
Connecting Test Coverage to Software Dependability

Dick Hamlet

Portland State University
Center for Software Quality Research

Abstract
It is widely felt that software quality, in the form of
reliability or "trustworthiness," can be demonstrated
by the successful completion of testing that "covers"
the software. However, this intuition has little exper-
imental or theoretical support. This paper considers
why the intuition is so powerful and yet misleading.
Formal definitions of software "dependability" are
suggested, along with new approaches for measuring
this analog of trustworthiness.

1. The idea of test coverage
From the beginning of computer programming,
clever people have looked for clever ways to catch
the mistakes that too easily enter even the best pro-
grams. The essential ideas are ones of systematic
coverage, judging the quality of a test by how well it
explores the nooks and crannies of program or
specification. The ideas of functional coverage,
based on the specification, and control coverage,
based on the program’s control structure, are the
most popular. They have been repeatedly reinvented
and captured in testing tools. Control coverage is
intuitively appealing because software defects appear
as textually located faults along the path of execu-
tion, giving rise to failures. Functional coverage is
even more basic—function-based trials put the
software through its paces.

Although these coverage ideas have appeared in
the technical literature for more than 20 years, their
penetration in practice is surprisingly shallow.

The idea of mutation coverage [Hamlet77, DeM-
illo78, Howden82], in which the computational struc-
ture of a program is exercised, is not so obvious as
control coverage. Mutation remains a research tech-
nique rather than one exploited in practice, partly
because it is computationally expensive, but probably
more because it is harder for people to use than is
control coverage. Mutation is a double-edged sword:
it appears that mutation-adequate tests are difficult to
"fool" in the sense of detecting more faults than other
kinds of structural coverage; but at the same time, the

test data needed to attain mutation coverage are less
obvious, and harder to systematically amass,† than
data for control coverage. Despite its limited practi-
cal acceptance, mutation may be the key idea that
connects coverage testing with measures of software
quality. This connection arises because mutation can
be viewed as massive fault-seeding, a technique not
for finding failures, but for clocking how many may
have been missed.

1.1. State-of-the-art coverage testing
Current "best practice" for coverage testing as

described by Brian Marick, the author of a high-
quality public-domain tool (GCT), can be para-
phrased as follows [Marick91]:

Functional testing from the specification drives
all systematic testing. An initial testset should
be derived by listing as many cases and situa-
tions as can be identified in the specification,
and then creating test points that cover these.
The initial testset should be augmented by other
functional cases that can be identified only by
examining the program design; the additional
"functions" are those involving important data
structures, and often cover exception or boun-
dary situations. Call the combined set of test
data generated by this analysis the "functional"
testset. The quality of the functional testset is
now assessed by measuring its structural cover-
age. Deficiencies in coverage should be
addressed by returning to the specification and
design, adding to the list of cases and situations
to include functions that were missed.
Corresponding additions to the functional test-
set should account for all uncovered structure.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
† In control-flow testing, one must deal with infeasible

paths that make it impossible to attain coverage, but these are
easy to grasp in principle, and in practice not hard to identify.
The corresponding problem for mutation testing, that of
equivalent mutants, is both conceptually more difficult, and in
practice a frequent and difficult stumbling block.

Marick believes that the best test points are those
that cover multiple functional cases, because such
"complex" tests are most likely to excite failure
modes involving function interaction, and reducing
the number of tests saves time. A contrary belief has
some experimental support: Thévenode-Fosse suc-
cessfully used uniformly distributed random tests
within each functional class [Thévenode-Fosse93].

It is instructive to consider using Marick’s method
with mutation instead of control-flow coverage.
When the quality of the "functional" testset is
assessed by mutation coverage, it will be found to be
quite inadequate. It is universally observed by muta-
tion users that the mutation criterion is difficult to
satisfy. In practice, the tester proceeds to do pre-
cisely what Marick counsels against: each live
mutant is examined and a special test is devised to
kill it (or the tester becomes convinced that the
mutant is equivalent). Finding tests to kill mutants is
a difficult process by any means; it would be even
more difficult to do as Marick advises, to eliminate a
mutant by discovering an underexercised function
that left it alive. Thévenode-Fosse’s method is also
impractical, because randomly-generated tests do not
often kill mutants [Frankl&Weiss94§].

