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Abstract

Testing is potentially the best grounded part
of software engineering, since it deals with the
well defined situation of a fixed program and a
test (a finite collection of input values). How-
ever, the fundamental theory of program testing
isin disarray. Part of the reason is a confusion of
the goals of testing — what makes a test (or test-
ing method) "good." | argue that testing's pri-
mary goal should be to measure the dependability
of tested software. In support of this goal, a plau-
sible theory of dependability is needed to suggest
and prove results about what test methods should
be used, and under what circumstances.
Although the outlines of dependability theory are
not yet clear, it is possible to identify some of the
fundamental questions and problems that must be
attacked, and to suggest promising approaches
and research methods. Perhaps the hardest step
in this research is admitting that we do not
already have the answers.

1. Testing Theory — Testing Art

Glenford Myers' textbook is entitled The Art of
Software Testing [Myers], and it retains its popu-
larity 15 years after publication. Indeed, testing
is commonly viewed as an art, with the purpose
Myersassignsto it: executing software to expose

failures. Program testing occupies a unique niche
in the effort to make software development an
engineering discipline. Testing in engineering is
the corrective feedback that alows improvement
in design and construction methods to meet prac-
tical goals. Nowhere is the amorphous nature of
software amore evident difficulty: testing is hard
to do, and falls to meet engineering needs,
because software failures software defy easy
understanding and categorization. When a
software system fails, often we learn little except
that there were too many possible failure modes,
So one escaped analysis.

A number of new results and ideas about
testing, experimental and theoretical, are emerg-
ing today, along with a renewed interest in
software quality. There is reason to hope that an
adequate scientific basis can be supplied for the
testing art, and that it can become the part of
software engineering with the strongest founda-
tion. It isright to expect exact results, quantita-
tive and precise, in software testing. Each of the
other development phases involves essentialy
creative, subjective work. Better methods in
those other phases are aids and checks to human
effort. No one expects, for example, that a
specification could be proved to be "99.9%
correct,” since "correct" has an essentially sub-
jective meaning. But by the time we come to
testing, there is a completely formal product (the
program), and a precise measure of quality (it
should not fail). Testing theory can be held to a
high engineering standard.



1.1. Assessing Testing Methods

It is sobering to imagine advising a
developer of safety-critical software about how to
test it. While there are textbooks and research
papers describing many testing methods, there is
adearth of experiments on what works, and there
no convincing theory to explain why a method
should work, or under what circumstances it is
indicated. Imagine giving a presentation on test-
ing before the Federal Aviation Authority, and
that the FAA would write into regulations its
content. How safe would the speaker feel flying
on planes whose flight-control programs were
tested according to those regulations? | know
what | would tell the FAA today: get the smar-
test test people available, give them whatever
resources (particularly plenty of time) they need,
encourage them to use any test methods they find
useful; and then, everyone cross their fingers, and
fervently hope the software doesn’t fail. Thereis
nothing wrong with our "best practices' of test-
ing, and |1 would encourage the FAA to require
their study and even their use, but to suggest rely-
ing on today’ s testing methods is unconscionable.
This imaginary advice to the FAA recognizes
that software testing today is not engineering. Its
principles are not known, so they cannot be rou-
tinely learned and applied. Systematic effort and
careful record-keeping are important parts of
engineering, but they alone are only a facade.
The substance is supplied by the underlying sci-
ence that proves the methods work. In software
testing it is the science that islacking.

A good deal of the confusion in evaluating
testing methods arises from implicit disagree-
ments about what software testing is supposed to
do. Inthe literature, it is possible to identify four
epochs:

(1) Seeking failures by hard work. ([Myers],
1979.) Myers recognized that to uncover
failures requires a negative mindset. The
testing methods used to expose failure are
mostly based on test coverage. An
emphasis on systematic effort encourages
the naive belief (not claimed by Myers) that
when one has worked as hard as possible,
the result must be al right. By concentrat-
ing on the software quality "process,” the

current fad diverts attention from its techni-
cal basis, and confuses following procedures
with real success.

