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1 Introduction | Need for \Software Dependability"Software quality is much discussed in the 1990s, often in the context of improving the process bywhich software is developed. It is certainly true that this process is often chaotic and the resultingsoftware of uncertain quality. Attention to codifying and monitoring development is in order.However, without a precise de�nition of software quality, process improvement will only eliminatethe worst examples, and cannot support real engineering goals. What software engineers need isa way to directly assess software itself, to determine if it is \good enough" to ful�ll its intendedpurpose.1.1 Process vs. ProductA laudable interest in the software development process per se has the unfortunate side e�ect ofdownplaying its technical details. Attention shifts to the process itself, where the technical con-nection between what is done and what is produced may be lost. Organization and systematic,monitored procedures are a part of successful engineering, but the essence of engineering is appli-cation of scienti�c knowledge. All the organization in the world will not save a process based onan erroneous understanding of reality.The only real measure of quality software is a \product" measure. It is the software that counts,not its pedigree. Of course, attention to the process can be helpful in producing a good product,but only if there are solid, demonstrable connections between what is done and what results fromdoing it. To carry out procedures for their own sake | for example, because they can be easilymonitored and adjusted | is to mistake form for substance.The substance of software is embodied in testing of programs just before they are released.Such tests make no assumptions about the process, but directly measure its result. Release testingassesses not only a particular piece of software, but is also needed to validate methods used in itsdevelopment. Theoretical arguments for adopting a particular process should demonstrate that ifthat process is used, release tests will be more likely to succeed; and, empirical validation of theprocess should show that indeed they do succeed.1.2 What Quality Measure is Needed?The fundamental measure of quality is proper operation of a software product. Quality softwaredoes not fail. Failure can take the form of a \crash" after which the software cannot be used withoutsome kind of drastic restart (and often a loss of information or invested time); failure can be wronganswers delivered with all the trappings of computer authority (and thus the more dangerous); andfailure can be in the performance dimension | the software is too slow to be useful.2



In this paper we identify software quality with the absence of failure. However, we want anengineering measure, not the binary ideal of \correct"/\not correct." Whether or not one believesthat it is possible to create \zero-defect" software, to demonstrate correctness is impractical. Proofmethods might do so in principle, but they have failed in practice. Part of the reason is that theoremprovers are too ine�cient and too hard to use; a deeper reason is that the formal speci�cationsrequired for veri�cation are at least as di�cult to create, and as error-prone, as programs. Thealternative to formal veri�cation is testing, but tests are only samples of software's behavior, andthe best we can hope for is that they establish some kind of statistical con�dence in quality.There is no standard term for good software in the sense of \unlikely to fail." \Reliable" has arelated but di�erent technical meaning in engineering (see Section 2.3). Parnas has used the term\trustworthy" [PvSK90], but he includes the severity of failure: Parnas's trustworthy software isunlikely to have catastrophic failures. However, catastrophe is easiest to recognize after the fact.Here we will be concerned with prediction of unspeci�ed future events, whose severity is unknown.We will use the technical term \dependable" for the intuitive idea \unlikely to fail."1.3 Character of \Dependability"The quality measure we hope to de�ne is essentially a con�dence in perfection. Some desirablecharacteristics are:Statistical. For engineering tradeo�s, a quantitative dependability measure must be probabilistic.The statistical character of dependability is not that a program is (say) \95% correct," butrather that assessment of the program gives (say) \95% con�dence in its correctness." Thedi�erence is in the event space: it is not the input space of the program (or a time-sequenceof inputs), but rather the measurement space.Usage independent. It is a commonplace that dependability changes with software usage. Inone application, a program works perfectly, while in another it fails. But the variety of usage,and the di�culty of quantifying and comparing its conditions, dictate that dependability beassessed without recourse to any knowledge of software's eventual use. This requirement isparticularly important in dealing with re-usable or o�-the-shelf software, whose future usageis unknown.No use of hindsight. After software has failed, analysis that was impossible before the failurebecomes obvious. For example, failures may be rated by severity, say as \catastrophic" ornot. But when all failures lie in the future, these judgements are more di�cult to make.Dependability must not involve factors that only Monday-morning quarterbacks can see.3



