, if the program fails to meet its specification at some input,
then it also fails in a neighborhood. The failure statement implies
that if such a program is correct at a point, it must also be correct
in a neighborhood of that point.

Intuitively, failure continuity means that it is possible to test a pro-
gram at particular points, and its success there guarantees that it
will also succeed at nearby points. A certification of the program
can be accomplished as for the mechanical system, by testing at
points whose neighborhoods cover the domain. If all of them suc-
ceed, there can be no failures.

In his seminal 1976 paper [8], Howden defined a property of sub-
domain testing methods that he called ‘reliable’3. In a ‘reliable’
testing method, one successful test in each subdomain proves that
the program is correct. Failure continuity is the same as Howden’s
idea, except that he thought of the program as computing an ar-
bitrary function and the testing method as defining the ‘reliable’
subdomains. The present viewpoint ascribes the property to the
program itself. The difficulty with both ideas in practice is that
in Howden’s formulation, there is no way to determine if subdo-
mains are ‘reliable;’ for failure continuity, there is no way to find
the failure-continuous neighborhoods.

Although the definition of failure continuity appears to be exactly
the property we are seeking for dependable software (just as How-
den’s ‘reliable’ seemed just what is needed in testing), the defini-
tion goes too far by capturing an essentially undecidable idea. An
example will make clear the difficulty. Suppose that a specification
requires the computation ofsin(x) with 1% accuracy over the in-
terval [0,2�), and that a program trying to meet this specification
computes the constant zero function. Both specification and pro-
gram are continuous and the program is within 1% of specification
on three intervals, roughly [0, .01], [3.13, 3.15], and [6.27,2�), but
the program is not failure continuous near the internal interval end
points. The difficulty with the definition, and perhaps with all of
computer programming, is that a specification is arbitrary, and no
effective property can capture whether or not a program meets it.

2.5 Intuitive Program Continuity
In the sequel we will speak of the ‘continuity’ of the function com-
puted by a program (or even of a ‘continuous program’) without
specifying the particular technical definition. This intuitive way of
speaking recognizes that the intuitive content of any definition in
the � � Æ form is that ‘jumps’ in functional value must be limited
to those within the digital granularity. In Rosenfeld’s definition,
the granularity is 1; in floating-point continuity it is the accuracy
required by the specification.

It is common practice in program analysis to treat variables of a
program like mathematical variables, and to write formulas using
them as if they described program behavior. This false viewpoint
is dangerous – the values are limited and of limited precision, so
assuming otherwise can lead to obvious mistakes. But at the same
time, treating program variables as mathematical gains a great sim-
plicity and access to powerful methods of analysis. What underlies

3The inverted commas are needed because Howden’s idea has
nothing to do with the usual statistical reliability.



the successful use of this abstraction is the approximation ideas dis-
cussed in Sections 2.1 and 2.2, justified by the following theorem:

THEOREM. If a program computes (in the sense of symbolic ex-
ecution) a mathematically continuous function when its vari-
ables are taken to be real-valued, then: (1) The program is
discretely continuous over a suitable interval, and (2) There
is a specification accuracy for which the program is floating-
point continuous.

Symbolic execution yields a formula for the functionf that the pro-
gram would compute if it used real values; iff is continuous, then
the program is technically continuous in the senses of Sections 2.1
and 2.2. The essential idea in proving the theorem is that the differ-
ence between values the program actually computes and values of
f can be controlled by restricting the interval or widening the spec-
ified accuracy. A given program may be incapable of computing a
particular specified function to an arbitrary accuracy, for all that it
is floating point continuous.

The converse of the theorem is false, since a program-computed
function may contain small jumps that destroy mathematical con-
tinuity but are within the limits of the technical definitions. For
example, a program using a partial sum of a convergent series may
compute an adequate approximation to the continuous function de-
fined by the series, yet its symbolic-execution formula can be for
an almost-everywhere discontinuous function.

3. DISCUSSION
It is a persistent mistake in program testing and analysis to con-
fuse properties of the specification with those of a program being
analyzed, and thereby compromise the analysis. A classic case is
a specification that requires the computation of a polynomial func-
tion. Knowing that for polynomial degreem such functions are
determined bym distinct points, a tester may believe thatm test
points are sufficient to prove correctness. The fallacy underlying
this belief is the implicit assumption that the program is somehow
constrained to follow the specification. But the program may not in
fact compute a polynomial of degreem, in which case the test has
no significance.

Testing and proving analysis methods might be profitably com-
bined to exploit properties of the specification. If a property of
programP can be established by proof methods (e.g., thatP does
compute anm-degree polynomial), then the correctness argument
can be completed by testing (e.g., that the polynomial is the one
specified, usingm test points.) Matthew Geller made a start on
such a method [6], but was unable to go beyond piecewise linear
functions and their computation by elementary program constructs.