Carrying the argument one step farther, suppose
that instead of mutation, fault seeding were used as
the "coverage" criterion to assess the quality of
Marick’s functional testset. When the functional
testset misses some of the seeded errors, if the seed-
ing represents "real" faults well, the hit ratio meas-
ures the quality of testing. But to then purposefully
seek to "improve" the coverage so that the remaining
seeded faults are found is nonsensical. 20% hit ratio
(say) of the functional testset is a valid estimate that
20% of all faults have been found; 100% hit ratio
attained using knowledge of the seeded faults, is
meaningless.

Thus coverage testing practiced using control-
structure coverage as a check on functional coverage,
is a plausible systematic way to search for software
failures. But when we think of shifting "coverage"
toward a measure with significance for the real qual-
ity of the tested software—seeded faults—forcing
coverage does not seem a plausible way to gain
confidence in quality.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

§ For a small string-matching routine with only 356 non-
equivalent mutants and 49 executable DU pairs, they found that
only .019% of randomly selected testsets of size 8 achieved mu-
tation coverage, while 14% achieved all-uses dataflow
coverage—mutation coverage was almost 1000 times harder to
achieve.

1.2. Evaluation criteria for coverage testing
What objective criteria could be used to decide

questions about the value of coverage testing in gen-
eral, or to compare the merits of different coverage
techniques or testing procedures? Historically, tech-
niques were evaluated either by unsupported theoreti-
cal discussion, or by "experiments" based on circular
reasoning. The inventor of a new coverage technique
(say "my-T") was expected to argue that my-T was
subjectively cleverer than its predecessors, and to
compare my-T to other techniques in terms defined
only by themselves. For example, it was common to
find a testset for my-T coverage of some program,
then see what fraction of branch coverage that testset
attained; or, to find a testset for branch coverage and
see what its my-T coverage was. My-T was con-
sidered to be validated if its testset got high branch
coverage but not the other way around. Such studies
are really investigating special cases (for a few pro-
grams and a few testsets) of the "subsumes" relation,
to be discussed next.

Control-flow coverage methods can be compared
based on which method is more "demanding." Intui-
tively, a method is "at least as demanding" as another
if its testsets necessarily satisfy the other’s coverage.
The usual name for this relationship is subsumes. If
method Z subsumes method X, then it is impossible
to devise a method-Z test that is not also a method-X
test. The widespread interpretation of "Z subsumes
X" was that method Z is superior to method X. (The
most-used example is that branch testing is superior
to statement testing, because branch coverage strictly
subsumes statement coverage.) However, it was sug-
gested [Hamlet89] that subsumption could be
misleading in the real sense that natural (say) branch
tests fail to detect a failure that (different) natural
statement tests find. A continued exploration
[Weyuker+91] showed that the subsumes idea could
be refined so that it was less likely to be misleading,
and that it could be precisely studied by introducing a
probability that each method would detect a failure.
An example was given in which statement testing
was more likely to detect a failure than was branch
testing; however, even the contrived example was
unable to evidence much superiority for the "less
demanding" method, indicating that "subsumes" is
not so misleading after all. In a recent promising
paper [Frankl&Weyuker93], the subsumes relation-
ship is refined (to "properly covers") and it is shown
that the new relationship cannot be misleading in the
probabilistic sense.