Measured by successful testing. The �nal pre-release testing of software ought to include noth-ing but successful tests. When there is a failure, development can continue with debuggingand retesting. Hence dependability measurement has to be based on a successful test beforerelease.The theory of testing for software reliability quali�es as a statistical theory. (A detailed expo-sition is given in Section 2.3 below.) But reliability theory is built around the idea of samplingfrom a user pro�le. Furthermore, reliability also involves a period of operation, which is suspect forsoftware. No matter how small the wear and tear, all physical systems eventually fail; that is, theirlong-term reliability is zero. But software need not fail, if its designers' mistakes can be controlled.Reliability testing supports statements like: \The probability that this program can fail in normalusage is less than .001, with a con�dence bound of 95%." In contrast, we want the statement: \Thedependability of this program is .999" to mean that a test sample establishes 99.9% con�dence thatthe program cannot fail.2 Previous WorkBecause our results rely on three less well known (two of them recent) developments in testingtheory, these are brie
y presented (along with basic terminology) in this section. Those unfamiliarwith these developments may �nd the exposition helpful. None of this material is new; the readerfamiliar with it should skip to the summary (Section 2.5) and the new results in the followingSection 3.2.1 Testing Background and TerminologyTerminologyA test is a single value of program input, which enables a single execution of the program. A testsetis a �nite collection of tests. These de�nitions implicitly assume a simple programming context,which is not very realistic, but which simpli�es the discussion. This context is that of a \batch"program with a pure-function semantics: the program is given a single input, it computes a singleresult and terminates. The result on another input in no way depends on prior calculations.In reality, programs may have complex input tuples, and produce similar outputs. But we canimagine coding each of these into a single value, so that the simpli�cation is not a transgressionin principle. Interactive programs that accept input a bit at a time and respond to each bit,programs that read and write permanent data, and real-time programs, do not �t this simplemodel. However, it is possible to treat these more complex programs as if they used testsets, at the4



cost of some arti�ciality. For example, an interactive program can be thought of as having testsetswhose members (single tests) are sequences of inputs.Each program has a speci�cation that is an input-output relation. That is, the speci�cation S isa set of ordered input-output pairs describing allowed behavior. A program P meets its speci�cationfor input x i�: if x 2 dom(S) then on input x, P produces output y such that (x; y) 2 S. A programmeets its speci�cation (everywhere) i� it meets it on all inputs. Note that where x 62 dom(S), thatis, when an input does not occur as any �rst element in the speci�cation, the program may doanything it likes, including fail to terminate, yet still meet the speci�cation. Thus S de�nes theinput domain as well as behavior on that domain.A program P with speci�cation S fails on input x i� P does not meet S at x. A program fails,if it fails on any input. When a program fails, the situation, and loosely the input responsible, iscalled a failure. The opposite of fails is succeeds; the opposite of a failure is a success.Programmers and testers are much concerned with \bugs" (or \defects," or \errors"). Theidea of \bug" in unlike the precise technical notion of \failure" because a bug intuitively is apiece of erroneous program code, while a failure is an unwanted execution result. The technicalterm for \bug" etc., is fault, intuitively the textual program element that is responsible for one ormore failures. However appealing and necessary this intuitive idea may be, it has proved extremelydi�cult to de�ne precisely. The di�culty is that faults have no unique characterization. In practice,software fails for some testset, and is changed so that it succeeds on that testset. The assumptionis made that the change does not introduce any new failures (an assumption false in general). The\fault" is then de�ned by the \�x," and is characterized, e.g., \wrong expression in an assignment"by what was changed. But the change is by no means unique. Literally an in�nity of other changeswould have produced the same e�ect. So \the fault" is not a precise idea. Nevertheless, theterminology is useful and solidly entrenched.The Oracle ProblemEvidently the most important aspect of any testing situation is the determination of success orfailure. But in practice, the process is error-prone. If a program fails to complete its calculationin an obvious way (for example, it is aborted with a message from the run-time system), then itwill likely be seen to have failed. But for elaborate output displays, speci�ed only by an imprecisedescription in natural language (a very common real situation), a human being may well fail tonotice a subtle failure. In one study, 40% of the test failures went unnoticed [BS87].An oracle for speci�cation S is a binary predicate J such that J(x; y) holds i�: either x 62 dom(S)or (x; y) 2 S. (That is, J is a natural extension of the characteristic function of S.) If there is an5



