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by Delivered Reliability
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Abstract —There are two main goals in testing software: 1) to achieve adequate quality (debug testing); the objective is to probe the
software for defects so that these can be removed and 2) to assess existing quality (operational testing); the objective is to gain
confidence that the software is reliable. The names are arbitrary, and most testing techniques address both goals to some degree.
However, debug methods tend to ignore random selection of test data from an operational profile, while for operational methods this
selection is all-important. Debug methods are thought, without any real proof, to be good at uncovering defects so that these can be
repaired, but having done so they do not provide a technically defensible assessment of the reliability that results. On the other
hand, operational methods provide accurate assessment, but may not be as useful for achieving reliability. This paper examines the
relationship between the two testing goals, using a probabilistic analysis. We define simple models of programs and their testing,
and try to answer theoretically the question of how to attain program reliability: Is it better to test by probing for defects as in debug
testing, or to assess reliability directly as in operational testing, uncovering defects by accident, so to speak? There is no simple
answer, of course. Testing methods are compared in a model where program failures are detected and the software changed to
eliminate them. The “better” method delivers higher reliability after all test failures have been eliminated. This comparison extends
previous work, where the measure was the probability of detecting a failure. Revealing special cases are exhibited in which each
kind of testing is superior. Preliminary analysis of the distribution of the delivered reliability indicates that even simple models have
unusual statistical properties, suggesting caution in interpreting theoretical comparisons.

Index Terms —Reliability, debugging, software testing, statistical testing theory.
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1 INTRODUCTION—RELIABILITY VS . DEBUGGING

HERE are two main goals in testing software. On the one
hand, testing can be seen as a means of achieving reli-

ability: here the objective is to probe the software for bugs
1
 so

that these can be removed and its reliability thus improved.
Alternatively, testing can be seen as a means of gaining con-
fidence that the software is sufficiently reliable for its in-
tended purpose: here the objective is reliability evaluation.

We begin by taking the point-of-view of a developer who
tests to find and correct bugs and improve the delivered
software. A systematic testing method includes a criterion
for selecting test cases and a criterion for deciding when to
stop testing. Most common approaches to systematic test-
ing are directed at finding as many bugs as possible, by
either sampling all situations likely to produce failures (e.g.,
methods informed by code coverage or specification cover-
age criteria), or concentrating on situations that are consid-
ered most likely to do so (e.g., stress testing or boundary
testing methods). The choice among such testing methods

will depend on hypotheses about the likely types and dis-
tributions of bugs at the point in the software development
process when testing is applied. We shall call all these ap-
proaches, collectively, “debug testing.”

A completely different approach is “operational testing,”
where the software is subjected to the same statistical dis-
tribution of inputs that is expected in operation. Instead of
actively looking for failures, the tester in this case waits for
failures to surface spontaneously, so to speak.

In comparing the relative advantages of operational
testing and debug testing, important points are:

• � Debug testing may be more effective at finding bugs
(provided the intuitions that drive it are realistic), but
if it uncovers many failures that occur with negligible
rates during actual operation, it will waste test and
repair efforts without appreciably improving the
software. Operational testing, on the other hand, will
naturally tend to uncover earlier those failures that
are most likely in actual operation, thus directing ef-
forts at fixing the most important

2 
bugs.

• � The cost of testing with the various approaches varies
widely with the characteristics of the program and of
the application problem. These latter determine the
relative costs of the components of the testing process
(generating test cases, executing the software, check-

2. Notice that, throughout the paper, we treat the “importance” of a bug
solely in terms of its contribution to unreliability. We do not take any ac-
count of the consequences of failure. In practice, of course, these can vary
greatly from one bug to another. The results of the paper could, of course,
be applied to suitably defined subclasses of failures, representing particular
levels of severity of consequences.
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1. We deliberately use this informal term in this introductory discus-

sion: in later sections we shall discuss the problems in finding a formal

interpretation of the notion of “fault.”
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ing for correct results), in particular through the ex-
tent to which they can be automated.

• � The fault-finding effectiveness of a debug testing
method hinges on whether the tester’s assumptions
about bugs represent reality; for operational testing to
deliver on its promise of better use of resources, it is
necessary for the testing profile to be truly represen-
tative of operational use.

• � Operational testing is attractive because it offers a ba-
sis for reliability assessment, so that the developer can
have not only the assurance of having tried to im-
prove the software, but also an estimate of the reli-
ability actually achieved.

Previous comparisons of the effectiveness of testing
techniques have used the failure-finding probability, the
probability that a testset will detect at least one failure, as a
measure of effectiveness. This measure was used in simula-
tions comparing “partition-testing” techniques to random
testing by Duran and Ntafos [8], and Hamlet and Taylor
[12]; in analytical treatments by Weyuker and Jeng [16], and
Chen and Yu [4]; in analytical comparisons of various test-
ing techniques by Frankl and Weyuker [10]; and in experi-
mental comparisons by Frankl and Weiss [9], and Mathur
and Wong [26].

Failure-finding probability may be a good measure for
evaluating test data adequacy criteria (stopping criteria).
The best stopping criterion may be the one that is most
likely to detect at least one failure, for then when it detects
nothing, the tester has the most confidence that nothing has
been missed. However, failure-finding probability sheds
little light on how the detection and elimination of failures
during the testing process affects the delivered reliability.
Different failures may make vastly different contributions
to the (un)reliability of the program. Thus, testing with a
technique that readily detects “small” faults, may result in a
less reliable program than would testing with a technique
that less readily detects some “large” faults. Examples of
this situation in which failure-finding probability and better
reliability do not go together are given in Section 3.5, Mul-
tiple Failure Regions, Debugging with Subdomains, below.

Several papers have considered the expected number of
failures during test as a measure of effectiveness [10], [5].
Chen and Yu [5] argue that, although ideally one would like
to assess the number of faults detected, and although there
is no general relation between number of failures and num-
ber of faults, if more failures occur during test, it will be
easier to find and remove more faults. Several experiments
have compared the number of faults detected by different
testing techniques [14], [26], but this issue has not been ad-
dressed analytically. In addition several reliability growth
models [15], [19]are based on the number of faults detected.

This paper studies testing effectiveness based on the re-
liability of a program after it is tested. This measure is used
to compare debug testing to operational testing, exploring
circumstances under which each technique is likely to yield
superior reliability. Li and Malaiya [18] consider a similar
question, but in the narrower context of altering the test
profile to emphasize particular subdomains of the program.
Their model assumes that failures that occur in these sub-
domains have a fixed detection probability.

Our model is more realistic: the probability of a test case
detecting a fault depends not only on the subdomain hit by
the test case, but on the way test cases are selected in the
subdomain. We also model a wider range of testing meth-
ods: operational testing, and two forms of debug testing,
one driven by the consideration of subdomains in the input
space, and one ignoring the subdomains. Last, we clarify
the difficult problem of modeling “the fault” that is respon-
sible for a failure.

1.1 The Debugger’s Intuition
There is a deeply rooted belief among program testers and
debuggers that the process of probing software for bugs is a
cost-effective way of achieving sufficient reliability. That is,
employing testing methods that are designed to expose
failures is believed to be a better alternative than simulating
normal operation and letting the failures appear. Indeed,
the latter method is used by only a small minority of in-
dustrial organizations. This paper examines the validity of
that belief. (Detailed definitions of “debug testing” and
“operational testing” are given in sections below.)

The validity of testers’ trust in debug testing is not an
academic question. Software whose reliability must be high
could be tested in a number of different ways, and because
testing is expensive and time-consuming, developers and
regulatory agencies would like to choose among alterna-
tives, not use them all. Thus, if debug testing is not effec-
tive, it should not be used at all. In particular, there is a cur-
rently popular position that can be paraphrased as follows:

Reliable software can best be developed using formal methods.
When properly applied, these methods eliminate at source those
failures normally exposed at the unit and subsystem levels by
debug testing. Therefore, unit debug testing should be reduced
in favor of additional system-level random testing.

In the “Cleanroom” development methodology [6], [24],
to give an extreme example, debug testing is generally not
used at all, particularly by those doing the development.
Apart from its ability to provide reliability estimates, it is
argued that operational testing detects any remaining fail-
ures that could occur, with probabilities that are in propor-
tion to their seriousness. However, experienced developers,
say of flight-control software, are profoundly disturbed by
the suggestion that they abandon debug testing. As an indi-
cation of the depth of traditional testers’ reaction to this
position, Beizer [2] has attacked Cleanroom as “lead[ing] to
false confidence.”

Attempts to support or refute beliefs about debug testing
have been inconclusive:

Empirical studies. Case studies comparing software devel-
opment methods are difficult to conduct. Attempts to

establish a correlation between the degree of debug
testing (usually measured by some structural “coverage”
of unit tests) and the resulting software quality are at

best preliminary [7], [13], [22], [9], [17]. On the other side,
case studies using formal methods development show
great variation, both in the care with which the method

is defined and applied and in the results [11]. Neither
side has any real claim to establishing its case.
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Analysis of “partition testing.” A number of theoretical
studies have compared random testing with debug
(“partition”) testing [8], [12], [16], [25], [4], [5]. The origi-
nal motivation for these studies was a belief that random
testing might be a real alternative to partition testing for
finding failures. However, no such conclusive result was
obtained. Although random testing is a surprisingly
good competitor for partition testing, it is seldom better,
and scenarios can be constructed (although their fre-
quency of occurrence in practice is unknown) in which
partition testing is much better at failure exposure. Thus,
our question remains.