The subsumes relationship began as a generaliza-
tion of how well test methods do in each other’s
terms, that is, without any necessary reference to
objectively desirable properties of the software or the
testing. A "more demanding" method Z that strictly
subsumes X is actually better only if we assume that
what X and Z demand is really useful beyond their
mere definitions. The introduction of "misleading"
was an attempt to incorporate an outside objective
measure (failure-detection ability), and to show that
for natural coverage measures, "subsumes" does not
necessarily relate to the objective measure.*
Failure-detection probability is thus currently
enshrined as the accurate measure of test quality†,
replacing a circular use of "coverage" to assess the
quality of "coverage."

Failure-detection probability has also been used in
another comparison between testing methods, a com-
parison with a link to software reliability. A series of
papers [Duran&Ntafos84, Hamlet&Taylor90,
Jeng&Weyuker91, Tsoukalas+91] have compared
so-called "partition testing" to random testing, with
the result that failure-detection measures for these
methods are within an order of magnitude of each
other, except in pathological cases+. These studies
must make a number of doubtful assumptions, not the
least of which is that "partition testing" is the same as
"coverage testing." The classes of a partition must be
disjoint, but the common structural methods such as
statement-coverage testing do not have disjoint
classes§. Despite flaws in the theory, it is difficult to
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

* It is easy to devise "unnatural" coverage measures in
which "subsumes" is more misleading. For example, the cover-
age measure (Z) "more than 70% of statements executed" strictly
subsumes (X) "more than 50% of statements executed," but if the
statements executed using Z happen to be all correct ones in
some program, while those executed using X happen to include
its buggy code, then X is actually better than Z for this program.

† A number of people, including Weyuker, have questioned
whether failure-detection probability is the appropriate measure
of testing quality, but it remains the only one on which work has
been done.

+ A typical pathological case occurs when the partition in-
cludes an input equivalence class containing only a few points,
on which the program fails. If these points mark the only failures
in a large input domain, they are "needles in a haystack" to ran-
dom testing, and the partition does much better. On the other
hand, although badly chosen partitions may favor random testing,
its superiority can never be too great as the number of test points
increases, since the worst case occurs when the partition test
"wastes" many of its points in classes containing no failure in-
puts, and random testing must waste points there, too.

§ It is suggestive that the best result in improving "sub-
sumes" [Frankl&Weyuker93] turns on the way in which the
classes of a coverage method overlap.

escape the impression that coverage testing and ran-
dom testing should have roughly comparable
failure-detection probabilities.

For random testing conducted using an operational
profile, the failure-detection probability has another
meaning: it is the failure intensity, the reciprocal of
the mean time to failure (MTTF). Again, there are
many assumptions needed to justify the application
to software, but the conventional theory is certainly
an approximation to the situation in which tests are a
sample drawn independently from real usage, and
thus somehow statistically representative of that
usage. Let us also accept this theory, and focus on
the connection between coverage testing and random
sampling for reliability.

Unfortunately, even granting that the
partition/random comparison applies to coverage
testing, and that failure-detection probability for ran-
dom testing determines MTTF, the only conclusion
that can be reached is the negative one that coverage
testing is at best no more significant than random
testing, or at worst of no significance. A random test
can establish upper confidence bound α that the
failure intensity is not above θ on the basis of N tests
with F failures. The formula connecting these quan-
tities in the TRW software reliability theory
[Thayer+78] is:

1−
j =0
Σ
F (j

N) θj (1−θ)N −j ≥ α.

If a coverage test is an equally good statistical sam-
ple, it might realize a similar or better bound on
failure intensity. But the very intuitive factors that
make coverage testing desirable for finding failures,
make its failure-detection probability different from a
failure-intensity. Coverage testing achieves superior
failure detection precisely by sampling not the opera-
tional profile, but according to classes that emphasize
failure [Hamlet&Taylor90, Jeng&Weyuker91].
These classes bear no necessary relation to the opera-
tional profile, and hence the failure intensity may be
large even though the failure-detection probability
for coverage is small, if coverage testing found
failures in low-profile-usage areas, and neglected
high-profile-usage areas. (Section 2.2 shows that
there is no limit to the disparity.)