algorithm for computing J then the oracle is called e�ective. Thus, given a program and a test,an e�ective oracle can be used to decide mechanically if the program meets its speci�cation at thispoint.Testing theory, being concerned with the choice of tests and testing methods, usually ignoresthe oracle problem. It is typically assumed that an oracle exists, and the theoretician then gliblytalks about success and failure, while in practice there is no oracle but imperfect human judgement.Although it would not seem that the dependability theory we are seeking should bear on theoracle problem, it does, because con�dence in a computed result may make an oracle unnecessary.This point is further discussed in Section 4.4.2.2 Blum's Idea of Self-checking ProgramsManuel Blum has proposed [BK89, BW94] an idea that is almost exactly what we want to meanby \dependability." He argues that software users are interested in a particular execution of aparticular program only | they want assurance that a single result can be trusted. Blum hasfound a way to sometimes exploit the low failure intensity of a \quality" program to gain thisassurance. Roughly, his idea is that a program should check its output by performing redundantcomputations. Even if these make use of the same algorithm, if the program is \close to correct,"it is very unlikely that a sequence of checks could agree yet all be wrong.There is one serious drawback to self-checking at run time: if in fact a program discovers aninconsistency in the checks, it has experimentally determined that the assumption of \close tocorrect" does not hold. Then instead of reporting that the result is likely to be correct, it can onlyreport: \Don't trust this!"Self-checking represents a viewpoint quite di�erent from the usual testing, because it is a point-wise view of quality. Testing attempts to predict future behavior of a program uniformly, that is, forall possible inputs; Blum is satis�ed to make the prediction one point at a time (hence to be useful,the calculation must be made at run time, when the point of interest is known). All of testing'sproblems with user pro�le, test-point independence, etc., arise from the uniform viewpoint, andBlum solves them at a stroke. Testing to uniformly predict behavior su�ers from the di�culty thatfor a high-quality program, failures are \needles in a haystack" | very unlikely, hence di�cult toassess. Only impractically large samples have signi�cance. Blum turns this problem to advantage:since failures are unlikely, for one input the calculation can be checked using the same program.The results will probably agree unless they are wrong | a wrong result is nearly impossible toreplicate.Blum's pointwise notion of correctness probability, and its measurement by self-checking at run6



time, will be our de�nition of dependability (Section 3).2.3 Nelson Theory of Software ReliabilityReliability is the fundamental statistical measure of engineering quality, expressing the probabilitythat an artifact will fail in its operating environment, within a given period of operation.2.3.1 Random TestingIn random testing, a testset is an unbiased sample taken from a program's input space. To generateinputs \at random," pseudorandom number generation algorithms have long been used [Knu81].Pseudorandom numbers from a uniform distribution can be used as test inputs if a program's rangeof input values is known. This range is ultimately �xed by hardware limitations such as word size,but it is better if the speci�cation restricts the input domain. For example, a mathematical libraryroutine might have adequate accuracy only for a certain range given in its speci�cation. A uniformdistribution, however, may not be appropriate.2.3.2 Operational Pro�lesStatistical predictions from sampling have no validity unless the sample is \representative," whichfor software means that the testset must be drawn in the same way that future invocations willoccur. An input probability density d(x) is needed, expressing the probability that input x willactually occur in use. Given continuous density function d, the operational distribution F (x) is thecumulative probability that an input will occur in actual use:F (x) = Z x�1 d(z)dz:To generate a testset \according to operational distribution F ," start with a collection of pseudo-random reals r uniformly distributed over [0,1], and generate F�1(r). For a detailed presentation,see [Ham94].The distribution function d should technically be given as a part a program's speci�cation. Inpractice, the best that can be obtained is a very crude approximation to d called the operationalpro�le. The program input space is broken down into a limited number of categories by function,and attempts are made to estimate the probability with which expected inputs will come from eachcategory. Random testing is then conducted by drawing inputs from each category of the pro�le(using a uniform distribution within the category), in proportion to the estimated usage frequency.7