(2) Failure-detection probability. (Codification
of (1), mid 1980s [Duran & Ntafos] to the
present [Frankl & Weyuker].) Testing
methods were first compared only anecdo-
taly, or in circular terms. Today precise
statements about failure-finding probabili-
ties are expected in a comparison. An
RADC-commissioned study [Lauterbach &
Randall] illustrates the transition: it has a
histogram showing that "branch coverage"
got the highest coverage [branch!]; but it
also measured methods ability to expose
failures.

(3) Software reliability engineering. (Begin-
ning with the reliability theory developed at
TRW [Thayer+], and currently most popular
as models of debugging [Musat].) Nelson’'s
work at TRW attempted to apply standard
engineering reliability to software. Reliabil-
ity — the probability of correct behavior
under given operating conditions for a given
time period — is certainly an important pro-
perty of any artifact. However, the applica
tion to software is suspect. Today "reliabil-
ity" is usually associated with so-called
"reliability-growth models’ of the debug-
ging process, which have been criticized as
little more than curve fitting.

(4) Dependability theory. (Current research,
e.g., [Hamlet & Voas|.) Dave Parnas noted
the difference between reliability and what
he caled "trustworthy" software:
"trustworthiness" leaves out "given operat-
ing conditions" and "given time." Thusit is
most like a confidence estimate that
software is correct. | caled thisidea "prob-
able correctness' [Hamlet87]; here it is
caled "dependability." Paradoxically,
although it might seem harder to test
software for dependability than for reliabil-
ity, it may in fact be easier in practice.

These four ideas of the essence of software test-

ing are quite different, and lead to quite distinct

conclusions about what kind of testing is "good."

Two people, unconsciously holding the



viewpoints say (2) and (3) respectively, can
easily get into afruitless argument about testing.

Proponents of al four ideas lay claim to the
goa explicit in (4): everyone wants to believe
that software can be trusted for use because it has
been tested. Casting logic to the winds, some
proponents of the other viewpoints claim to real-
ize this goal. To give a current example, those
who today use defect-detection methods clam a
connection  between those methods and
confidence in the tested software, but the argu-
ment seems to be the following:

I’ve searched hard for defects in this pro-
gram, found a lot of them, and repaired
them. | can't find any more, so I'm
confident there aren’t any.

Consider the fishing analogy:

I’ve caught a lot of fish in this lake, but |
fished all day today without a bite, so there
aren’t any more.

Quantitatively, the fishing argument is much the
better one: a day’s fishing probes far more of a
large lake than a year’s testing does of the input
domain of even atrivia program.

The first step in testing theory is to be clear
about which viewpoint is being investigated.
Secondly, an underlying theory of dependability
(4) is fundamental. If we had a plausible depen-
dability theory, it might be possible to establish
(or refute) claims that test coverage (1) and (2)
actually establish dependability.

In this paper | try to identify the problems
central to atheory of testing for software depen-
dability, and suggest promising approaches to
their solution. Unfortunately, there are more
problems than promise. But the first step in
scientific inquiry is to pinpoint important ques-
tions and to establish that we do not know the
answers.

1.2. Questions Arising from Practice

Myers book describes many good (in the
sense (1) above!) testing ideas that arose from
practice. The essential ideas are ones of sys
tematic coverage, judging the quality of atest by
how well it explores the nooks and crannies of
program or specification. The ideas of functional

coverage, based on the specification, and control
coverage, based on the program’s control struc-
ture, are the most intuitively appealing. These
ideas have appeared in the technical literature for
more than 20 years, but their penetration in prac-
tice is surprisingly shallow. The idea of mutation
coverage [Hamlet77, DeMillo78] is not so well
regarded. But mutation, a technique of practical
origin with limited practical acceptance, has had
an important influence on testing theory.

The foundational question about coverage
testing is:. What is its significance for the quality
of the software tested?