Thus the comparable or better failure-detection
probabilities of coverage testing vis a vis random
testing are not failure-intensity predictions at all, and
there is no support in the comparison for the position
that coverage implies reliability.

Finally, data from direct observation of the rela-
tionship between coverage testing and reliability in
the field might be experimentally obtained. Such
experiments, like all experiments with real software,
will be notoriously difficult to do, but we can expect
to see some data as testing practices are controlled
and monitored, and field failures carefully recorded.
A recent paper presents preliminary data for one sys-
tem [Dalal+93, Fig. 2], in the form of a scatter plot of
unit-test statement coverage vs. system-test faults
later attributed to those units. The plot shows many
examples of high-coverage routines that later
revealed no faults, and a few examples of low-
coverage routines that later showed several faults;
however, it also shows many routines with medium
to low coverage, that showed few or no faults. The
data is suggestive, but its significance depends on the
quality of the system test: was it a reliability meas-
urement using high-volume random testing from an
operational profile? This paper also cites another
study [Piwowarski+93] in support of coverage "effec-
tiveness," but the cited paper only postulates a model
of the coverage/quality relationship, and its authors
admit to "varying the value" of a "constant" in the
model in order to fit data for one system. The
difficulty of performing these experiments is in
marked contrast to the modest results.

1.3. Summary: coverage finds faults, but...
The strength of coverage testing has always been

its obvious plausibility: if functions or structure
remain uncovered by tests, the developer has no
information about the quality of those aspects of the
program. However, this theoretical backing supports
only the necessary part of the argument: failures
may lurk in untested places, but coverage may not
find them, either.

Theoretical work using measures like "properly
covers," and careful experimental comparisons of
failure-detection rates [Frankl&Weiss91], are
promising ways to establish that coverage testing
does uncover failures, probably better than does ran-
dom testing, and to learn which coverage methods
are best at failure detection. However, there is as yet
very little practical evidence of a connection between
coverage and reliability, and no theoretical basis for
such a connection.

The persistent idea that coverage supports reliabil-
ity speaks strongly for an intuition that has not been
captured by existing theories. Why do practical tes-
ters believe that eliminating the faults found by cov-
erage testing is enough to make products "work"?
Why are engineers in safety-critical applications

reluctant to reduce coverage testing even in favor of
more direct statistical testing for reliability? In the
remainder of this paper we suggest directions for
theoretical research to address these questions.

2. Software dependability
Intuitively, software quality must be measured in
terms of results, not in terms of effort expended,
however well meant. Thus naive measures of testing
like "hours spent testing," or even the more sophisti-
cated failure-detection probability discussed in Sec-
tion 1, capture only how hard people (or techniques)
tried, not what they demonstrated about software
quality. While MTTF calculations and their
confidence bounds—conventional reliability
measures—are better, they do not get at the heart of
what it means to believe software is "trustworthy."
The operational profile is to blame here, because a
potential catastrophic failure in a very low-usage
function has little effect on reliability, but makes it
impossible to trust the software. It will not help to
weight profiles by cost, because disaster may cross
all lines of functionality. For example, the probabil-
ity of file-system destruction by an untrustworthy
program might not depend on what a user requested
the program to do†. Thus any measure of
trustworthiness must be independent of the opera-
tional profile.

It seems inescapable that in principle, no failures
can be tolerated in a trustworthy program. In prac-
tice, when failures occur, some may be of minor
importance and thus impact only reliability, not
trustworthiness. But in the situation that no failures
have been detected, theoretical consideration of
trustworthiness must treat any failure as potentially
catastrophic. It is obviously important to be able to
handle the case of zero detected failures, since for
critical software it will probably always prove
impractical to observe failure in a final program
before release [Butler&Finelli91,
Littlewood&Strigini93]. However, no one believes
that perfection can be obtained in a human endeavor
as complex as software development, so a statistical
measure is needed for trustworthiness.