2.3.3 Software Reliability TheoryIf a statistical view of software failures is appropriate, statistical parameters can be measured fora program using random testing. Inputs are supplied at random according to the operationalpro�le, and the failure intensity is the long-term average of the ratio of failed runs to total runs.An exhaustive test might measure failure intensity exactly. But whether or not failure intensitycan be estimated with less than exhaustive testing depends on the sample size, and on unknowncharacteristics of programs. Too small a sample might inadvertently emphasize incorrect executions,and thus to estimate failure intensity that is falsely high. The more dangerous possibility is thatfailures will be unfairly avoided, and the estimate will be too optimistic. When a release testexposes no failures, a failure-intensity estimate of zero is the only one possible. If subsequent �eldfailures show the estimate to be wrong, it demonstrates precisely the anti-statistical point of view.A more subtle criticism questions whether failure intensity is stable | is it possible to performrepeated experiments in which the measured values obey the law of large numbers?In practice there is considerable di�culty with the operational pro�le:1. Usage information may not be available. In the best cases, the pro�le obtained is coarse,having at most a few hundred usage probabilities for rough classes of inputs.2. Di�erent organizations (and di�erent individuals within one organization) may have quitedi�erent pro�les, which may change over time.3. Testing with the wrong pro�le always gives overly optimistic results (because when no failuresare seen, it cannot be because failures have been overemphasized!).It is therefore of considerable importance that a fundamental testing theory avoid reliance onoperational pro�les.Postulating an operational pro�le allows us to derive the software-reliability theory developed atTRW by Nelson and others [TLN78]. Suppose that there is a meaningful constant failure intensity� (in failures/demand) for a program, and hence a reliability of e��M over M runs [Sho83]. Wewish to draw N random tests according to the operational pro�le, to establish an upper con�dencebound � that � is below some level �. These quantities are related by1� FXj=00@ Nj 1A �j(1� �)N�j � � (1)if the N tests uncover F failures. For the important special case F = 0, the con�dence � is a familyof curves indicated in Figure 1. For any �xed value of N it is possible to trade higher con�dencein a failure intensity such as h for lower con�dence in a better intensity such as h0.8
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hh0Figure 1: Con�dence in failure intensity based on testingAnother way to derive the relationship between con�dence, testset size, and failure intensity, isto treat the test as an experiment checking the hypothesis that the failure intensity lies below a givenvalue. Butler and Finelli [BF91] obtain numerical values similar to those predicted by Equation (1)in this way. They de�ne the \ultrareliable" region as failure intensities in the range 10�8/demandand below, and present a very convincing case that it is impractical to gain information in thisregion by testing. From Equation (1), at the 90% con�dence level, to predict a failure intensity of� requires a successful testset of size roughly 2=�, so to predict ultrareliability by testing at onetest point each second around the clock would require three years. Ultrareliability is appropriatefor safety-critical applications like commercial 
ight-control programs and medical applications; inaddition, because of a large customer base, popular PC software can be expected to fail withindays of release unless it achieves ultrareliability.Thus software reliability theory provides a pessimistic view of what can be achieved by testing,compounded by de�ciencies in the theory. If an inaccurate pro�le is used for testing the results areinvalid, and they always err in the direction of predicting better reliability than actually exists.2.4 Voas's Sensitivity MeasurementsJe� Voas has an idea that gives testing a signi�cant twist.9