In this paper, we take a new analytical approach to com-
paring debug testing with operational testing. This ap-
proach was devised to study theoretically the question of
delivered reliability, without prejudice to the outcome of
comparisons.

1.2 Analytical Approach
We believe that analytic, probabilistic methods are the best
tools for studying software reliability. Basing an important
choice on intuition, without much supporting evidence, is
clearly dangerous. Analytical studies help by giving clear
representations of the competing intuitive beliefs and of
their actual implications, and also by indicating which em-
pirical measurements could provide indirect evidence that,
in a particular project and phase of development, a certain
test method is best. We consider the situation in which
software fails under test, then is changed so that the failure
no longer occurs. We compare testing methods according to
the probability that the corrected software will subse-
quently fail in operation (that is, the delivered software reli-
ability). This measure is expressed as a random variable,
and we mainly focus on its expected value, although the
distribution is also of interest.

A simple program model is used; this simplifies the analy-
sis, and focuses attention on the question of reliability. The
testing-failure-fix process must also be abstracted and simpli-
fied for analysis. We believe that the notion of a software
“fault” is central to this abstraction, and that a meaningful,
formal treatment of “faults” is not available. Instead, we in-
troduce the notion of a “failure region” of the input space, a
set of failure points that is eliminated by a program change.

For our simple abstractions, we compare operational
testing to debug testing, and present revealing special cases
in which each technique yields better reliability after some
failures are eliminated. For a single failure region, the re-
sults are similar to those obtained by analyzing the prob-
ability of finding a failure. But for multiple failure regions
new phenomena are captured. For example, for some pro-
grams the testing technique that best finds failures may not
lead to the best reliability, because it finds trivial problems
with little operational impact.

1.3 Statistical Nature of Analysis
If methods of achieving reliability are to be assessed, prob-
abilistic analysis must be used. Statistical questions must be
framed and answered by calculation, to inform a debate
that so far has little content beyond strongly held beliefs on
both sides. The partition vs. random studies suggest that if

we can frame the questions, a combination of mathematical
analysis and simulation can answer them, with a marked
improvement in fundamental understanding.

The questions here need to be posed in ways that ac-
knowledge the inevitable underlying uncertainty. In other
words, we need to be aware that probability and statistics
are appropriate tools for expressing the problem. This
means that our answers will inevitably be couched in these
terms. Thus, for example, we shall not be able to make de-
terministic claims for the superiority of one testing regime
over another. Instead, we shall be looking for evidence that
one type of testing is likely to be superior to another, or that
it is on average better.

Such observations involve us in some subtleties which
may not be obvious to the unwary. For example, we may
sometimes prefer a testing procedure that is inferior to an-
other on average (e.g., in its ability to increase reliability
most cost-effectively) if its efficacy shows less variation
from one application to another. We might prefer the near
certainty of a modest gain in reliability for a particular out-
lay from the first procedure, to a mere possibility of a high
gain from the other. Such considerations will not loom large
in the following, which we realize represents only the be-
ginnings of an understanding of these issues, but they must
be addressed in future work.

2 TERMINOLOGY AND ASSUMPTIONS

In formal work, it is important to have precise definitions
and to explicitly state assumptions. In this preliminary
work, these must be particularly simple.

2.1 Tests and Failures
A test or test case is a single value of program input, which
enables a single execution of the program. A testset is a fi-
nite collection of tests. These definitions implicitly assume a
simple programming context: a program with a pure-
function semantics. The program is given a single input, it
computes a single result and terminates. The result on an-
other input in no way depends on prior calculations. In
particular, if an input is repeated, the result is always the
same. Although many programs do not behave in this
manner, the relevant issues about reliability arise for pure-
function programs.

This simple program model abstracts reality, but it is
more general than it may appear. Real programs may have
complex input tuples, and produce complex outputs. But
we can imagine coding each tuple into a single value, so
that the simplification to one input value is not a transgres-
sion in principle. Some interactive programs, programs that
read and write permanent data, and real-time programs, do
not fit the pure-function model. However, it is possible to
treat these more complex programs as if they used testsets
of independent inputs, at the cost of some artificiality. For
example, an interactive or real-time program can be
thought of as having artificial testsets whose members (sin-
gle tests) are sequences of the real input elements, starting
from some standard “reset” state. Each such sequence is
one abstract input in the pure-function model.
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Each program has a specification that is an input-output
relation. That is, the specification S is a set of ordered input-
output pairs describing allowed behavior. A program P
meets its specification for input x if and only if (iff) the fol-
lowing is true: if x ¶ dom(S) then on input x, P produces
output y such that (x, y) ¶ S. When x · dom(S), that is, when
an input does not occur as any first element in the specifi-
cation, the program may do anything, even fail to termi-
nate, yet still meet the specification. S defines the input
domain as well as behavior on that domain. Many real
specifications can be recursively extended to be everywhere
defined, by adding required “ERROR” responses; but some,
notably involving unbounded searches with uncertain out-
come, cannot be effectively extended.

A program P with specification S fails on input x iff P
does not meet S at x. When a program fails, the event is
called a failure, and the input responsible is a failure point.
The program’s failure set is the collection of all failure
points. Hence a program that meets its specification has an
empty failure set. The opposite of fails is succeeds; the oppo-
site of a failure is a success; the complement of the failure set
is the success set.

We assume that the specification of a program does not
change during testing and corrective changes to the program.

2.2 So-Called “Faults”
Program testing methods are often designed to find
“faults.” But it is a strong, unjustified assumption that “a
fault” is an objective characteristic of a program. Although
fault is an IEEE standard term for “bug” (or “defect,” or
“error”), this idea is not precise, and is difficult to make
precise. The IEEE glossary states that a fault is the part of a
source program that causes a failure. However appealing
and necessary this intuitive idea may be, it has proved ex-
tremely difficult to define formally. The difficulty is that
“faults” have no unique characterization. In practice, soft-
ware fails for some testset, and is then changed so that it
succeeds on that testset.

The (not necessarily true) assumption is made that the
change does not introduce any new failures. The “fault” is
then defined by the “fix,” and is characterized, for example
“wrong expression in an assignment,” by what was changed.
But the change is by no means unique. Literally an infinity of
other changes would have produced the same effect.

Some fixes do appear to be unique and easily localized:
for example, a wrong operand—perhaps a typo—in an ex-
pression. But “faults of omission” are common, and for
these it is difficult for even reasonable programmers to
agree on a fix. In addition, two changes that both fix a given
set of failure points may differ in the remainder of their
effects on program behavior. The complications of a “partial
fix” that removes fewer failure points than it might have
done, and a “least fix” that is in some textual way minimal
for the effect it has, are extremely difficult to capture.

An operational method for identifying “the set of faults”
in a program, as this term is commonly understood, might
be as follows.

Give the program to a debugging team to be tested and cor-
rected until no more failures are detected, then analyze the his-
tory of program changes. Every change is motivated by a fault

perceived by the debugging team in response to some failure(s).
Some of these faults were introduced by the team itself by mis-
take. The others are the set of faults in the original program.

The problem with this method is that if we gave the same
original program to a different debugging team, or even to
the same team under different circumstances, we might end
up identifying a different set of faults. So, any model that
depends on a program having a uniquely identifiable set of
faults, or even a unique number of faults, in order to predict
how these may be removed by testing, cannot use this
method to identify them.

Thus, “the fault” is not a precise idea, and the usual in-
tuitive meaning of the word cannot be used here.

On the other hand, “failure” is well defined, and so is a
change in failure behavior resulting from a program
change. Most of what we need to say can be phrased in
these terms, as follows:

A program change may alter the failure set; that is, the changed
program’s failure set will in general be different from that of the
original program. A change is a fix for a collection of failure
points F (the change fixes F) if it is conservative in the sense that:
1) the failure set of the changed program no longer includes any
member of F and 2) the failure set of the changed program is a
subset of the original failure set.

Thus, a fix for a set of failure points F may eliminate failure
points outside F, but it may not introduce new failures.

3

In these terms, the closest we can come to speaking of a
“fault” is to talk of a failure region, a collection of failure in-
puts that some change fixes exactly. Every change that does
not introduce new failure points has such a region (if no
more than the empty one). It is tempting to begin thinking
of such a fix as the basis for defining “fault,” but this would
not satisfy the intuition behind the IEEE definition. We can
hardly say that an elaborate change tailored to some failure
region bears any relation to a mistake made by a program-
mer; nor does the failure region indicate or constrain a fix
that might remove it.

We believe that one should try to avoid the term “fault”
in discussing testing and the dependability of software.
Thus one should say, “testing exposed a failure,” not,
“testing found a fault.” One should say, “source change A
led to a failure set strictly contained in the failure set re-
sulting from change B,” not, “A fixed more faults than B”
(much less, “B didn’t fix the bug, but A did”). Suppose a fix
is found for a certain collection of failure points B1, and an-
other fix for other points B2, which seem unrelated. How-
ever, a clever programmer then finds a completely different
fix for B1 < B2 (and there is always such a fix, whatever ar-
guments it causes among programmers). One should de-
scribe the situation in that neutral way, saying nothing
about which are the “real bug(s).”