"Zero-defect" software is the goal of many
development methods, today particularly those that
seek to apply formal methods to specification and
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

† Catastrophic failures might be given their own heavily
weighted classes in the operational profile; indeed, this is what
safety fault-tree analysis seeks to do. But in general, catastrophic
failures occur because no one has any conception of the situa-
tions that lead to them, so "failure classes" cannot be isolated.

design. Their proponents make an argument that is
remarkably similar to the one for coverage testing:
‘Use my method diligently,’ they say, ‘and your hard
work will pay off in defects caught before they enter
the software.’ But while it is plausible that defects
will be caught, it is much more difficult to establish
that none will enter in spite of the formal method.
Proposed methods do not attempt a quantification of
quality achieved, and none seems a good candidate
for theoretical analysis; coverage testing is a more
promising context for studying trustworthiness.

To distinguish a technical notion from the intuitive
software property of "trustworthiness," let us call the
statistical property we hope to define, "dependability"
of software. Three definitions U,W,Z come immedi-
ately to mind:
The dependability of a program P could be:
U: P ’s reliability for a uniform input distribution
W: P ’s reliability in the worst (least reliable) class

of its operational profile
Z: the probability that P has zero defects
In choosing among these definitions there are two
considerations: (1) How well does the definition cap-
ture the intuition that a (technically) dependable pro-
gram is (intuitively) trustworthy? and (2) What is the
connection between coverage testing and dependabil-
ity?

2.1. Intuitive considerations of dependability
Definitions U and W are both meaningful because

they are based on reliability. Definition U is cer-
tainly profile independent, but at the cost of selecting
the blandest possible profile. Most real profiles
would emphasize some portion E of the input
domain. If inputs in E could lead to failure,
Definition U would yield a dependability that is
better than the actual reliability. This overly optimis-
tic property is sufficient reason for rejecting
Definition U.

Definition W is framed to avoid Definition U’s
false optimism. By ignoring all but the least reliable
part of the input domain, it will assign a dependabil-
ity that is always more pessimistic than the reliability
for any real profile. However, Definition W is
heavily dependent on the classes that make up the
operational profile. As Section 2.2 shows, these
classes leave a good deal to be desired as a founda-
tional idea. Furthermore, Definition W does not
seem to speak to the objection that failures can cut
across class boundaries.

Definition Z is the most appealing—it directly
captures the idea of a profile-independent, maximally

pessimistic trustworthiness. However, Definition Z
cannot fall back on reliability for its technical mean-
ing. Reliability essentially involves two probabili-
ties, the failure intensity and statistical confidence in
the sampling that measures it, while Definition Z
speaks of a single probability. New ideas are
required to make Definition Z work, as described in
Sections 2.3 and 2.4. The promise of these ideas is
that they appear to circumvent the argument that reli-
ability cannot be practically measured by testing
[Butler&Finelli91].

2.2. Reliability within input subdomains
It is illuminating to consider subdividing the input

domain, and applying reliability theory to its parts, as
Definition W requires.

Suppose a partition* of the input domain creates k
subdomains S 1,S 2, . . . ,Sk , and the probability of
failure in subdomain Si (the subdomain failure inten-
sity) is constant at Θi . Imagine an operational profile
D such that points selected according to D fall into
subdomain Si with probability pi . Then the failure

intensity Θ under D is Θ =
i =1
Σ
k

pi Θi . However, for a

different profile D ′, different pi ′ may well lead to a

different Θ′=
i =1
Σ
k

pi ′Θi . For all profiles, the failure

intensity cannot exceed Θmax =
1≤i ≤k
max{Θi }, because at

worst a profile can emphasize the worst subdomain to
the exclusion of all others.

Suppose failure-detection probability ΘM is meas-
ured for a particular profile DM , and taken to be the
failure intensity, yet profile DA is the actual profile,
with failure intensity ΘA (identical to the failure-
detection probability using DA). It is evident that
ΘM bears no necessary relationship to ΘA , because
the probabilities that profiles’ points fall into each
subdomain may be arbitrarily different. DM may
emphasize failure-free subdomains so that ΘM is near
0, while DA ’s intensity is near Θmax; or, it may be the
other way around. The uniform distribution of
Definition U need not have a failure detection proba-
bility close to the correct intensity ΘA , nor need it be
close to Θmax.