2.4.1 \PIE" Model of FailureSensitivity [Voa92] captures the intuition that a testset is good at exposing a program's faults asexecution failures. Sensitivity is a lower bound probability of failure if software contains faults,based on a model of the process by which faults become failures. A sensitivity near 1 indicates aprogram that \wears its faults on its sleeve": if it can fail, it is very likely to fail under test.To de�ne sensitivity as the conditional probability that a program will fail under test if it hasany faults, Voas models the failure process of a fault in one program location. For the fault to leadto failure, its location must be executed, it must produce an error in the local state, and that errormust then persist to a�ect the result. Voas calls his model \PIE" for Propagation, Infection, andExecution. The sensitivity of a program location can be estimated by executing the program as ifit were being tested, but instead of observing the result, counting the execution, state-corruption(infection), and propagation frequencies. Sensitivity analysis thus employs a testset, but not anoracle. Voas and his co-workers have designed and constructed a tool (PiSCES) that measuressensitivity, given a program and a testset.When the sensitivity measured by PiSCES is high at a location, it means that the testset causesthat location to be executed frequently; these executions have a good chance of corrupting the localstate; and, an erroneous state is unlikely to be lost or corrected. The high sensitivity does not meanthat the program is likely to fail; it means that if the location has a fault then the testset is likelyto expose it.2.4.2 The \Squeeze Play"By combining sensitivity analysis with reliability theory [VM92], it is possible to obtain a mea-surement of probable correctness that unlike Blum's (Section 2.2) is uniform. Suppose that all thelocations of a program are observed to have high sensitivity, using a testset drawn from the opera-tional pro�le. Then suppose that this same testset is used in successful random testing. (That is,the results are now observed, and no failures are seen.) The situation is then that (i) no failures wereobserved, but (ii) if there were faults, failures would have been observed. The conclusion is thatthere are no faults. This \squeeze play" plays o� sensitivity against reliability to gain con�dencein correctness.Figure 2 shows the quantitative analysis of the squeeze play between reliability and sensitivity[HV93]. In Figure 2, the falling curve is the con�dence from reliability testing (it is 1 � � fromFigure 1); the step function comes from observing a sensitivity h. Together the curves make itunlikely that the chance of failure is large (testing), or that it is small (sensitivity). The only otherpossibility is that the software is correct, for which 1� d is a con�dence bound, where d is slightly10
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Pr[not correct =) failure less likely than x](from sensitivity measurement)Pr[failure more likely than x](from equation 1)hd Figure 2: `Squeeze play' between sensitivity and reliabilitymore than the value of the falling curve at h. Con�dence that the software is correct can be madeclose to 1 by forcing h to the right [HV93]. For example, with a sensitivity of .001, a random testsetof 20,000 points predicts the probability that the tested program is not correct to be only about2� 10�9.The squeeze play could serve as a basis for de�ning dependability, although we do not take thiscourse. The pros and cons are discussed in Section 4.1.2.5 De�ciencies and Strengths of Existing WorkWe summarize the three ideas of the previous sections.Blum's self-checking� A pointwise measure of probable correctness.� Prediction: \Trust this result with probability p." (Or, \Don't trust this result!")� Cost (at runtime) is a small multiple of execution time for each checked result.� Applies only to (mathematically) well structured problems, and requires \high" programquality.� Requires no oracle, no user pro�le.Software reliability 11



� Analogous to engineering reliability of physical devices.� Prediction: \Con�dence C that the failure intensity is below p."� It is infeasible to assess reliability better than about 10�6/demand.� Universally applicable; independent of program characteristics.� Requires an oracle, and an accurate user pro�le.Voas's squeeze play� A uniform measure of probable correctness.� Prediction: \The probability that this program is correct is p."� Cost is high, but probably not infeasible.� Based on a simplistic model, but widely applicable.� Requires no oracle; requires a user pro�le.3 Results | Putting the Theories TogetherThe ideas of self-checking, reliability, and sensitivity complement each other. We now exploittheir combination to obtain new dependability results. We choose to take Blum's formulationas fundamental, and to extend its application using reliability and sensitivity. This choice of a\pointwise" de�nition of dependability is not unexceptionable; for further discussion see Section4.1.De�nition : The dependability of program P at input X is the probability that P is correct (asde�ned by its speci�cation) at X .For this de�nition to be usefully di�erent from a \uniform" de�nition in which the dependabilityis de�ned for all inputs, a dependability prediction must be supported by runtime calculations,in the manner of Blum's self-checking idea [BW94]. Self-checking has been applied to only a fewproblems, problems whose input data has a decomposition theory, so that random variations on acomputation can be performed and their results compared.12



3.1 \Pointwise" SensitivityVoas's PIE theory of sensitivity (Section 2.4.1) becomes a \PI" theory when a program is executedfor a single input X . Performing the analysis (as the PiSCES tool does) yields a sensitivity testimating the probability that if the program can fail then it has done so (on X). Thus 1� t is alower bound on the dependability: in the worst case that there is a fault, 1 � t is the chance thatfailure does not result. Thus low sensitivity is desirable.In order to make use of high sensitivity, there must be some independent support for thecomputed result being correct; this case (which has something in common with the squeeze play)is discussed below in Section 3.3.2.3.2 Incorporating Reliability in Self-testingBlum assumes that programs incorporating self-checking have been shown to behave correctly on\random" variations of inputs. Conventional reliability theory seems the way to measure thisrequired behavior, but reliability is not directly applicable, because a reliability measurement givesa pair of probabilities (a con�dence bound on a failure-intensity ceiling). We now explain how to usethis information in support of a self-checking result, for a problem to which Blum's theory alreadyapplies (e.g., matrix multiplication). The extension to a broader range of problems is consideredin Section 3.3 below.The essence of Blum's idea is that if failures are sparse in the input space, then random variationsof an execution are extremely unlikely to hit on a sequence of failures only, so a long sequence ofagreeing variations indicates that the result is correct. For this argument to be applied, N variantexecutions must all be failures for them to agree if one (the original result) is wrong. Reliabilitytheory can be used to calculate the probability that N random variations are all failures.Suppose that a successful reliability test of size K has been previously conducted, using auniform distribution (if the Blum self-checks use this distribution, as they usually do). Had Nrandom variant executions been the beginning of a set of K executions, the self-check would haveconstituted a repetition of the reliability test. For all N initial points to be failures would makethe failure intensity at least N=K in this repetition. In the special case of a successful test (F = 0),Equation (1) (Section 2.3.3) becomes 1� (1� NK )K � �: (2)The meaning of the upper con�dence bound � is the probability that repeating the reliability testwill show a failure intensity less than N=K. Hence � is the dependability.13