With the usual flawed assumption that each failure is
due to one well defined “fault” in the program source, the

3. Our models only consider changes that are fixes, i.e., successful
changes. We could have avoided this assumption by adding appropriate
parameters to our models, describing the probability that fixes are com-
pletely or partially unsuccessful. In practice, we have avoided this, like
other possible “improvements” to the models, to avoid an overwhelming
number of degrees of freedom in the scenarios that can be modeled. When
seeking insight into the effects of some specific factors—the fault-finding
abilities of different testing strategies, in our case—it is better at first to
avoid refinements that might obscure these effects in complex ways.
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process of testing and fixing a program appears to be af-
fected by only two sources of uncertainty: which “faults”
the testers will find and how effective their attempted fixes
will be. (Perfect fixes are usually assumed.) Our contrary
viewpoint recognizes three sources of uncertainty: which
failure points will be found, which fixes the testers will try
(hence which failure regions they expect to remove), and
how effective the fixes will be (which failure regions will
actually be removed).

The modeling in this paper uses the conventional as-
sumption that all testers will react to a given observed fail-
ure with the same, successful fix. We wish to show how
wide a spectrum of situations is possible, even under this
restrictive assumption. However, we think that in many
situations of interest, especially with highly reliable pro-
grams, this restrictive assumption is unrealistic, as the fail-
ure set may be determined by rare, complex patterns of
program behavior.

Specifically, we will assume that all testers, upon ob-
serving a test failure, choose fixes that eliminate exactly the
same failure region, irrespective of which test method they
are using. We can thus talk of failure regions as characteris-
tics of the program—as people usually talk about “faults”
being characteristics of the program—rather than of the
fixing process. This is a useful simplification in this initial
analysis. The reason why it is unrealistic is that the way a
debugger chose the test case that caused a failure may affect
the debugger’s guess about an underlying “fault” and thus
the way he/she will proceed to fix the problem. Such
“cues” may be beneficial or misleading depending on both
the test method and the failure set of the program. So, fol-
lowing a failure on a given test case (or on test cases that
appear equivalent to some tester) different testers may per-
ceive the existence of different defects in the code, and their
changes may eliminate different sets of failure points, and
even add new failure points.

We also assume that failure regions are disjoint, and all
test failures are noticed (that is, there is a perfect oracle). So,
each test failure deterministically causes one failure region
to be removed.

2.3 Operational Testing
To define operational testing requires two main concepts:
the operational profile that determines the likelihood of
selection of the different points of the input domain, and an
allocation of labels “f” and “s” (for failure and success) to
the points.

The operational profile is a probability distribution Q
over the input domain D, i.e., to each point is allocated a
probability of selection, and these probabilities sum to one

over the points of the domain. That is, Q: D � [0, 1], and

Σt D∈  Q(t) = 1. Operational testing
4
 then proceeds by inde-

pendently selecting points from the input domain with
these probabilities. In many applications, a point-by-point
operational profile is far too detailed to obtain, and even a

4. Operational testing is sometimes called random testing, but the latter
term is wider and could be used for statistical testing from any distribution,
rather than one, as is intended here, that reflects operational use. Indeed,
random testing is often taken to mean uniform random testing, where all
points in the input domain are equally likely to be selected.

crude approximation requires considerable developer effort
[21]. However, for our theoretical treatment, the profile Q is
a central concept.

Informally, the operational profile can be thought of as
characterizing the nature of the use to which the program is
put, and will in general be determined by the system(s)
(including people) that interact with the software. In itself it
does not tell us about the reliability of the software. We
need in addition that all points in the input domain have
associated with them either a label f (to indicate that such a
point, when selected, results in a failure), or s (for success).
Define the indicator variable

δ φ
σ( )

if has table
if has label

t
t
t

= %&
'

1
0

 .

Then the failure probability for a test point drawn randomly
from the operational profile is

θ δ= =
∈ ∈
∑ ∑
t D t

Q t t Q t( ) ( ) ( )
failure set

 .

Of course, in practice we do not know what the labelings
of the points in the input domain are: if we did, we could
simply fix things without any testing! Thus estimation of q
will have to be statistical, and come from the results of a
testset randomly selected from the operational profile. One
simple approach would use the proportion of failures
within such a sample of tests as an estimate of q.

The reliability of the program is then the probability of it
surviving N executions on inputs drawn from the opera-
tional profile:

R(N) = (1 - q)
N
.

The probability of failure on a randomly selected input,
and thus the reliability of a program, is determined partly
by the probabilities of selection of the different points in the
input domain (the operational profile), and partly by the
way in which these points are labeled f and s. Operational
testing only takes account of the operational profile in the
selection of tests. Debug testing, on the other hand, seems
mainly to take account of the labeling: it seems implicit that
testers have knowledge (or at least believe they have) of
which points in the input space are more likely to have f
labels, and testers give such points a greater chance of be-
ing selected than in operational testing; the points that are
believed to be more likely to be s points are given corre-
spondingly smaller chances of selection.

There is a subtle interplay between the two contributions
to (un)reliability, and how the two testing approaches treat
them. Consider a single point in the input domain, xi, with
probability of selection in operation pi. The operational
tester says “I don’t know anything about the chance that xi

will have label f, so I will select it with probability pi; that
way, if it has a label f, I at least have a chance of detecting it
that is proportional to its contribution to the unreliability of
the program.” The debug tester says “I don’t know any-
thing about the operational profile (or if I do I don’t care!),
but I do have a good intuition about which points are likely
to cause failure, and xi is one of them, so I will select it with
high probability and thus have a good chance of improving
the reliability.”



6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  8,  AUGUST  1998

-�?352'8&7,21?76(?��,1352'?������?���������'2& UHJXODUSDSHU���GRW 6/ ��������� ��������������30 ������

2.4 “Debug” Testing
Whereas the operational tester focuses attention on devel-
oping an input profile that closely approximates the dis-
tribution that the software will encounter in the field, the
debug tester seeks to develop a distribution that will be
likely to find the points labeled “f”. A perfect debug test-
ing strategy would assign probability zero to all points
labeled “s”. In practice, debug testers develop distribu-
tions based on heuristics that they hope will give high
selection probabilities to failure points. Many such heu-
ristics divide the program’s input domain into (possibly
overlapping) regions called subdomains and require that at
least Ti � 1 test cases be drawn from the ith subdomain.
(The earlier discussion of “partition testing” refers to sub-
domains that do not overlap.

5
)

In a number of practical testing methods, the subdo-
mains are based on analysis of the specification (specifica-
tion-based or black-box methods). The primary such method
is functional testing, in which a number of program “func-
tions” are identified (roughly, things the software should
do), and the subdomains are defined as those inputs that
result in its doing each thing. A second important collection
of debug-testing methods are program-based, or structural, or
clear-box methods. The archetype structural testing method
is “statement testing,” in which the subdomains correspond
to the execution of individual program statements, and a
test point selected from each and every subdomain forces
every program statement to have been executed. These
statement-testing subdomains therefore overlap, as do the
subdomains of most structural testing methods and of
many functional methods.

Subdomains may be used either: 1) as a means of evalu-
ating whether enough testing has been done or 2) the basis
for test selection. In approach 1, testers select test cases by
some independent means, such as use of a different sub-
domain testing strategy, random testing according to some
well-defined input distribution, or “haphazard” selection
(random testing in which the input distribution is difficult
to characterize precisely). They then check whether the req-
uisite number of points has been selected from each sub-
domain and, if not, select additional test cases. In approach
2, testers systematically look for test points that lie in the
subdomains. They may give preference to certain types of
points, such as those close to the boundary of a subdomain,
or those that for some other reason are believed to be more
“failure-prone.” Clear-box testing techniques are usually
more amenable to approach 1, whereas functional testing
techniques are usually more amenable to approach 2. For
clear-box methods, particularly the more abstruse, it is not
easy to force test points to fall in the defined subdomains.
However, since automatic tools exist to measure structural
coverage and report deficiencies by subdomain, the tester
can obtain a list of untested subdomains and find test
points in the missed structural subdomains. In contrast, for
functional methods it is usually relatively easy to identify

5. “Partition” is a good word to avoid, not only because it technically
does not include the important practical case of overlapping subdomains,
but also because in common parlance “partitions” refer to the subdomains
themselves, while in the technical mathematical usage “partition” refers to
the relation that induces a set of equivalence classes (the subdomains).

the subdomains and select test cases from them, but harder
to check which test requirements are covered by an arbi-
trary test case.

We consider two models of debug testing, which roughly
correspond to the two ways debug-testing techniques are
used. The first model, which we call debug testing without
subdomains, describes the case in which a tester aims to se-
lect f points, without considering subdomains. The prob-
ability distribution is defined on the entire input domain
and the tester selects inputs independently until some
stopping criterion is satisfied. If the stopping criterion is
that some predetermined number T of test cases has been
selected, then debug testing without subdomains differs
from operational testing only in the input profile used,
which the tester hopes will produce more frequent failures
during testing. This model captures only part of the first
way of using subdomains, in that it does not require test
points in each subdomain as a stopping criterion. In the
second model, debug testing with subdomains, which models
the second method of using debug testing, there is a prob-
ability distribution on each subdomain and the tester inde-
pendently selects Ti test cases from each subdomain i.