By coverage testing without failure, using the
Thévenode-Fosse technique of a uniform distribution
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

* A partition is defined as having disjoint subdomains that
together exhaust the input domain. The subdomains of most
structural testing methods overlap, and so do not form a partition.
The difficulties raised in this section also occur in the more com-
plicated overlap case.

within each Si , an upper bound can be established on
Θmax, and hence on the overall failure intensity for all
distributions. The dependability according to
Definition W is thus 1−Θmax. To measure the depen-
dability according to Definition W will require k
times as many random tests as measuring the reliabil-
ity for one profile, because we don’t know which
subdomain is worst, and so must bound all k of the
Θi . In view of the impracticality of testing in the
ultra-reliable region, Definition W is also impractical.
However, there is a worse conceptual difficulty with
subdomain reliabilities. The partition is apparently
arbitrary, yet two extreme cases are not acceptable.
If k =1, with Θ = Θ1 = Θmax, the only subdomain is
the whole input domain. Then Definition W becomes
Definition U, which is intuitively unacceptable. At
the other extreme, as k becomes very large, some
subdomains might be so small that individual failures
would make Θmax ∼∼ 1, and hence the dependability
nearly 0. Although this is certainly the correct pes-
simistic result for software that can possibly fail, it is
not useful.

These extreme cases suggest that the difficulty
with Definition W lies in the assumption that the k
failure intensities Θi are constants. This assumption
is the reflection in reliability theory of the intuitive
notion that points in a subdomain should be "treated
the same:" within each subdomain, the program
should be equally likely to fail on each point†. Sub-
domains have not been studied for this property.

Even if its conceptual difficulties were resolved by
a deeper understanding of subdomains, Definition W,
like any definition based on reliability, would not
allow the practical measurement of dependability.

2.3. Testability and probable correctness
The idea of "probable correctness" expressed by

Definition Z is difficult to make meaningful—a pro-
gram either has defects or it doesn’t. The intuition
behind the definition is that the probability arises in
an uncertain assessment through testing. An early
attempt to use reliability alone as the basis for
Definition Z [Hamlet87] was not very successful.
Voas has proposed [Voas&Miller92] that reliability
be combined with testability analysis to do better.
Reliability measurement is an upper bound on failure
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

† If all of the program’s failure inputs are grouped in sub-
domains containing no successful inputs, the assumption is
justified. But no one expects this of a coverage partition—it
would mean knowing exactly which tests will expose every pro-
gram defect.

intensity; testability is a lower bound on failure
intensity.

For a test T , a program has testability h with
confidence C iff:

If the program can ever fail, we have confidence
C that it will exhibit failure intensity greater
than h during T §.

A high testability thus describes a program that
"wears its faults on its sleeve:" if it can fail, it will be
seen to fail.
hhh

0

1

0 1
chance of failure x

Pr[not correct ⇒
failure less likely than x]

Pr[failure more

likely than x]

h

Figure 2.3-1. ‘Squeeze play’ between testability and reliability

hhh

The "squeeze play" between the two bounds is shown
in Fig. 2.3-1 [Hamlet&Voas93]. The falling curve is
the confidence from reliability testing; the step func-
tion comes from measuring a testability h . The pro-
bability that the actual failure intensity lies to the
right of h can be read from the reliability curve, and
can be made small by moving h to the right; the pro-
bability that the failure intensity lies below h is
nearly zero if the software can fail. As h increases, it
becomes less and less likely that the failure intensity
lies anywhere in [0,1]. The only other possibility is
that the software cannot fail, and the combination of
the two confidence bounds is its probability, that is,
precisely the dependability of Definition Z.