Rearranging Equation (2) and taking natural logs,log(1� �) = K log(K �NK ) = K(log(K �N)� log(K)):Using the de�nition of log(), the di�erence of logs isZ K�N1 1t dt� Z K1 1t dt = � Z KK�N 1t dt:If K is large and N is near to K, the integrand can be approximated by 1K , so the integral is aboutN=K, and log(1� �) � �N; � � 1� e�N :The analysis obscures the size K of the required reliability test. Some exact values are shownin Table 1. For example, the second line in Table 1 describes the situation in which a successful1� � N K (e�N )2:7� 10�5 10 100 4:5� 10�54:3� 10�5 10 10004:5� 10�5 10 100002:0� 10�9 20 10000 2:1� 10�9Table 1: Dependability � for a reliability test of size K and N random checksreliability test (with an oracle and a uniform input distribution) was performed on a self-checkingprogram using 1000 test points. Then at run time, if one calculation performs 10 agreeing selfchecks, we predict that there is only 4:3 � 10�5 chance that the result is wrong. That is, thedependability is predicted to be 99.9957%. As the table shows, the reliability and self-checkingparameters are practical, even in the ultrareliable region. Dependability predictions do not requirethe infeasible reliability testing that would be needed to predict ultrareliability directly [BF91].3.3 Extending Self-checking to More ProblemsThe only examples that have been given of self-checking algorithms are ones in which the probleminput may be distorted, and the original result reconstructed from the distorted computation. Thusthe argument that a group of random self-checks must all be failures together (or all correct) rests onthe equality of their results. This equality is available for only a few well structured mathematicalproblems. 14



3.3.1 Using Speci�cation PropertiesIt is interesting to note that the properties required to apply self-checking are those of the problem(that is, the speci�cation), not of a particular algorithm or program whose dependability is beingconsidered. For example, it is decomposition properties of graphs that allow the idea to be usedon graph isomorphism [BK89].For mathematical problems, other ways suggest themselves to argue that a group of results mustall be failures if any one is. For example, suppose that the problem requires computing a functionF which is di�erentiable at input t, and within an �-neighborhood of t, the derivative is boundedby V (t; �). Then within an �-neighborhood of t, F cannot vary by more than �V (t; �). Supposethat a program PF purports to compute F . If its result at t is in error by more than �V (t; �), andif random results in an �-neighborhood vary by less than �V (t; �), then all must be wrong. Correctbehavior by PF at t requires similar bounded variation. Thus any program for such a function Fcan be self checked as follows:Following the calculation of result Y on input X , repeat the calculation at N randomlychosen points in a neighborhood of X . If any calculation di�ers from Y by more thanthe bounded variation speci�ed for F , then Y cannot be trusted. If the variation isbounded, then there are two possibilities: (1) Y is correct to within the tolerance of thebounded variation; or, (2) Y is not correct, but this becomes increasingly unlikely as Nincreases.The dependability that arises from possibility (2) depends on the program's \random" behavior;for example, if this has been assessed using reliability measurements, the dependability can beread from Table 1. The correctness tolerance (possibility (1)) may be made arbitrarily small byshrinking the neighborhood of X .Establishing new properties that allow application of self-checking is speci�cation-based analysisthat will be much aided by the existence of a precise speci�cation, particularly one designed forformal manipulation.3.3.2 High Sensitivity for Self-checkingSuppose that for each member of a set of self-check inputs, the pointwise sensitivity (Section 3.1) isnear 1. This means that if any fault is encountered by any of these inputs, results are likely wrong.Or, there may be no faults, and the results correct. In the former case, a dependability bound canbe calculated as usual.Using reliability (to assess \random" behavior) in conjunction with high sensitivity (to arguethat the self-check points must all be failures if any are), in the manner of Section 3.2, is a technique15