Traditional practical testing in the form of
trial executions is today under strong attack by
advocates of two "up front" software technolo-
gies. Those who espouse formal development
methods believe that defect-free software can be
created, obviating the need for testing. The posi-
tion is controversia, but can only support the
need for basic testing theory. Formal-
development methods themselves must be vali-
dated, and a sound theory of dependability testing
would provide the means. A profound belief in
the inevitability of human error comes with the
software territory, so there will always be a need
for better development methods, and a need to
verify that those methods have been used prop-
erly in each case. The second attack on testing
comes from the competing technology of
software inspection. There is evidence to show
that inspection is a cost-effective aternative to
unit testing; the IBM FSC group responsible for
the space shuttle code has found that if inspection
technology is used to the fullest, unit testing sel-
dom uncovers any failures [Kolkhorst].

As a consequence of the success of inspec-
tions, the promise of formal methods, and a
renewed interest in reliability (the three are com-
bined in the "cleanroom” method [Cobb &
Millg]), it has been suggested that unit testing be
eliminated. Practical developers are profoundly
wary of giving up unit test.

Those who advocate coverage methods,
attention to formal development, system testing
in place of unit test, etc., argue for their positions
on essentially non-scientific grounds: "do this
because it is obviously agood idea." A scientific



argument would require that "good" be defined
and convincing arguments be presented as to why
goodness results. Even if there is agreement that
"good" means contributing to dependability, the
arguments cannot be given in the absence of an
accepted dependability theory. There is agree-
ment on the intuitive meaning of dependable
software: it does not fail in unexpected or catas-
trophic ways. But no one suggests that it will
soon be possible to conduct convincing real-
world controlled experiments. Even case studies
are too expensive, require years worth of hard-
to-get field data, and could be commercially
damaging to the company that releases real
failure data. It appears that theory is the only
available approach; but we have no accepted
theory.

1.3. Foundational Theory to be Expected

The missing theory of testing is a "success'
theory. What does it mean when a test succeeds
(no failures occur)? It is hard to escape the intui-
tion that such a theory must be probabilistic and
fault-based. A success theory must treat the test
as a sample, and must be of limited significance.
The fault-based view arose from mutation
[Morell & Hamlet] and from hardware testing
[Foster]. Joe Duran has long been an advocate of
the probabilistic viewpoint [Duran & Wior-
kowski, Duran & Ntafos, Tsoukalast].

In brief, a foundational theory of testing for
software dependability will make precise the idea
of sampling and not finding program failures.
New ways of testing may be needed to realize
dependability. But amajor benefit to be expected
is a precise analysis of existing testing methods,
and believable answers to the questions about
their significance. A good theory would also pro-
vide direction for experiment. It is probably
impractical to measure dependability directly
[Butler & Finelli], but a theory can be supported
or disproved by deducing from it less than ulti-
mate results, which can be checked.

In Section 2 to follow, some promising
work is examined to show the pattern of an
emerging body of analysis methods and results.
Section 3 examines the validity of the statistical
approach on which these results depend, and

concludes that a better foundation is needed.
Section 4 explores preliminary definitions of
dependability.

2. Examples of Emerging Testing Theory

The driving force behind the emerging testing
theory is probabilistic analysis. By accepting that
the qualities of tests cannot be absolute, the way
is opened for quantifying properties of testing.

2.1. Improving the‘Subsumes Relation

As an example of changing research direc-
tions, consider analysis of the data-flow coverage
methods. The initial work [Rapps & Weyuker]
defined a hierarchy of methods (now usually
caled the subsumes hierarchy) such that if
method Z subsumes method X, then it isimpossi-
ble to devise a method-Z test that is not also a
method-X test. The widespread interpretation of
"Z subsumes X" is that method Z is superior to
method X. (The most-used example is that
branch testing is superior to statement testing,
because branch coverage strictly subsumes state-
ment coverage.) However, | suggested [Ham-
let89] that subsumption could be misleading in
the real sense that natural (say) branch tests fail
to detect a failure that (different) natural state-
ment tests find. A continued exploration
[Weyuker+] showed that the algebraic relation-
ship could be refined so that it was less likely to
be misleading, and that it could be precisely stu-
died by introducing a probability that each
method would detect a failure. In arecent paper
[Frankl & Weyuker], the subsumes relationship is
refined to a relationship called "properly covers,”
and a probabilistic argument shows that "properly
covers' cannot be mideading. The all-uses
dataflow criterion, for example, properly covers
branch testing. This analysis is the first com-
parison of methods on theoreticaly defensible
grounds. It must be noted that the results apply
to failure-detection, not to reliability or dependa-
bility.