In the present context, we wish to establish that a particular pro-
gramdoescompute a ‘continuous’ function, and then explore what
analysis opportunities this opens up.

3.1 Demonstrating Program ‘Continuity’
The source of discontinuity in imperative programs (i.e., those writ-
ten in a language like C) is conditional statements. In the simplest
case, a basic block of code computes a polynomial function of the
variables used in the block. When two such blocks are placed in the
THENandELSE arms of a conditional statement, the conditional
expression partitions the domain into two subdomains. When two
nearby points lie one in each subdomain, the values computed at
each need not be close to each other, since these values come from
the different blocks. A trivial example is the C fragment:

if (x > 2.71) z = 0;
else z = 1.414;

The computation in each block is a constant function, but the whole
program is discontinuous atx = 2.71.

To make a long story short, for imperative programs the input space
can be partitioned into path subdomains, on each of which the com-
putation is polynomial. That the path subdomains are somehow
fundamental to the structure of the program has long been believed
in both practical and theoretical testing work. The most stringent
certification tests (for example, those required by the FAA) are
based on paths; path testing has been studied from the beginning
of the discipline, by Howden [8] and by Richardson and Clarke
[11]. Dave Mason is currently working on a component-based test-
ing and proof theory based on path domains [9].

Thus any imperative program is piecewise continuous, the poten-
tial discontinuities being confined to the boundaries of its path do-
mains. A conventional boundary-coverage test, using all boundary
points and nearest points in the path subdomains, would detect all
discontinuities. In a typical numerical program, the specification
function is not discontinuous at these boundary points, so boundary
tests should be good at uncovering failures. Testing for continuity
across a boundary has the great practical advantage that it does not
require an oracle.

Unfortunately, there are a potential infinity of path subdomains
boundary points for any imperative program that contains looping
or recursive constructions. Hence it is not possible in practice to
mechanically test for continuity. Nor is symbolic execution a de-
cidable technique – again because of the existence of loops and
recursion. However, proving continuity analytically is not as diffi-
cult as symbolic execution itself, since the point is not to solve for
the function computed, but only to show that it does not have dis-
continuities of a given size. This might be accomplished by replac-
ing loops by bounded unrolling (and similarly limiting the depth of
recursion), then showing that the neglected tails cannot cause too
large a jump in values.

Another approach is to use a different program structure. If a pro-
gram is a (functional) composition of components then establishing
continuity of the latter is sufficient, because the notions of program
continuity are closed under composition. This suggests that func-
tional programming languages will be easier to analyze for conti-
nuity, and that component-based programs should confine iteration
and recursion to the components.

3.2 Analyzing ‘Continuous’ Programs
If a program’s specification is continuous, and it can be established
that the program is continuous, there remains the possibility that
the program is still incorrect because it is computing the wrong
continuous function.

In principle, the decomposition into path subdomains can be used
to show correctness, by a combination of testing and proving meth-
ods. On each path subdomain the program computes a polynomial,
and this can be compared with the specification function restricted
to that subdomain. If the restricted specification is also polynomial,
testing solves the equivalence problem. It is not necessary to obtain
the program’s polynomial explicitly, only to bound its degree to de-
termine the number of test points required. However, it is unlikely
that the specification is explicitly in polynomial form. The more
likely situation is that the program’s polynomial only approximates



the specified function, an approximation hoped to be sufficiently
accurate over the restricted subdomain.

There is a solution in principle to the problem of deciding whether
a polynomial adequately approximates a specification function, but
it may prove impractical. Any polynomial satisfies a uniform Lip-
schitz condition whose constant can be estimated from a bound on
the degree and test points. (That is, the constant can be determined,
given the program.) If the specification function also satisfies a
Lipschitz condition, then a test spacing� exists such that correct
(that is, sufficiently accurate) behavior on test points with this spac-
ing guarantees correctness between them. The impracticality arises
because� may be so small that the number of tests required is
prohibitive.

Operational (random) testing can be legitimately used on a continu-
ous program. If there is a Lipschitz condition, there is an alternative
to the operational distribution. Test points drawn from a uniform
distribution have a probability of falling inside Lipschitz neighbor-
hoods so that no calculated program value is very far away from one
of these test results. This can be used to define a probability that the
program is correct. This testing scheme is a kind of “random struc-
tural testing” in that the uniform distribution seeks to explore the
program structure as defined by its continuity and Lipschitz prop-
erties. There is no intrinsic reason why ‘random structural testing’
for a high probability of correctness must be subject to the imprac-
ticality limitations [5] of operational testing using the operational
distribution.