In experimental comparisons among structural methods
[9], [14] a somewhat different selection procedure is used:

Test points are selected from a profile over the entire input do-
main (usually a uniform profile, although an arbitrary profile
poses no difficulty). Each such test point falls in some subdo-
main(s), and by selecting enough overall points, one obtains
“random” points in each subdomain. This procedure is adopted
to eliminate possible human bias in selecting test points within
subdomains.

The experimental procedure illustrates the difficult con-
nection between any overall profile and structural parts of
the program. Not only can it happen that a profile neglects
some part (subdomain) so that an excessive number of
choices of overall random points is needed to reach it, but
the pattern that does reach it may not be appropriately
“random” on the subdomain.

These models are only approximations of how testing is
done in practice. In particular, a tester may use knowledge
of previous test cases when selecting new ones, thereby
violating the independence assumption. Nevertheless, we
believe that they provide a fairly general and reasonably
accurate starting point for our investigations.

Two practical problems must be accounted for. Some
testing strategies may produce empty subdomains. That
is, an apparently sensible subdomain (e.g., “inputs that
make this branch condition TRUE”) may in fact be empty
(the TRUE branch is then infeasible). In our analysis of de-
bug testing with subdomains, we assume that all empty
subdomains have been eliminated from consideration.
Very small subdomains also cause problems in practice,
either because the subdomain size is smaller than the re-
quired number of elements from the subdomain, or the
subdomain cannot be easily “hit” by tests. We do not re-
quire that the Ti test cases drawn from subdomain i be
distinct. We ignore difficulties in hitting a subdomain,
while in practice testers may have to stop testing before
100 percent coverage has been achieved.
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3 DEBUGGING VS. OPERATIONAL TESTING

Exercising a program, whether in test or in operational use,
involves selecting a succession of inputs to be presented for
execution. The selection mechanism distinguishes between
different types of test and of use.

3.1 The Analytical Context
Reliability in the technical sense is characterized by the
failure probability when inputs are selected according to
the operational profile. Failure points will be encountered
at random, and there is a certain probability that the pro-
gram will fail in use. If a testset is selected by sampling ac-
cording to the operational profile, then direct estimates of
the failure probability may be obtained. If a testset is se-
lected in any other way, then the probability of encounter-
ing a failure region bears no necessary relation to the failure
probability in operational use. But there is still a probability
that the program will fail under test, which we call the
“detection rate.” In debug testing one tries to arrange that
the detection rate is high. It is the “debugger’s intuition”
that the way to achieve reliability is through clever testing
with high detection rates.

Reliability improves under either testing scheme when
failures are found, the software is successfully changed, and
the operational failure probability decreases.

The precise question we wish to study is the following:

Under which conditions (on the program and the testing
method) will debug testing deliver better reliability than opera-
tional testing?

Certainly conditions exist favoring each alternative. If
many debug tests fail and the corresponding fixes substan-
tially decrease the overall failure probability, then debug
testing may be superior to operational testing in which
fewer tests happened to fail. However, it may happen in-
stead that many fixes originated by debug testing are less
effective, in terms of improving reliability in operation,
than a few fixes originated by operational testing.

The case of ultrareliability is of particular interest. When
the failure set has a very small chance of being encountered
in operation [20], [3], operational testing has a correspond-
ingly very small chance of inducing failures and thus al-
lowing the removal of failure regions. Debug testing is
therefore the only option that allows some hope of further
improving reliability. However, simply choosing debug
testing is no guarantee that the results will be better than
with operational testing. It may still happen that debug
tests encounter only failure points whose probability in the
operational profile is so low that fixes are worthless, or
simply that it does not encounter any failure region. That is,
the debug test regime chosen, or the tester’s experience,
may be ill-matched to the failure regions present in the
software. Furthermore, even if debug testing does achieve
ultra-reliability, it cannot demonstrate that ultra-reliability
has been achieved; only an infeasible amount of operational
testing can demonstrate that [20], [3].

We assume that all testers, upon observing a test failure,
choose fixes that eliminate exactly the same failure region;
that failure regions are disjoint; and that all test failures are
noticed (that is, there is a perfect oracle). The limitations of
these assumptions have been discussed in Section 2.2.

Note that we are not considering the cost of removing a
failure region; in practice, this may depend on the testing
method that was used to detect the failure and on the phase
of the development cycle in which the failure occurred.

In practice, a debugger may use information about the
subdomain Di from which a failed test case comes in order
to figure out how to “fix” the problem. This information
may make it easier to locate the problem, but may also
lead to an inadequate fix, for example, one that only re-
moves Di > F, rather than all of a failure region F. This
situation is not captured by our model, in which we assume
that fixes and their corresponding failure regions are
uniquely determined by failure points, independent of the
testing strategy.

The failure rate of a failure region is the probability that
an element of that region will be selected when selecting an
input according to the operational distribution. The detec-
tion rate of a failure region is the probability that an element
of that region will be selected when one input is selected
during debug testing. These are the probabilities that the
program will fail because of this particular region under the
operational profile and the debug profile, respectively.

We will study the program failure probability after a
testset of size T tests has been applied, as a random variable
Q. In this section, we focus mainly on the expected value of
Q; later we explore other aspects of the distribution of Q.”
The simplest form of comparison assumes that equal effort
is spent on both testing methods, and that the effort is
measured by T. The comparison can be generalized to ac-
count for different costs per test case between methods.
Although our examples only scratch the surface of the
analysis possible in our models, we believe that they show
the formalism to be reasonable and useful, and they pro-
vide insight into the process of testing to achieve reliability.

3.2 Single Failure Region, Debug Testing without
Subdomains

Consider a program with failure probability q and only one
failure region F. (Thus, F’s failure rate for operational test-
ing is q as well.) Initially, we take debug testing as being
conducted according to some overall test profile V. That is,
tests are selected just as in operational testing, but with a
different profile. The detection rate is thus a constant given
by

d V t
t F

=
∈
∑ ( ) .                                           (1)

After a testset of size T has been tried, what is the distri-
bution of the failure probability Q of the final debugged
program? Under the assumptions above, Q will be 0 if the
test encountered the region (which is then eliminated by a
fix), and still q otherwise. Thus for debug testing:

P(Q = 0) = 1- (1 - d)
T
                               (2)

P(Q = q) = (1 - d)
T
                                    (3)

E(Q) = 0 ¿ P(Q = 0) + q ¿ P(Q =                 (4)

 = q (1 - d)
T
                                        (5)

With operational testing:
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P(Q = 0) = 1 - (1 - q)
T
                             (6)

P(Q = q) = (1 - q)
T
                              (7)

E(Q) = q (1 - q)
T
 .                                (8)

So we get the obvious result that debug testing is superior
iff d > q.

As a simple case, assume that a fixed budget is available
for testing and allows different numbers of tests depending
on the type of testing, say, TD tests for debug testing and TR

for operational testing. In other words, a test case in debug
testing costs on average TR/TD times what it costs in opera-
tional testing. Then, debug testing is superior iff

TD log(1 - d) < TR log(1 - q),                      (9)

that is, for small q and d, iff

dTD > qTR.                                     (10)

That is, debug testing is superior if, compared with opera-
tional testing, it improves the effectiveness of a single test
more than it raises its average cost.

3.3 Single Failure Region, Debug Testing with
Subdomains

Let the input domain be divided into subdomains D1, D2,

¤, Dn. Ti test cases are selected independently from each Di

according to test profile Vi on subdomain Di, 1 � i � n. The

single failure region F may be spread across the subdo-

mains in an arbitrary way. Let d
i
 be the debug detection

rate
6
 for subdomain Di:

d V ti

t F D
i

i

=
∈
∑

>

( ) .                              (11)

Then

P d
i

n
n Ti( ) ( )Θ Π= = − −

=
0 1 1

1

                   (12)

and

E q d
i

n
i Ti( ) ( )Θ Π= −

=1

1                          (13)

For comparison with operational testing, (8) can be com-

pared with (13) by taking T T
i

n

i= =1Σ .

Here E(Q) depends on the extent to which the subdo-
mains “concentrate” the failure points. In comparing the
probability of detecting at least one failure using random
testing and partition testing, Weyuker and Jeng [16] and
Hamlet and Taylor [12] observed this “concentration” ef-
fect. In the case of a single failure region, we are consider-
ing almost the same question that they did. Weyuker has
noted that failure detection probability may not be the right
parameter to study, and here we go beyond it to study the
delivered reliability. Our explicit use of failure region(s)
makes our model capable of analyzing more complex
situations.

Several straightforward special cases explore failure con-
centration:

6. The somewhat peculiar use of a superscript anticipates a different us-
age for subscripts to follow.

• � At one extreme, suppose that for some i, subdomain
Di ´ F. Then d

i
 = 1, and consequently E(Q) = 0, so de-

bug testing is superior for any 0 < q < 1.
• � At the other extreme, the failure region might be uni-

formly “spread out” over all the subdomains
weighted by their profiles and test counts, in the

sense that the chance d  of finding a failure in each
subdomain is the same. Then the results of the previ-

ous section apply, with d d=  in (5). Operational

testing is superior iff q > d , which is to be expected if
the operational profile has a peak within F.