applicable to any program, since both theories are general. Furthermore, the required measurementsappear to be practical. The weakness in such a general theory lies with the sensitivity component.First, only unrealistic faults are modeled by PIE sensitivity, and measurements such as PiSCESperforms are themselves only approximations. Second, most programs do not have sensitivitiesclose to 1, and �nally, PiSCES may be too slow to use at run time. However, even a weak case fordependability may have merit when all other assessments are infeasible.4 Discussion4.1 Drawbacks of the Self-checking FormulationOur de�nition for dependability is based on Blum's idea of \pointwise" probability of correctness.The advantage of this formulation is that it provides a plausible interpretation for the dependability,one that sidesteps all the intuitive di�culties in treating deterministic programs as if they hadstochastic properties. However, the formulation also has drawbacks.Most important, in critical applications, it seems inappropriate to defer the prediction of de-pendability to run time. If the software is inadequate, instead of reporting good dependability, itwill announce that a result should not be trusted. What then is the pilot of a plane under computercontrol, or the operator of a medical monitor, etc., supposed to do? We suggest a partial solutionto this di�culty in Section 4.4 below, but it is a basic de�ciency of the theory.Our de�nition, despite the suggestions made in Section 3.3, is not applicable to software ingeneral, and alternate formulations might have wider application. In particular, Voas's squeezeplay o�ers an alternative. The squeeze play can be used to de�ne dependability as a probabilitythat software is correct, but for all inputs, based on extensive pre-release reliability and sensitivitymeasurements. Thus such a de�nition would answer the important objection raised in the previousparagraph. It would also apply to any software system with appropriate measurements (roughly,high con�dence in a reliability of better than about 10�4/demand, and a sensitivity better thanabout 0.001)[HV93]. If the combination of sensitivity and reliability is being used as indicated inSection 3.3.2, a de�nition based on the squeeze play might be preferred, because it gives a betterresult when the sensitivity is not close to 1. The drawbacks of a squeeze-play-based de�nition aretwo-fold: (1) Sensitivity analysis is too simplistic to be plausible, and (2) The squeeze play requiresan operational pro�le in its measurements, where our de�nition does not. The latter is the moreserious drawback, since it would preclude calculating dependability for o�-the-shelf componentswhose application pro�le is unknown. 16



4.2 Role of Formal MethodsIt is a surprising strength of the dependability ideas that they provide a strong rationale for theuse of formal methods in software development.Sound development methods must be used to create programs whose dependability will beassessed at run time. When the self-checking de�nition is used with inadequate software, the self-checks do not agree, no information about dependability is available, and the software simply fails.It may be little comfort that we know it has failed.Formal methods, particularly mathematical formalisms for speci�cation that support analysis,can be used in two ways:Establishing new properties for checking. Because the properties that must be exploited inself-checks are speci�cation properties, it is obviously an advantage to explore them mathe-matically. Section 3.3.1 gives an example of such a property.Proving sensitivity properties. Sensitivity is partly a property of the details of code imple-menting a software function, but partly of that function itself. For example, Voas has shownthat range-cardinality-reducing functions (e.g., Reals ! Boolean) are inherently of low sen-sitivity [Voa91]. Formal analysis may be able to establish the necessary software propertiesto attain the high sensitivity required for some kinds of dependability calculations, such asindicated in Section 3.3.2.4.3 Experimental ValidationDependability, as calculated for a particular program according to the de�nition used here, includesa running \self validation." Each time a program reports that a result is undependable, there willbe reason to examine it in detail, �nd the reason why, and �x the program. Should it be discoveredthat the dependability calculations are at fault, it provides an immediate counterexample to thetheory.Similarly, should a program report that a result can be trusted, and should it eventually belearned that the result is not correct, data accumulates to refute the theory. Since dependability isa probability, it is not impossible that a probably correct result is occasionally wrong. But it hadbetter not happen that events calculated as having a likelihood of 10�9 happen daily.An argument that a dependability theory is correct must be inductive, and thus like validationof any scienti�c theory, it will never be complete. What is to be expected is a series of refutationsof detailed theories, each leading to improvements that answer the objection. The evolving theory17