2.2. ‘Partition’ Testing vs. Random Testing

Practical coverage testing could be called
"partition testing," because its methods divide the
input domain into subdomains, which constitute a
partition in the two important cases of



specification-based blackbox testing, and path-
coverage structural testing. In the early 1980s,
Duran and Ntafos conducted a seminal study con-
trasting partition testing with random testing
[Duran & Ntafos]. Their study was presented as
a brief for random testing, but its effect has been
to illuminate basic questions of testing theory.

Duran and Ntafos considered two statistical
measures of test quality, the probability that some
failure(s) will be detected, and the expected value
of the number of failures discovered. (The two
measures gave similar results; only the former
has been investigated subsequently.) Today the
statistical treatment, and a goal clearly related to
quality, seem merely appropriate; at the time the
paper was presented, these were both novelties.
The calculations required a detailed model for
partition testing, and some simulation to realize
the comparison. Despite the authors' care to give
partition testing the advantage when assumptions
were needed to make the comparison mathemati-
cally tractable, the results showed little difference
between partition and random testing.

Subsequent work extended the comparison
to study why partition testing failed to show a
superiority that is commonly perceived. The
model of partition testing was varied in one study
[Hamlet & Taylor]; another [Jeng & Weyuker]
used only analytical methods in a simplified set-
ting. The two studies agreed that the failure-
detection performance of partition testing
depends on the variability of failure probability
across the subdomains of the partition. If some
subdomains are not known to be more failure-
prone, then partitioning the input space will be of
little advantage.

The combined analytical and simulation
techniques pioneered by Duran and Ntafos are
easier to use than either pure analysis, or pure
experimentation. But they have not yet been
exploited to examine questions of reliability or
dependability.

3. Software Failure Intensity and Reliability

The results described in Section 2 rely on the
conventional theory of reliability. Random test-
ing [Hamlet94] supplies the connection between
software quality and testing, because tests sample

the behavior that will be observed in practice.
However, the viewpoint that tests are stetistical
samples is controversial. The theory of software
reliability, developed at TRW in the 1970s
[Thayer+] remains a subject of dispute. This sec-
tion investigates the question of whether this
theory, or any dstatistical theory, can plausibly
describe software failures.

3.1. Analogy to Physical Systems

Distrust of statistical ideas for software
hinges on the non-random nature of software
design flaws. The software failure process is
utterly unlike random physical phenomena (such
as wear, fabrication fluctuations, etc.) that make
statistical treatment of physical systems plausi-
ble. All software failures are the result of
discrete, explicit (if unintentional) design flaws.
If a program is executed on inputs where it is
incorrect, failure invariably occurs; on inputs
where it is correct, failure never occurs. This
situation is poorly described as probabilistic.
Suppose that the program fails on a fraction © of
its possible inputs. It is true that © is a measure
of the program’s quality, but not necessarily a
statistical one that can be estimated or predicted.
The  conventional statistical parameter
corresponding to © is the instantaneous hazard
rate or faillure intensity z, measured in
failures/sec. For physical systems that fail over
time, z itself is a function of time. For example,
it is common to take z(t) as the "bathtub curve"
shown in Figure 3.1-1.

hazard ‘ ‘
rate : :

z(t) |wearin wear out

0

0 time t

Figure 3.1-1. ‘Bathtub’ hazard rate

When a physical system is new, it is more likely
to fall because of fabrication flaws. Then it
"wears in" and the failure intensity drops and
remains nearly constant. Finally, near the end of
its useful life, wear and tear makes the system



increasingly likely to fail.