Testability may be a practical way to measure
dependability. For example, using Voas’s simple
model, a testability of 0.001 would require only a
10,000-point reliability test for a dependability of
99.995%.

To use the "squeeze play" requires that reliability
measurement be made using an operational profile,
and it is convenient to make the tests of this measure-
ment also serve for testability. But the Voas theory is
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

§ Voas’s very rough theory ignores the size of T, and C;
nevertheless, Fig. 2.3-1 shows a less than ideal testability curve.

too crude to be able to discuss the relationship
between profiles and testability. Investigation of this
topic is promising because intuitively, testability
measurements might be drawn from coverage-testing
subdomains. The practicality of the squeeze play
also raises the opportunity to use the idea of
Definition W. Instead of using the squeeze play with
an operational profile over the whole input domain, it
could be used with a uniform distribution in each
class of the profile, and the worst class taken as a pes-
simistic value for the dependability using Definition
Z. This would seem to eliminate any profile
influence, at a modest cost.

2.4. Self-checking programs
A quite different view of "probable correctness"

has been suggested by Blum [Blum&Kannan89]. He
solves the problem of profile independence by avoid-
ing the input domain altogether. Instead of consider-
ing program quality on all inputs (what might be
called a "uniform" theory), he suggests a "pointwise"
theory: program quality is to be expressed as a pro-
bability that the program result is correct for one par-
ticular input. Definition Z can be modified
(definition ZP) to correspond to this view:
ZP The (pointwise) dependability of a program P

at input x is the probability that P computes the
correct result on input x

Blum argues that Definition ZP is what people really
mean by trustworthiness—users care only about each
particular computation they perform, not about all
possible computations.

Blum’s insight was that the probability defined by
Definition ZP can be calculated at run time, for each
input a program receives. It can be calculated
efficiently for programs able to probabilistically
check their results; roughly, the program repeats
"random" variations on the particular input it is asked
to handle, and compares the results. Repeated agree-
ment makes it very unlikely that the result is wrong.
It is crucial that something be known about the
program’s "random" behavior, which links Blum’s
theory to reliability.

Testing and confidence bounds enter the theory in
a novel way. Testing is needed to establish statistical
confidence in the necessary "random" properties of a
program. But when a particular input is given, a few
trials added to the run yield a high dependability.
For example, program agreement for 18 random vari-
ations on input x 0 gives a pointwise dependability at
x 0 of 1−2−18 ∼∼ 99.9996%. However, should there be
disagreement among the variations, the program can

report only something like "not very dependable at
x 0." Intuitively, the portion of the input domain on
which it cops out is related to the quality of the pro-
gram, as measured by the confidence in prior random
testing.

3. Conclusions and future work
The connection between coverage testing and relia-
bility has no theoretical, and little experimental sup-
port. A formal notion of trustworthiness, which we
call dependability, seems more promising for estab-
lishing this connection than reliability itself. Three
promising research directions are:

(1) The relationship between failure intensity and
input subdomains needs investigation. It bears
on the question of whether there really is a sen-
sible failure intensity, and what are appropriate
subdomains, both for profile-independent relia-
bility, and for coverage testing.

(2) Testability research is in its infancy. Voas’s
initial work does not consider the size or profile
of testsets, nor the confidence to be placed in
testability estimates. However, testability’s
complementary role to reliability testing, partic-
ularly in reducing the number of test points
required for significant interpretation of results,
is very promising.

(3) Blum’s own investigation of pointwise reliabil-
ity is concerned more with algorithms, their
modification and suitability for self-checking,
than with dependability. But Definition ZP
opens many new and promising research ques-
tions. It should be possible to sample (and
thereby quantify with confidence bounds) the
quality of the program on "random" inputs.
Considering the distribution of such samples
may help to extend the self-checking theory to
more programs, and to connect it to the sub-
domains of coverage testing.

Acknowledgements
An anonymous referee who rejected my paper for the
recent Foundations of Software Engineering Confer-
ence, pointed out the similarity of mutation to error
(fault) seeding.