will be valuable if it remains stable for periods long enough to direct the construction of usefulsoftware.4.4 Rediscovering User Pro�lesOperational pro�les play no role in the Blum dependability de�nition or any of its applicationssuggested in this paper. When reliability measurements are used, they are based on uniformpro�les, because these can be used in randomizing the self-checks. (It is an uninvestigated problemto consider if other pro�les might be useful for the randomization used in self-checking, but in anycase the capricious \user" does not come into it.)However, if a user pro�le is known, it can be used with dependability theory. Self-checkingsoftware, capable of calculating its runtime dependability values, can be random tested with apro�le. It is important to note that this testing requires no oracle, because the dependability itselfwill serve. For each test input drawn from the pro�le, the result can be taken to be correct ifthe self-checks succeed. Figure 1 then predicts the reliability parameters based on the number ofsuccessful tests. (Should the program report that self-checking failed, it is not necessarily becausethe calculated result is wrong, so the reliability obtained will be a pessimistic estimate.) Thisprediction will of course be subject to the same di�culties as any reliability measurement today(except for the oracle problem). In particular, the pro�le may be inaccurate, and assessment ofultrareliability will not be feasible. But a software user may be able to get a rough indication ofhow a program will perform in an unusual environment, and when the software is actually in use,will have the runtime dependability values as a check on each execution.4.5 Dependability As An OracleThe idea suggested in Section 4.4, to use self-checking as an e�ective oracle, is generally applicableto program testing. First, a conventional random test is conducted with a uniform pro�le (and anoracle) as indicated in Section 3.2. For subsequent tests, successful self-checking is equated withcorrectness. Table 1 can be used to select appropriate parameters for the random test and forself-checking. As the table shows, the bulk of testing will use self-checking instead of the actualoracle.The most interesting application is to the testing of components intended for reuse or o�-the-shelf embedding in other software. The developer of the component would conduct a uniform-pro�lerandom test, and provide a self-checking harness. An end user would then test the component usinga pro�le appropriate to its intended use, in which the self-checking harness serves as oracle. Or, theend user might employ another, or a combination of. testing methods, for example if required to do18



so by a regulatory agency. (The component might fail these tests, causing this user to buy anothercomponent.) If testing is satisfactory, the end user could elect to leave the self-checking code inplace (with appropriate actions when checking fails), or remove it for the production version.5 SummaryWe have taken a de�nition of software dependability based on Blum's idea of pointwise correctnessprobability, and his idea of estimating it at run time.Software reliability theory can be used to replace Blum's somewhat vague requirement that pro-grams \be correct on random inputs" with precise measurement of con�dence in a failure intensity.The required measurements are apparently not infeasible, even in the ultrareliable region.Formal methods have a new role to play in establishing a basis for measuring dependability ofthe programs they are used to develop.Sensitivity can sometimes be used to assess dependability, widening the applicability of Blum'sidea. Mathematical properties of a speci�cation other than its input decomposition theory can beused to apply self-checking.Finally, reliability or other testing measures can be obtained without the use of an oracle, ifself-checking software is �rst assessed with a uniform-pro�le random test.References[BF91] R. W. Butler and G. B. Finelli. The infeasibility of experimental quanti�cation of life-critical software reliability. In Software for Critical Systems, pages 66{76, New Orleans,LA, 1991.[BK89] M. Blum and S. Kannan. Designing programs that check their work. In 21st ACMSymposium of Theory of Computing, pages 86{96, 1989.[BS87] V. R. Basili and R. W. Selby. Comparing the e�ectiveness of software testing strategies.IEEE Trans. on Soft. Eng., 13:1278{1296, 1987.[BW94] M. Blum and H. Wasserman. Program result-checking: A theory of testing meets atest of theory. In 35th Annual Symposium on Foundations of Computer Science, pages382{391, Santa Fe, NM, 1994.[Ham94] D. Hamlet. Random testing. In J. Marciniak, editor, Encyclopedia of Software Engi-neering, pages 970{978. Wiley, New York, 1994.19
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