3.2. Abstraction to the Simplest Situation

What is the corresponding situation for
software? Is there a sensible idea of a software
fallure intensity? There are several complica-
tions that interfere with understanding. Because
this paper is concerned with fundamentals, it
attempts to ssimplify the situation as much as pos-
sible, to abstract away from extraneous issues,
without losing the essential character of the prob-
lem.

The first issue is time dependence of the
failure intensity. A physical-system hazard rate
is afunction of time because the physical system
changes. Software changes only if it is changed.
Hence a time-dependent failure intensity is
appropriate for describing the development pro-
cess, or maintenance activities. (The question of
changing usage is considered in Section 3.3
below.) Only the simplest case, of an unchang-
ing, "released" program is considered here. Thus
we are not concerned with "reliability growth"
during the debugging period [Musa+].

Some programs are in continuous operation,
and their failure data is naturally presented as an
event sequence. From recorded failure times t 4,
to, ..., ty, Starting at O, it is possible to calculate
the mean time to falure (MTTF):

(t, + _”iai +1-ty)/n, which is the primary statisti-
i=

cal quality parameter for such programs. But
MTTF is of questionable statistical meaning for
the same reasons that failure intensity is. Itisa
(usually unexamined) assumption of statistical
theories for continuously operating programs that
the inputs which drive the program’s execution
are "representative" of its use. The inputs sup-
plied and their representativeness are fundamen-
tal to the theory; the behavior in time is peculiar
to continuously operating programs. Exactly the
same underlying questions arise for a "batch"
program in which a single input instigates a "run"
that either succeeds or fails, entirely independent
of al other runs.

In summary, we take for anaysis an
unchanging, memoryless batch program, each of
whose runs is instigated by a single input. The

quality parameter corresponding to MTTF might
now be called "mean runs to failure” (MRTF),
and the instantaneous nature of the failure inten-
Sity is "per run." A great dea of complication
has been eliminated, but the statisticaly ques-
tionable parameters remain.

3.3. Is Software Failure Intensity Meaning-
ful?

If a statistical view of software failures is
appropriate, failure intensity (or MRTF) can be
measured for a program in an idealized experi-
ment. Inputs are supplied, and the failure inten-
sity is the long-term average of the ratio of failed
runs to total runs. The experiment immediately
raises the fundamental question of input distribu-
tion. If an exhaustive test can be performed, then
it is possible to measure the failure intensity
exactly. But whether or not failure intensity can
be estimated with less than exhaustive testing
depends on how the test inputs are selected. It is
certainly possible to imagine selecting them to
inadvertently emphasize incorrect executions,
and thus to estimate failure intensity that is
falsely high. The more dangerous possibility is
that failures will be unfairly avoided, and the
estimate will be too optimistic. When a release
test exposes no failures, a falure-intensity esti-
mate of zero is the only one possible. If subse-
quent field failures show the estimate to be
wrong, it demonstrates precisely the anti-
statistical point of view. A more subtle criticism
guestions whether MRTF is stable—is it possible
to perform repeated experiments in which the
measured values of MRTF obey the law of large
numbers?

A partia response to problems in sampling
inputs to estimate MRTF is to postul ate an opera-
tional profile, a probability density function on
the input space describing the likelihood that
each input will be invoked when the software is
actually used. If tests are drawn according to the
operational profile, a MRTF can be estimated,
can be evaluated for stability, and should apply to
actual use. In practice there are a myriad of
difficulties with the operationa profile. Usage
information may be expensive to obtain, or sm-
ply not available; different organizations (and
different individuals within one organization)



may have quite different profiles; and, testing
with the wrong profile aways gives overly
optimistic results (because when no failures are
seen, it cannot be because failures have been
overemphasized!).

The concept of an operational profile does
successfully explain changes observed over time
in a program’'s (supposedly constant) failure
intensity. It is common to experience a bathtub
curve like Figure 3.1-1. When a program is new
to its users, they subject it to unorthodox inputs,
following what might be caled the "novice"
operational profile, and experience a certain
failure intensity. But asthey learn to use the pro-
gram, and what inputs to avoid, they gradually
shift to the "norma" user profile, where the
faillure intensity is lower, because this profile is
closer to what the program’s developer expected
and tested. This transition corresponds to the
"wear in" period in Figure 3.1-1. Then, as the
users become "expert,” they again subject the
program to unusual inputs, trying to stretch its
capabilities to solve unexpected problems. Again
the failure intensity rises, corresponding to the
"wear out" part of the Figure.