• � More generally, the expected failure probability after
debugging is smaller for debugging with subdomains
than for operational testing if and only if there is a
collection D Di ik1

, ,K  of k subdomains such that

( ) ( ) ( ) ( )1 1 1 11 1 2 2− − − < −d d d q
n T i T i T Ti i k ik

L .    (14)

As in the previous extreme, one way this can happen
is if some subdomain is completely contained in the
failure set, in which case its detection rate is 1 and the
left-hand side of (14) is 0. It is also possible for some
collection of subdomains which individually have
moderately, but not exceptionally, high detection rates
to collectively yield a high enough detection rate to
make debug testing superior. On the other hand, op-
erational testing will be superior if the above condi-
tion does not hold. For instance, because of poor
choice of the input distributions within subdomains, a
failure region with high failure rate may have low
detection rate for every subdomain; or the tester may
select large numbers of test cases from subdomains
with low detection rates and small numbers of test
cases from the “good” subdomains.

By considering the failure region F to be a strict subset of
a single subdomain, it is possible to capture two intuitively
appealing special cases, one in which debug testing is supe-
rior, the other in which operational testing is superior. Sup-
pose that F ´ Dk for some k, but some points of subdomain
Dk are not failure points: D Fk /, ; and that no possibly
overlapping subdomain touches F: F > Di = /0 , i ¡ k. Fur-
ther, suppose that within Dk the two testing techniques (on
average) are equally likely to encounter F. That is, the de-
tection probability d

k
 is just the fraction of the operational-

distribution inputs in Dk that encounter F:

d

Q t

Q t

k t F

t Dk

= ∈

∈

∑
∑

( )

( )
.                                    (15)

Finally, take the debug testing points as equally spread
among subdomains, so since there are n subdomains, and T
test points for comparison with operational testing, Tk = T/n.

The intuitive situation in which debug testing should be
superior is the one in which operational testing with profile

Q is relatively neglectful of Dk, that is, T 
t Dk∈Σ  Q(t) ! Tk, or

substituting Tk = T/n,

t Dk

Q t
n

∈
∑ ( ) !

1
 .                                 (16)
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Under these assumptions, the expected value of failure
probability for debug testing is:

q d q d
i

n
i T k Ti k

=
− = −

1

1 1Π ( ) ( )                                                 (17)

 = − ∈

∈

∑
∑

q

Q t

Q t
t F

t D

T n

k

(

( )

( )
) /1                                    (18)

< − ∈
∑

q

Q t

n
t F T n(

( )

/
) /1

1
                                    (19)

≈ −
∈
∑q T Q t
t F

( ( ))1                                        (20)

≈ −q q T( )1 ,                                                   (21)

where the last term is the expected value of the failure
probability for operational testing. (The approximations in
(20) and (21) require that d

k
 and q are small, using (1 + x)

y
 <

1 + yx for small x.)
Thus, when debug testing is used, the failure probability

delivered will be less than the failure probability delivered
when operational testing is used. That is, debug testing de-
livers the better reliability. To paraphrase, we have captured
the situation where a subdomain includes the only failure
region, and under plausible assumptions debug testing
leads to the better reliability. Intuitively, the subdomain Dk

is chosen to be “failure prone,” and it is then given more
test cases than the operational profile would imply.

A similar analysis yields the opposite result when many
operational tests fall in Dk. If there are many other subdo-
mains, debug testing “wastes” most of its tests on them
(still assuming that Tk = T/n). That operational sampling of
Dk is much greater than its debug sampling is expressed as

T Q t T
t D k

k∈Σ ( ) @ , or substituting Tk = T/n,

t Dk

Q t
n

∈
∑ ( ) @

1
.                                   (22)

Then using (22) instead of (16) in (19) above reverses the
inequality and gives the result that operational testing de-
livers better reliability than debug testing.

Although these two cases are intuitively obvious, and can
be obtained using the failure-detection measure of [16], they
demonstrate that our model is useful, and in Section 3.5 on
“Multiple Failure Regions, Debugging with Subdomains”
below they will be combined to demonstrate that good fail-
ure detection does not imply good delivered reliability.

3.4 Multiple Failure Regions, Debugging without
Subdomains

Suppose a program contains m nonoverlapping failure re-
gions {F1, F2, ¤, Fm}, with failure rates q1, q2, ..., qm and detec-
tion rates d1, d2, ..., dm. Then its expected failure probability
after T tests is

E q d
i

m

i i
T( ) ( )Θ = −

=
∑

1

1                              (23)

for debug testing, and

E q q
i

m

i i
T( ) ( )Θ = −

=
∑

1

1                            (24)

for operational testing. These formulas are justified by con-
sidering that the contribution of each failure region to the
failure rate after testing is a random variable, taking on the
value 0 if the failure region is eliminated during testing,
and the value qi otherwise. Its expected value is obtained by
multiplying qi times the probability of the failure region not
being detected. The failure probability of the debugged
program is the sum of these random variables, and its ex-
pected value is thus the sum of their expected values.

If, for instance, di � qi for i = 1, ..., m, debug testing is su-
perior to operational testing. This seems natural, as the hy-
pothesis means that debug testing performs better than
operational testing on each failure region. This belief is
probably the usual basis of the “debugger’s intuition.”
However, it is a very strong assumption. If it is false, the
main factor affecting the delivered reliability is the relation-
ship between the failure rates and the detection rates.

We can analyze the effect of this factor in isolation by as-
suming that, for each randomly chosen test case, debug
testing has the same probability of finding a failure region
as operational testing, i.e., Σ Σd qi i= . In the simplest case

that all the failure regions have the same failure rate q, op-
erational testing is superior, because to minimize

q d
i

m

i
T

=
∑ −

1

1( ) ,                                  (25)

under the condition that Σ d mqi = , requires d qi = . More

generally, we can compare a set of testing methods such
that they all have the same probability per test of finding a
failure (i.e., for all methods Σ d Ki = ). A way of looking at

this question is to imagine that we can freely “transfer” a
certain amount of detection rate from one failure region to
another—say, from F1 to F2, leaving the detection rates of all
the other failure regions unchanged—and ask under which
conditions this would decrease the expected value of the
program’s failure probability after T tests. The new value of
the failure probability would be

q d q d q dT T

i

m

i i
T

1 1 2 2
3

1 1 1( ) ( ) ( )− + + − − + −
=
∑e e      (26)

and by differentiating it with respect to e we obtain that the
derivative is negative, i.e., the change is beneficial, iff:

q

q

d

d

T

T
1

2

2
1

1
1

1

1
≤

−

−

−

−

( )

( )

( )

( )
.                              (27)

This inequality implies, in the first place, that it is never
beneficial to increase the detection rate of a failure region
above the detection rate of another region with a higher
failure rate. This is an intuitively plausible extension of the
results obtained by Hamlet and Taylor [12].

However, other consequences also hold:

• � If we can run only one test, then the method which
gives the best expected reliability after debugging is
one that has detection rate K for the failure region
with the largest failure rate, and 0 for the others;

• � As the number of tests that one can run increases, it
becomes beneficial to increase the detection rates of
regions with increasingly small failure rates. For a
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given number of tests T, the optimal detection rates
for failure regions Fi and Fj must satisfy the equation:

q d q di i
T

j j
T( ) ( )( ) ( )1 11 1− = −− −                  (28)

• � As T tends to infinity, the optimal detection rates di all
tend to K/m.

Of course, these results only describe optimality for the
expected failure probability after debugging. If, for instance,
we wished instead to maximize the probability of finding
the failure region with the highest failure rate, it would
clearly be best to have a method that has detection rate K
for this failure region, and 0 for the others.

These considerations only apply under the artificial con-
straint Σ d Ki = ; however, they help to clarify the issue of

how the “allocation” of detection rates to failure regions af-
fects the effectiveness of testing, separately from the issue of
how effective a testing method is at finding failure regions.

With the model used in this section, it is easy to model
cases in which the probability of finding a failure is a bad
indicator of how well a testing method improves reliability.
Consider a program with a large number m of failure re-

gions, such that di = d, i = 1, ..., m, and that md > 
j

m

=1Σ  qi,

and that q1 > d @ qi, i ¡ 1. Then debug testing ensures the
higher probability of finding a failure, yet produces a much

worse E(Q) than operational testing, since most of the fail-
ure regions that debugging detects have a negligible effect
on reliability. This case is the “debugger’s nightmare,” a
situation in which debugging goes on and on with apparent
success, but really does no good at all.

Interestingly, one can also show that cases exist in which
operational testing has the better failure detection, but de-
bug testing delivers better reliability, if few tests are run.
The actual numerical differences are negligible for practical
purposes, but we describe such a scenario to illustrate the
subtlety of the problem. Consider a program in which fail-
ure region F1 has a much greater failure rate than any other,
but also a detection rate greater than its failure rate, d1 > q1

@ qi, i ¡ 1. Let the failure regions 2, ..., m have negligible
detection rates, but failure rates that together outweigh the
imbalance between d1 and q1. These conditions ensure that

i

m

i i

m

id q= =<
1 1Σ Σ . Then the probability of failure per test is

greater for operational testing than for debug testing. Yet,
during the early phase of testing, debug testing will have a
greater probability of eliminating F1, and will thus offer a

(marginally) better E(Q) to a tester who can afford only a
few tests.