A final idea that deserves exploration for continuous programs is
run-time self-testing as suggested by Ammann [2] and Blum [3].
Self-testing requires some means of knowing for a collection of
randomly chosen variants of an input value, that agreement among
the results is very unlikely if they are incorrect. A preliminary ex-
ploration of this idea [7] was not very successful, but the ‘random
structural testing’ suggested in the previous paragraph might pro-
vide the means to do better.

3.3 Inherently Discontinuous Specifications
The attempt to bring a notion of continuity into software analysis is
of course only useful if (an approximation to) continuous behavior
is in fact what the software is required to have. This is the case
in many safety-critical applications, since ‘safety’ is often defined
as properly responding to real-world, physical phenomena, which
are themselves often continuous. For example, flight-control soft-
ware for aircraft and missiles includes many continuous aspects in
computing position and momentum and in applying forces to al-
ter them. Shutdown systems in nuclear power plants, and other
similar process-control systems, are also required to behave con-
tinuously, and it is a current dilemma of regulation agencies that
in these applications digital software systems are replacing older
analog systems. The old systems behaved continuously and were
certified by established procedures (as indicated in Section 2.3),
but the regulators do not know what to do for the software systems.
The techniques suggested in Sections 3.1 and 3.2 are appropriate to
these continuous applications.

However, many software applications are not specified in any con-
tinuous way, and are inherently discontinuous. Indeed, the reason
that software is so flexible and powerful, in comparison to mechan-
ical or electrical hardware, is precisely that inherently continuous
systems have a hard time acting in the discontinuous way that is re-
quired. Most string-input applications, for example compilers, are
not continuous. In a compiler, if the source-program input string

changes by a single character (which would be the ‘granularity’ of
a string, analogous to the least change
 in a floating-point quan-
tity), it often happens that a crucial output (SYNTAX ERRORvs.
COMPILE OK) changes abruptly.

For discontinuous specifications, a theory of software continuity is
no help in testing and analysis, except perhaps to provide clarity in
thinking about the discontinuous program: if it behaves badly, this
behavior cannot be blamed on the lack of continuity that is intrinsic
to the application.

4. CONCLUSIONS AND FUTURE WORK
It has been suggested that a combination of proving and testing
methods be based on software ‘continuity,’ a general property that
shares qualities with correctness yet is easier to analyze. While
we cannot hope in software to emulate fully the use that physi-
cal systems make of continuity in real-world phenomena, software
analogs can be defined and appear worthy of investigation.

In principle, the ‘continuity’ of a program can be determined by
testing on path boundaries. Software reliability theory should be
valid for ‘continuous’ programs, and continuity properties suggest
alternatives for random testing to establish probable correctness.

Just as it has seemed wise to separate safety features of systems
from their other functional features, so continuity analysis suggests
that computations that are intended to approximate continuous real
functions should be separated from those that are inherently dis-
continuous. Components and subsystems should have one kind of
function or the other, but not both.

5. REFERENCES
[1] William Addis. Structural Engineering, the nature of theory

and design. Ellis Horwood, 1990.
[2] P. Ammann and J. C. Knight. Data diversity: an approach to

software fault tolerance.IEEE Trans. on Computers, pages
418–425, 1988.

[3] M. Blum and S. Kannan. Designing programs that check
their work.JACM, pages 269–291, January 1995.

[4] Laurence Boxer. Digitally continuous functions.Pattern
Recognition Letters, pages 833–839, August 1994.

[5] R. W. Butler and G. B. Finelli. The infeasibility of
experimental quantification of life-critical software
reliability. IEEE Transactions on Software Engineering,
19(1):3–12, January 1993.

[6] Matthew Geller. Test data as an aid in proving program
correctness.Comm. of the ACM, 21:368–375, May 1978.

[7] Dick Hamlet. Predicting dependability by testing. In
Proceedings ISSTA ‘96, pages 84–91, San Diego, CA, 1996.

[8] W. E. Howden. Reliability of the path analysis testing
strategy.IEEE Trans. on Soft. Eng., 2:208–215, 1976.

[9] Dave Mason. University of Waterloo PhD thesis in progress.
[10] Henry Petroski.To Engineer is Human: The Role of Failure

in Successful Design. St. Martin’s Press, New York, 1985.
[11] D. J. Richardson and L. A. Clarke. Partition analysis: a

method combining testing and verification.IEEE
Transactions on Software Engineering, 11(12):1477–1490,
December 1985.

[12] Azriel Rosenfeld. ‘Continuous’ functions on digital pictures.
Pattern Recognition Letters, pages 177–184, July 1986.

[13] M. L. Shooman.Software Engineering Design, Reliability,
and Management. McGraw-Hill, New York, NY, 1983.