Postulating an operational profile aso
allows us to derive Nelson's software-reliability
theory [Thayer+], which is quantitative, but less
successful than the qualitative explanation of the
bathtub curve. Suppose that there is a meaning-
ful constant failure intensity © (in failures/run)
for a program, and hence a MRTF of 1/O runs.
We wish to draw N random tests according to the
operational profile, to establish an upper
confidence bound a that © is below some level 6.
These quantities are related by

1_]20(1}1) Bi(1-0)N7iza  (33.1)

if the N tests uncover F failures. For the impor-
tant special case F=0, 1-a is plotted in Figure
4.2-1 below.

Equation 3.3.1 completely solves the funda-
mental testing problem, because it predicts
software behavior based on testing, even in the
practical release-testing case that no failures are
observed. The only question is whether or not
the theory’s assumptions are valid for software.
What is most striking about equation 3.3.1 is that

it does not depend on any characteristics of the
program being tested. Intuitively, we would
expect the confidence bound in a given failure
intensity to be lower for more complex software.

To the best of my knowledge, no experi-
ments have ever been published to support or
disprove the conventional theory. It is hard to
believe that convincing direct experiments will
ever be conducted. A careful case study would
take years to collect the field data needed to
establish the actual failure intensity of areal pro-
gram, and would be subject to the criticism that
the program is somehow not representative.
However, the following could be tried:

Suppose that Fg # 0 failures of a program
are observed in Ng runs. Then F/Ngisan
estimate of its failure intensity. The experi-
ment may be repeated with additional runs
of the same program, to see if a stable esti-
mate © of the failure intensity is obtained
from many trials. Then a in equation 3.3.1
should estimate the fraction of experiments
in which the observed failure intensity
exceeds O, for that is the meaning of the
upper confidence bound.

| do not believe the conventiona theory would
survive such experiments.

3.4. Thought Experimentswith Partitions

The flaw in conventional reliability theory
lies with the assumption that there is a sensible
failure intensity defined through the input space.
It is illuminating to consider subdividing the
input domain, and applying the same conven-
tional theory to its parts.

Suppose a partition of the input space
creates k subdomains S; S, - - - ,&, and the pro-
bability of failure in subdomain § (the sub-
domain failure intensity) is constant at ©;. Ima
gine an operationa profile D such that points
selected according to D fall into subdomain §
with probability p;. Then the failure intensity ©

under D is
o :igpi 9.

However, for a different profile D', different p;’
may well lead to a different ®'=_ipi '©,. For all
1=

(3.4.1)



profiles, the failure intensity cannot exceed

Omax = 1T.a<)|i {©;}, because at worst a profile can

emphasize the worst subdomain to the exclusion
of al others. By partition testing without failure,
a bound can be established on ©4, and hence
on the overal failure intensity for al distribu-
tions. (This analysis is a much-simplified
approximation to an accurate calculation of the
upper confidence bound for the partition case
[Tsoukalast+].) Thus in one sense partition test-
ing multiplies the reliability-testing problem by
the number of subdomains. Instead of having to
bound © using N tests from an operational
profile, we must bound ©p,5 using N tests from a
uniform distribution over the worst subdomain;
but, since we don't know which subdomain is
worst, we must bound all k of the ©;, which
requires kN tests. However, the payback is a
profile-independent result. That is, a reliability
estimate based on partition testing applies to all
profiles.

The obvious flaw in the above argument is
that the chosen partion is unconstrained. All that
is required is that its subdomains each have a
constant failure intensity. (This requirement is a
generalization of the idea of "homogeneous" sub-
domains, ones in which al inputs either fail; or,
all the inputs there succeed.) But are there parti-
tions with such subdomains? It seems intuitively
clear that functional testing and path testing do
not have subdomains with constant failure rates.
(Again, experiments are lacking, but here they
should be relatively easy to conduct.) Of course,
the failure intensity of a singleton subdomain is
either O or 1 depending on whether its point fails
or succeeds, but these ultimate subdomains
correspond to exhaustive testing, and are no help
in astatistical theory.