3.5 Multiple Failure Regions, Debugging with
Subdomains

The m failure regions Fj may be arbitrarily spread across the
n subdomains Di. The detection rates are now:

d V tj
i

t F D
i

j i

=
∈
∑

>

( ) .                                (29)

As in the case of a single failure region, there are some
straightforward observations:

• � The detection of a particular failure region Fj is guar-
anteed if there is a subdomain Di that is completely

contained in Fj. More generally, the probability of de-
tecting Fj is high if for some i, the probability of se-
lecting an element of Fj from Di is high.

• � However, in contrast to the analysis of operational
testing and to debug testing without subdomains,
there is some interesting nonindependence between
different failure regions. A simple illustration of this
dependence arises when there are two failure regions
contained within the same subdomain, and no other
subdomains that intersect either failure region. In
subdomain testing with one test case per subdomain,
at most one of these failure regions can be detected.

• � If a high-failure-rate failure region is spread out
across several big subdomains, it may be hard to de-
tect. If, moreover, these subdomains have moderately
high concentrations of small (low-failure-rate) failure
regions, it will be fairly easy to detect a lot of those.
This is again the debugger’s nightmare: detection and
removal of many minor problems, while failing to
detect the serious problems.

A general formula for the expected failure probability
after debug testing with subdomains follows from the dis-
cussion of Q’s distribution in Section 4, below. In the re-
mainder of this section, we use examples to illustrate some
of the phenomena that can occur.

3.5.1 Detecting Failures vs. Delivering Reliability—
Operational Testing Superior

The two special cases described in Section 3.3 for a single
failure region in which debug testing (resp. operational test-
ing) is superior when the failure region lies within a subdo-
main, can occur simultaneously with multiple failure re-
gions. It is possible to use this situation to construct a special
case with the properties that: 1) debug testing is much more
likely to find a failure, but 2) operational testing is superior in
reducing the ultimate failure probability under our assump-
tion that all detected failure regions are removed.

Two disjoint subdomains suffice to construct this example:
D1 strictly containing F1 for which debug testing is more
likely to find a failure and D2 strictly containing F2 in which

operational testing is better. Assuming F1 ´ D1, F2 ´ D2 im-

plies d d1
2

2
1 0= = . To account for operational testing being

better on F1 than on F2, let q2 < q @ q1. Debug testing is made
much better than operational testing at finding F1 by setting

d q1
1

@ ; and taking d q2
2 ≈  makes operational testing better

at finding F2, because it places most of its T test points in D2.
Take T1 = T2 = T/2. We have thus a scenario in which debug
testing looks—on a test-by test basis—intuitively better
than operational testing. However, operational testing de-
livers better reliability. Here are the calculations:

1)�The probability of finding a failure with debug testing is
about

1 1 11
1 2 2− − −( ) ( )/ /d qT T ,                        (30)

2)�while with operational testing it is

1 1− −( )q T .                                (31)

So since d q1
1

@ , debug testing is much better at find-

ing a failure.
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3)�However, if we look at the failure probability delivered
after fixing the failure regions uncovered, the situation
is different. For operational testing,

E q q q qT T( ) ( ) ( )Θ = − + −1 1 2 21 1           (32)

(as explained at the beginning of Section 3.4). Let us
consider small values of T, such that the first summand
is much smaller than the second one, because q1 ! q2.
Then since q2 £ q, for operational testing:

E q q T( ) ( )Θ ≈ −1 .                            (33)

On the other hand, debug testing will likely result in
F1 being fixed, but F2 will be fixed with lower prob-
ability than in operational testing. For debug testing,

E q d q qT T( ) ( ) ( )/ /Θ = − + −1 1
1 2

2 2
21 1            (34)

≈ −q q T( ) /1 2 .                                       (35)

Comparing (33) and (35), operational testing results in
much better delivered reliability of the software.

This example straightforwardly captures the intuitive
situation in which debug testing finds the “wrong” bugs,
from the standpoint of better delivered reliability.

Another way to measure the effectiveness of testing in
this situation is the probability that a preset reliability target
qR is reached. Then, the precise value of qR matters in de-
termining which testing regime is better. Let us simplify
calculations by setting T = 2. Then,

• � if q1 < qR < q2, the target is reached if F2 is detected, i.e.,

with probability d q2
2 ≈  by debug testing and with

probability (1 - (1 - q2)
2
) £ (1 - (1 - q)

2
) £ 2q by opera-

tional testing, so operational testing is superior.

• � If qR < q1 < q2 then the target is attained if both failure

regions are detected, i.e., with probability d d d q1
1

2
2

1
1≈

by debug testing and with probability 2q1 q2 £ 2q1q with
operational testing. This expression is obtained because
the event of interest is the union of two disjoint events:
finding F1 with one test and F2 with the second test, and
the inverse sequence. So, since we assumed

d q q1
1

1@ @ , debug testing is better in this case.

3.5.2 Detecting Failures vs. Delivering Reliability—
Debug Testing Superior

We have also been able to construct an example of the op-
posite case, in which operational testing is better at detect-
ing failures, yet debug testing yields better reliability. How-
ever, the intuitive situation is more subtle, and the advan-
tage for debug testing only marginal.

Consider m subdomains, each with a strictly contained
failure region Fi. Assume that debug testing is very good at
detecting one failure region F1, which has a high failure
rate, but debug testing is unlikely to detect many other fail-
ure regions, with smaller failure rates. That is,

d q q d ii i
i

1
1

1 0 1@ > > ≈ ≠, . F2, F3, etc., correspond to bugs

that are both “small”—they have low failure rates—and
“subtle”—intuitive debug testing strategies are unlikely to
discover them. Then, operational testing may be better at
producing a failure early, because debug testing wastes

most test cases on those subdomains where it has negligible
probability of finding a failure. Yet, if debug testing does
reveal a failure, it will cause the most important failure re-
gion F1 to be removed; hence debug testing can yield better
delivered reliability.

For convenience let all the failure rates other than q1 be
q2. The probabilities of causing a failure in the first T tests
are:

( ( ( ( ) ))1 1 11 2− − + −q m q T                       (36)

for operational testing, and approximately

1 1 1
1− −( ) /d T m                                (37)

for debug testing. The expected values of the delivered fail-
ure probability of the tested program are:

q q q m qT T
1 1 2 21 1 1( ) ( )( )− + − −                   (38)

for operational testing, and approximately

q m q d T m
2 1 1

11 1( ) ( ) /− + −                       (39)

for debug testing.
The following is a typical numerical example: m = 20

subdomains and failure regions, q1 = 10 ð–3
, d1

1 0 05= . , and qi =

10ð–4
, d1

1 510= − , i ¡ 1, with a test run of 400 tests. Operational

testing is more likely to detect a failure (by 0.69 to 0.64), yet

debug testing has a better E(Q) (by 0.00226 to 0.00250).

However, if we keep testing, then both testing methods
will soon reach a practical certainty of eliminating F1, and
debug testing will have a smaller chance of finding other
failure regions. So, operational testing will catch up. In the
example above, the crossover is at about 1,318 tests, when
both methods achieve E(Q) = 0.00193. After 10,000 tests,
E(Q) with operational testing is down to 7 � 10

–4
 (that is, on

average only seven failure regions remain), against 0.0019
for debug testing (that is, on average none of the 19 “small”
failure regions have yet been found).

This example illustrates a general rule: the number of
tests that we are willing to spend on a given test regime
affects which test regime we should choose. As testing and
fixing proceed and alter the failure set of the program,
which test regime is better will also change (but the tester
will not know when, because the change depends on which
(unknown) failure regions are left in the program).

We emphasize that the case described in this section, in
which operational testing is better at failure detection, but
debug testing may deliver better reliability, is quite unlike
the previous one favoring operational testing (Section
3.5.1). The previous case has an obvious intuitive meaning,
and the analysis shows a substantial difference between the
methods. The present case appears contrived, to get the
result requires careful adjustment of the parameters, yet
still the difference exhibited between methods is not sub-
stantial. Of course, our failure to discover a satisfying, sim-
ple example does not mean one does not exist, but we be-
lieve that the debug tester is more likely to be misled by
considering failure-finding probability, than is the opera-
tional tester.
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3.5.3 Detecting Failures vs. Delivering Reliability—
Complex Cases

With different assumptions about the detection rates of fail-
ure regions with different failure rates, it is possible to de-
scribe more complex situations. For instance, we could con-
sider the effect of having three classes of failure regions, with
failure rates that are an order of magnitude apart, and such
that their detection rates are larger than failure rates for all
failure regions except those in the intermediate class. Then,
we may have a scenario in which debug testing yields the
better expected reliability with a small test run, T < T1, then
operational testing becomes better while T1 < T < T2, and then
again debug testing is preferable if T > T2. This points, again,
at the opportunity of using combinations of different test
strategies in different phases of the testing.