3.5. Where Does Failure Intensity Belong?

Results in Section 2, and those in Section 4
below, depend on the existence of a statistically
meaningful failure-intensity parameter. So afirst
problem to be attacked in a dependability theory
is to find a better space for this parameter than
the program input domain. | have argued [Ham-
let92] that the appropriate sample space is the
computation space. A failure occurs when a

design flaw comes in contact with an unexpected
system state, and such "error" states are reason-
able to imagine as uniformly distributed over all
possible computational states. (The much
misused "error” is in fact |IEEE standard termi-
nology for an incorrect interna state)) Rough
corroboration for this view comes from measure-
ment of software "defects/line-of-code,” which is
routinely taken as a quality measure, and which
does not vary widely over a wide range of pro-
grams.

4. Dependability Theory

"Dependability” must be defined as a probability,
in away similar to the definition of reliability. If
a state-space-based failure parameter such as sug-
gested in Section 3.5 can be defined, it would do.
However, other possibilities exist.

4.1. Reliability-based Dependability

Attempts to use the Nelson TRW (input-
domain) reliability to define dependability must
find a way to handle the different reliability
values that result from assuming different opera-
tional profiles, since dependability intuitively
should not change with different users. It is the
essence of dependability that the operating condi-
tions cannot be controlled. Two ideas must be
rejected:

(U) Define dependability as the Nelson reliabil-
ity, but using a uniform distribution for the
profile. This suggestion founders because
some users with profiles that emphasize the
failure regions of a program will experience
lower reliability than the defined dependa
bility. Thisisintuitively unacceptable.

(W) Define dependability as the Nelson reliabil-
ity, but in the worst (functional) subdomain
of each user's profile. This suggestion
solves the difficulty with definition U, but
reintroduces a dependency on a particular
profile. In light of the dubious existence of
constant failure intensities in subdomains
(Section 3.4), the idea may not be well
defined.

Other suggestions use reliability only inciden-
tally, introducing essentially new ideas.



4.2. Testing for Probable Correctness

Dijkstra’s famous aphorism that testing can
establish only the incorrectness of software has
never been very palatable to practical software
developers, who believe in their hearts that exten-
sive tests prove something about software quality.
"Probable correctness' is a name for that illusive
"something." However, the TRW reliability
theory (Section 3.3) provides only half of what is
needed. Statistical testing supports statements
like "in 95% of usage scenarios the software
should fail less than 1% of the time." These
statements clearly involve software quality, but it
is not very plausible to equate the upper
confidence bound and the chance of success, and
turn "99.9% confidence in failure intensity less
than .1%" into "probable correctness of 99.9%"
[Hamlet87].

Jeff VVoas has proposed [Voas & Miller] that
reliability be combined with testability analysis
to do better. Testability is a lower bound proba-
bility of failure if software contains faults, based
on a model of the process by which faults
become failures. In Voas's model, testability is
estimated by executing a program and measuring
the frequency with which each possible fault
location is executed, the likelihood that a fault
would corrupt the internal state there, and the
likelihood that a corrupt state would not be later
corrected. The combination of these factors
identifies locations of low testability, places in
the program where a fault could easily hide from
testing. The program’s testability is taken to be
the minimum value over all its locations. A tes-
tability near 1 thus indicates a program that
"wears its faults on its sleeve” if it can fall, it is
very likely to fail under test.

If testability estimates are made using an
operational profile as the source of executions,
and conventional random testing uses the same
profile, a "squeeze play" is possible. Successful
random testing demonstrates that failure is
unlikely, but testability analysis shows that if
there are any faults failures would be seen. The
only conclusion is that faults are unlikely to exist.
The sgueeze play can be made quantitative
[Hamlet & Voas] as shown in Figure 4.2-1. In
Figure 4.2-1, the falling curve is the confidence

Pr[not correct [
failure less likely than X ]

Pr[failure more
likely than X]

chance of failure X

Figure 4.2-1. ‘Squeeze play’

from reliability testing from Equation 3.3-1; the
step function comes from observing a testability
h. Together the curves make it unlikely that the
chance of failure is large (testing), or that it is
small (testability). The only other possibility is
that the software is correct, for which 1-d is
approximately the upper confidence bound,
where d is the value of the falling curve a h in
the figure. Confidence that the software is
correct can be made close to 1 by forcing h to the
right in Figure 4.2-1.

Manuel Blum has proposed [Blum & Kan-
nan] a quite different idea as an adjunct to relia-
bility. He argues that many users of software are
interested in a particular execution of a particular
program only — they want assurance that a sin-
gle result can be trusted. Blum has found a way
to sometimes exploit the low failure intensity of a
"quality” program to gain this assurance. (Con-
ventional reliability would presumably be used to
estimate the program quality, but Blum has
merely postulated that failure is unlikely.)
Roughly, hisideais that a program can check its
output by performing redundant computations.
Even if these make use of the same algorithm, if
the program is "close to correct,” it is very
unlikely that a sequence of checks could agree
yet all be wrong.

4.3. Defining Dependability

Either Voas's or Blum’'s idea could serve as
a definition for dependability, since both capture
a probabilistic confidence in the correctness of a
program, a confidence based on sampling.



Dependability might be defined as the
confidence in correctness given by Voas's
squeeze play. Even if conventiona reliability is
used for the testing part of the squeeze play, the
dependability so defined dependsin an intuitively
correct way on program size and complexity,
because even Voas' s simple model of testability
introduces these factors. His model also intro-
duces an implicit dependence on the size of both
input and internal state spaces, but this part of the
model has not yet been explored.

Dependability might also be defined for a
Blum self-checking program as the complement
of the probability that checks agree, but their
common value iswrong. This dependability may
be different for different inputs, and must be
taken to be zero when the checks do not agree.
Thus a definition based on Blum's idea must
alow software to announce its own
untrustworthiness (for some inputs).

The promise of both Voas's and Blum’'s
ideas is that they extend reliability to dependabil-
ity and at the same time substantially reduce the
testing cost. Instead of requiring “ultra
reliability" (roughly below 1078 failures/run) that
cannot be estimated in practice [Butler &
Finelli], their ideas add a modest cost to reliabil-
ity estimates of about 10~4 failures/run, estimates
that can be made today. Blum’s idea accrues the
extra cost at runtime, for each result computed,;
Voas's idea is more like conventional testing in
that it samples the whole input space, before
release.

5. Conclusions

It has been argued that a foundational "dependa-
bility" theory of software testing must be statisti-
cal in nature. The heart of such a theory is pro-
gram reliability derived from a constant failure
intensity, but defining failure intensity over the
input space is inappropriate. A more plausible
reliability theory is needed, and the nearly con-
stant defects/line-of-code data suggests that the
failure intensity should be defined on the pro-
gram state space. Dependability can then be
defined using new ideas such a Voas's squeeze
play, or Blum’'s pointwise correctness probabil-

ity.

Although we do not yet have a plausible
dependability theory, it is possible to imagine
what the theory can establish. My vision is
something like the following:

Dependable software will be developed
using more front-end loaded methods than
are now common. Testing to find failures
will play a minor role in the development
process. The resulting software will be
tested for dependability by a combination of
conventional random testing, and new
methods that probe the state space. Random
testing will establish reliability better than
about 104 failures/run. The new methods
will provide (quantitative!) high confidence
in correctness, so that in use the software
will fail less often than once in 107 to 109
runs.

The cost of testing in my vision may not be less
than at present, but neigher will such testing be
intractable. The significance of passing the tests,
however, will be far greater than at present.
Instead of using release testing to find failures, as
we do now, dependability tests that succeed will
quantitatively predict a low probability that
software will fail in use. Software that is badly
developed will not pass these tests, and responsi-
ble developers will not release it.
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