These cases illustrate the extra complexity of the situa-
tions that can be analyzed using failure regions and the
expected value of the delivered reliability. Our examples
mostly involve the unrealistic (but easier to analyze) case of
failure regions strictly contained in subdomains. This is not
a limitation of the model, but it is the simplest situation to
conceive, and it suffices to demonstrate most of the proper-
ties that concern us.

4 THE DISTRIBUTION OF Q

Up to this point, our investigation of the random variable Q
has focused on its expected value. It is sometimes useful to

consider other statistical properties of Q, such as its vari-

ance or the probability that Q is less than some given

(un)reliability target qt. One might prefer testing method M1

over testing method M2 if ΘM1
 has a smaller variance than

ΘM2
 so that the results of using M1 are more predictable than

those of M2. Alternatively, one might prefer M1 if P(ΘM1
 � qt)

is relatively large, so that one can be more confident that the
reliability target will be achieved.

In this section, we investigate the distribution of the ran-
dom variable Q. We then present an example illustrating
how small changes in the detection rates can influence the
tail probability P(Q � qt). This example shows that while,
under ideal circumstances, debug testing can result in a
high probability of reaching given reliability target, under
less ideal circumstances, debug testing can perform as
badly as, or worse than, operational testing.

4.1 Computation of the Distribution of Q

In order to compute the distribution of Q, we must derive

the probability mass at each possible value of Q. Let )�=

{F1, ¤, Fm} denote the collection of failure regions of a pro-

gram and let q1, ¤, qm, be their respective failure rates. For

each subcollection X ´ {1, ¤, m}, let θX j X jq=
/∈Σ . Thus, qX

is the failure probability after removal from�)�of only the

failure regions indexed by X.
There are at most 2

m
 values of qX that Q may assume, and

there may be fewer values if two different subsets X1 and X2

have the same total failure rate. To investigate the probability
mass at each value of Q, we initially assume, for simplicity,
that each subset of )  has a different total failure rate, i.e.,

that Q has 2
m

 possible values. We will then relax this as-
sumption.

Let pX denote the probability that the failure regions de-
noted by X (and no others) are detected. That is,

P pX X( )Θ = =θ

For a given collection X, the probabilities pX depend, per-
haps in a complicated way, on the details of the test selec-
tion strategy.

Consider a sequence of n test cases. We can represent the
results of executing such a sequence by an n-tuple, (r1, ¤, rn)
where ri = 0 if no new faults are discovered with the ith test
case and ri = j if Fj is discovered with the ith test case. For
example, the 5-tuple (0, 3, 0, 1, 0), represents execution of 5
test cases with discovery of failure region 3 with the second
test case, discovery of failure region 1 with the fourth test
case, and no failures on the other three test cases. We can
then compute pX by finding the probability of each sequence
in which those failure regions belonging to X (and no others)
are discovered, then summing those probabilities.

To compute the probability of a sequence (r1, ¤, rn), let p j
i

denote the probability that failure region Fj will be detected

by the ith test case. Let pi
0  be the probability that no new

failure region is discovered by the ith test case. That is, p j
i

denotes the probability that ri = j. The probability of se-

quence (r1, ¤, rn) occurring is then the product of the corre-

sponding p j
i . For example, the above 5-tuple has probability

p p p p p0
1

3
2

0
3

1
4

0
5 .

The values of the p j
i  depend on the particular testing

strategy used, as well as on the detection rates or failure

rates. For operational testing, p qj
i

j=  if Fj has not been de-

tected by test cases 1, ¤, i - 1, and 0 otherwise. For debug

testing without subdomains, p dj
i

j=  if Fj has not been de-

tected by test cases 1, ¤, i - 1, and 0 otherwise. For debug
testing with subdomains, with one test case per subdomain,

assuming the ith test case is selected from Di, p dj
i

j
i=  if Fj

has not been detected by test cases 1, ¤, i - 1, and 0 other-

wise. Note that the p j
i  are not constants, but have values

dependent on the history of the testing process. Also note
that with these testing scenarios, any sequence in which the
same positive value of j occurs more than once (represent-
ing rediscovery of failure region Fj after it has been discov-
ered and removed) has probability zero. More complicated
situations such as partial removal of a failure region can be
modeled in a similar manner.

Finally, pX is the sum of the probabilities of all those se-
quences in which the collection of failure regions repre-
sented by X is detected (and no others).

More generally, we may have several different subsets of

)�that yield the same total failure rate. If θ θ θX X Xk1 2
= = K ,

then

P pX
i

k

Xi
( )Θ = =

=
∑θ

1
1

.
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4.2 Example
The previous section shows how one can derive the exact

probabilities for the different values of Q for the testing
scenarios considered earlier. This situation is too compli-
cated for algebraic analysis, so we wrote a program to com-

pute these probabilities from input values of qi and dj
i , for

small numbers of test cases, subdomains, and failure-
regions. From these probabilities we can obtain the ex-

pected value and variance of Q, and the probability that a
given reliability target is reached.

In this section, we present an example in which, for a
single hypothetical program, we examine the distribution
of Q and the resulting tail probabilities under several differ-
ent testing scenarios. Consider a program with six failure
regions, with q1 = 0.01 and q2 = q3 = q4 = q5 = q6 = 0.001. Be-
fore testing, the failure rate is q = 0.015. Call F1 the “big”
failure region and F2 ¤ F6 “small” failure regions. In this
example the possible values of Q are determined by
whether the big failure region is detected, along with the
number of small failure regions detected, so there are 12
possible values, rather than 2

6
 = 64 of them. These 12 values

are shown in the second column, q, of Table 1. The remain-
ing columns give the corresponding probabilities for op-
erational testing and for several debug testing scenarios,
which are described below. The last four rows of the table
give the expected value, the variance, the probability of
reaching the reliability target q = 0.01 (P(Q � 0.01)), and
the probability of detecting at least one failure region (P(Q
< 0.015)). To reach the reliability target 0.01, it is necessary
to either detect the big failure region or to detect all five of
the small failure regions.

Table 1 shows four scenarios for debug testing with
subdomains. In each, there are six disjoint subdomains,

with Fi ´ Di. Thus, dj
i = 0  for i ¡ j. The four scenarios have

been selected for their illustrative value, although of course
they are not necessarily representative of any real-world
situation. The debug testing results are based on one test
case per subdomain and the operational testing results are
also based on a total of six test cases.

In each scenario, d q1
1

1 0 01= = . . The debug scenarios dif-

fer only in the values of di
i  for the small subdomains, i.e., in

how likely it is to detect failure region i with a test case
from subdomain i. In all four scenarios, all of the detection
rates assumed for the small failure regions are at least an order of
magnitude greater than the failure rates of these failure regions.
Thus, one might expect that these scenarios would strongly
favor debug testing over operational testing. We shall see
that, as we move away from the ideal debug testing sce-
nario, the advantage of debug testing (measured by the
probability of reaching the reliability target) quickly di-
minishes.

operational. Of the 12 possible values for Q, many have
negligible probabilities. For example Q = 0.003 requires
detection of the large failure region and two of the small
ones, which occurs with probability approximately 10

–8
.

The probability of reaching the reliability target is quite
low, essentially equal to the probability of detecting the
big failure region in six tries. The probability of detecting
at least one failure region is only a bit better, with the
slight improvement reflecting the possibility of detecting
one of the small failure regions.

Debug-1. This scenario is as favorable as possible for debug
testing, under the above constraints. Each small failure re-

gion is guaranteed to be detected: di
i = 1 0.  for i = 2, ¤, 6.

Since all five small failure regions are guaranteed to be

detected, there are only two nonzero values of P(Q = q),
distinguished by whether or not the big failure region is
detected. The variance is low, the reliability target is
guaranteed to be met and it is guaranteed that at least
one failure region will be detected. So, under these ideal
circumstances, debug testing is a clear winner. But in the
remaining scenarios, we investigate what happens when
these most favorable conditions do not hold.

Debug-2. In this scenario, the small failure regions are fairly

likely to be detected: di
i = 0 7.  for i = 2, ¤, 6. Although the

probability of detecting at least one failure region is still

TABLE 1
DISTRIBUTIONS OF Q WITH MEANS AND VARIANCES FOR SEVERAL TESTING SCENARIOS

P(Q = q)

q operational debug-1 debug-2 debug-3 debug-4

Distribution of Q 0.015 0.9133 0.0000 0.0024 0.0309 0.000
0.014 0.0279 0.0000 0.0281 0.1547 0.000
0.013 0.0003 0.0000 0.1310 0.3094 0.000
0.012 0.0000 0.0000 0.3056 0.3094 0.000
0.011 0.0000 0.0000 0.3565 0.1547 0.9801
0.010 0.0000 0.0000 0.1664 0.0309 0.0099
0.005 0.0570 0.0000 0.0000 0.0003 0.0000
0.004 0.0014 0.0000 0.0003 0.0016 0.0000
0.003 0.0000 0.0000 0.0013 0.003‘ 0.0000
0.002 0.0000 0.0000 0.0031 0.0031 0.0000
0.001 0.0000 0.9900 0.0036 0.0016 0.0099
0.000 0.0000 0.0100 0.0017 0.0003 0.0001

Expected value E(Q)   0.0144 0.0010 0.0114 0.0124 0.0109
    Variance 0.0123 0.0010 0.0029 0.0029 0.0104
        P(Q � 0.01) 0.0584 1.0000 0.1764 0.0409 0.0199
        P(Q � 0.15) 0.0866 1.0000 0.9976 0.9691 1.0000
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very high, and the variance is quite small, E(Q) is close to
that of operational testing and the probability of reaching
the reliability target has fallen substantially (compared to

Debug-1). This is because with di
i = 0 7. , the probability of

finding all five small failure regions is low.

Debug-3. Continuing in this manner, in the next scenario
the small failure regions are even less likely to be de-

tected: di
i = 0 5.  for i = 2, ¤, 6. Note that the detection

rates are still much higher than the failure rates. E(Q) is
still slightly better than for operational testing, but the
probability of reaching the target is less than for opera-
tional testing.

7
 This is quite surprising. This scenario

models a situation in which the debug tester has very
good, but not perfect, intuition as to where the small
failure regions are—for i > 1, half of each subdomain Di

consists of failure points from Fi. This good intuition
pays off by giving the debug tester a high probability of
detecting at least one failure region. On the other hand,
the good intuition is useless in terms of enhancing the
probability of reaching the reliability target!

Debug-4. Lastly, we consider another scenario in which the
debug tester has very good intuition. Detection of four of
the small failure regions is guaranteed, but one small
failure region has a detection rate equal to that of the big

failure region: d2
2 0 01= . , di

i = 1 0.  for i = 3, ¤, 6. Detec-

tion of at least one failure region is guaranteed, E(Q) is
slightly better than for operational testing, the variance
is similar to that of operational testing, but, again, the
probability of reaching the target is very low. Like the
Debug-3 scenario, this shows that with imperfect, but
still very good intuition, the debug tester may perform
worse than operational testing, in terms of probability of
reaching the reliability target.

One cannot draw sweeping conclusions from this small
and somewhat contrived example. In it the failure rates are
much higher, and the reliability target is much looser, than
for systems that purport to be highly reliable. However,
several points are worth noting:

• � Testing scenarios that have similar values of E(Q) may
differ widely in other important statistical measures.
The implication is that analysis much more detailed
than that attempted to date is required to compare
testing methods.

• � Small deviations from the optimal debug-testing sce-
nario lead to severe degradations in behavior, espe-
cially in the probability of reaching a reliability target.
Operational testing cannot be used to attain stringent
reliability targets [20], [3], but it seems unlikely that
debug-testing is an alternative under realistic as-
sumptions.

• � The distribution of Q is very different from the usual
“textbook” ones (binomial, etc.). This calls into ques-
tion any simple assumptions about the behavior of Q.

7. This may seem counter-intuitive, given that d q
1

1

1
= . However, debug

testing with subdomains only has one chance to find the big failure region

(when using a test case from D1), whereas operational testing gets six

chances to find it.

5 SUMMARY AND FUTURE WORK

We have considered the question of whether low operational
failure probability (and hence better reliability) may be better
obtained by looking for failures (debug testing), or by sam-
pling from expected usage (operational testing). The testing
models we considered can be analyzed in two ways, with
and without identifying subdomains for debug testing. This
paper generalizes and extends the “random vs. partition”
studies that followed from the work of Duran and Ntafos [8].
We have analyzed a number of special cases, showing that
the theory can capture and inform our intuition about the
strengths and weaknesses of the two testing schemes.

Debug testers always have the potential advantage that
by adjusting the test profile and subdomain definitions they
might improve the behavior of debug methods. While op-
erational testers have no such freedom, they do have the
advantage that the operational profile, and operational
testing, define the desired result. Studies like this one can
thus be viewed as advice to the debug tester, on how to
choose a test profile that will yield superior reliability. If the
debug tester has good intuition about which points are
likely to be failure points and, moreover, about which of
these failure points are likely to belong to large failure re-
gions, such insight can be used to devise testing strategies
that deliver much lower expected failure probability than
operational testing. If the tester lacks such intuition or is
unable to map that intuition into an appropriate input dis-
tribution, then operational testing may be indicated.

Trusting the debuggers’ own judgment about their abili-
ties would be inappropriate (see e.g., the experiments by
Basili and Green [1]). But it is possible to compare the effec-
tiveness of their testing profiles with that of operational
profiles. A limited investment in such measurement would
be, for any large development organization, a cost-effective
step toward better quantitative decision-making.

In particular, our analysis has shown:

• � There are obvious cases in which debug testing is su-
perior (roughly, because its detection rates are greater
than the failure probability). Similarly, operational
testing can be obviously superior (roughly, because
detection rates in many subdomains are smaller than
the failure probability, so debug tests there are
wasted). These examples show that the theory corre-
sponds with intuition in limiting cases.

• � Debug testers should be aware of the potential confu-
sion between detecting failures and achieving reli-
ability, a confusion that occurs when testing finds
only unimportant failures. “Unimportant” of course
refers to the weighting of the operational profile,
which may well be unknown. But there is usually
some intuition about the frequency with which a
problem might arise in use, and if a debug technique
consistently turns up low-frequency problems, it may
be counterproductive to use it.

• � Trust in subdomain testing depends on trusting one’s
beliefs about how failure regions are divided among
subdomains. Previous work in this area has, in es-
sence, considered all failure points to be equally im-
portant. We have instead distinguished between dif-
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ferent groups of failure points based on their contri-
bution to the overall failure probability, and have thus
considered the reliability achieved by testing.

• � The analysis of debug testing without subdomains
suggests that, if limited resources are available, only
debug methods that focus on the most important fail-
ure regions are appropriate.

• � The problem of comparing testing strategies is very
challenging. Our model is more general than those
previously published, yet it is still quite simplistic.
Despite the model’s tractable nature, numerical com-
putation shows that results are very sensitive to the
details assumed for the methods compared, and sug-
gests that the distributions may be quite unlike those
usually assumed.

• � The results here may be of particular relevance to
those who have a responsibility for assuring ultra-
high reliability in safety-critical systems. While debug
testing may be a means of identifying failure sets that
have a very small chance of being encountered, and
thus improving reliability beyond what can be
achieved with operational testing, this cannot be
guaranteed: one could not be sure that the test regime
was not in some way ill-matched to the actual failure
regions present. Even when an ideal debug testing
strategy yields high probability of reaching a reliabil-
ity target, small deviations from the ideal may per-
form much worse. There is thus a need to demon-
strate the reliability that has actually been achieved,
and debug testing is unable to do this.

We hope that this kind of analysis will lead to more di-
rect practical uses. Ideally, one would be able to describe
sets of alternative conjectures about the failure regions of a
program that: 1) translate into indications for the testing
regime to be used and 2) can be checked by experiment. A
tester could thus decide on a sound basis which testing re-
gime to apply at a specific phase in the combined debug-
ging and validation process. As a minimum, this would be
based on which conjectures have proven to be verified in
the previous experience of a certain development organiza-
tion on a certain kind of program; at best, the observations
made during the testing of a specific program could di-
rectly support the decisions about testing that program.

A necessary next step is to proceed from assuming a
certain set of failure regions in the program, as we did here,
to considering probability distributions of the features of
the (actually unknown) failure regions of the program un-
der test. With the latter, more realistic hypothesis, we
would expect operational testing, in which failure detection
is “directed” by the faults that are actually present, to be
more predictable than debug testing, directed by a knowl-
edge of where failure regions may be. Preliminary results
[23] indicate that, under plausible assumptions, a debug
tester who performs better than operational testing on av-
erage (over many programs), would still exhibit a higher
variance in the achieved reliability, and thus a higher prob-
ability of unacceptably high residual failure probability in
the delivered program.

Likewise, while considering the expected values of fail-
ure intensities allows some insight into the phenomena of

interest, a tester will also be interested in other measures of
the distribution of a program’s failure probability. For in-
stance, the probability of achieving a failure probability no
greater than some stated target value (as in the example at
the end of Section 4) would probably be most interesting.

It is sensible to expect that different testing methods will
prove optimal for different organizations, different software
projects, and different stages in a project. So, research can-
not offer decision makers a single testing method that is
best for all situations. What it can do is to offer better crite-
ria for informing the choice of a method in a decision
maker’s specific situation.

No mathematical analysis, without the support of empiri-
cal knowledge, is sufficient for decision making. But for
comparing testing methods, the direct experimental ap-
proach of measuring the costs and achieved reliability levels
on parallel testing campaigns with different methods is pro-
hibitively expensive. The analytic approach we have used in
this paper deals with one aspect of the problem, i.e., with the
effectiveness of running a certain number of test cases. Di-
rections for future analytical research include relaxing the
assumptions underlying our model, such as the assumption
that failure regions are disjoint, fixes are perfect, and all test-
ers react to the same failure with the same fix, and incorpo-
rating a more realistic measure of test case cost.

Our analysis of the effectiveness of tests improves the
possibilities of rational decision-making because it de-
scribes effectiveness in terms of other meaningful measures.
Even for decisions that are based on intuitive judgment, it
can flag—and thus avoid—illogical decisions, by showing
nonobvious implications of the decision maker’s premises.
In addition, it can free the decision maker from total de-
pendence on judgment, because some of the measures it
involves can be more easily estimated than the reliability
improvement that is really of interest.
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