References
[Blum&Kannan89]

M. Blum and S. Kannan, Designing programs that
check their work, Proc. 21st ACM Symposium on
Theory of Computing, 1989, 86-96.

[Butler&Finelli91]

R. Butler and G. Finelli, The infeasibility of experi-
mental quantification of life-critical software relia-
bility, Proc. Software for Critical Systems, New
Orleans, LA, December, 1991, 66-76.

[Dalal+93]
S. R. Dalal, J. R. Horgan, and J. R. Kettenring, Reli-
able software and communication: software quality,
reliability, and safety, Proc. 15th ICSE, Baltimore,
MD, May, 1993, 425-435.

[DeMillo78]
R. DeMillo, R. Lipton, and F. Sayward, Hints on test
data selection: help for the practicing programmer,
Computer 11 (April, 1978), 34-43.

[Duran&Ntafos84]
J. Duran and S. Ntafos, An evaluation of random
testing, IEEE Trans. Software Eng. SE-10 (July,
1984), 438-444.

[Frankl&Weiss91]
P. G. Frankl and S. N. Weiss, "An experimental
comparison of the effectiveness of the all-uses and
all-edges adequacy criteria," Proc. Symposium of
Software Testing, Analysis, and Verification (TAV4),
Victoria, October, 1991, 154-164.

[Frankl&Weiss94]
Personal communication.

[Frankl&Weyuker93]
P. G. Frankl and E. J. Weyuker, A formal analysis of
the fault-detecting ability of testing methods, IEEE
Trans. Software Eng. SE-19 (March, 1993), 202-
213.

[Hamlet77]
R. Hamlet, Testing programs with the aid of a com-
piler, IEEE Trans. on Software Eng. SE-3 (July,
1977), 279-290.

[Hamlet87]
R. Hamlet, Probable correctness theory, Inf. Proc.
Let. 25 (April, 1987), 17-25.

[Hamlet89]
R. Hamlet, Theoretical comparison of testing
methods, Proc. Symposium of Software Testing,
Analysis, and Verification (TAV3), Key West,
December, 1989, 28-37.

[Hamlet&Taylor90]
D. Hamlet and R. Taylor, Partition testing does not
inspire confidence, IEEE Trans. Software Eng. SE-
16 (December, 1990), 1402-1411.

[Hamlet&Voas93]
D. Hamlet and J. Voas, Faults on its sleeve: ampli-
fying software reliability testing, to appear in ISSTA
‘93, Boston, June, 1993.

[Howden82]
W. E. Howden, Weak mutation testing and com-
pleteness of test sets, IEEE Trans. Software Eng.
SE-8 (July, 1982), 371-379.

[Jeng&Weyuker91]
B. Jeng and E. Weyuker, Analyzing partition testing
strategies, IEEE Trans. Software Eng. SE-17 (July,
1991), 703-711.

[Littlewood&Strigini93]
B. Littlewood and L. Strigini, Validation of ultrahigh
dependability for software-based systems, CACM 36
(Nov., 1993), 69-80.

[Marick91]
B. Marick, Experience with the cost of different cov-
erage goals for testing, Proc. Ninth Annual Pacific
Northwest Software Quality Conference, Portland,
OR, October, 1991, 147-164.

[Piwowarski+93]
P. Piwowarski, M. Ohba, and J. Caruso, Coverage
measurement experience during function test, Proc.
15th ICSE, Baltimore, MD, May, 1993, 287-301.

[Thayer+78]
R. Thayer, M. Lipow, and E. Nelson, Software Reli-
ability, North-Holland, 1978.

[Thévenode-Fosse93]
P. Thévenode-Fosse and H. Waeselynck, Statemate
applied to statistical software testing, Proc. Int.
Symp. on Software Testing and Analysis (ISSTA),
Cambridge, MA, June, 1993, 99-109.

[Tsoukalas+91]
M. Z. Tsoukalas, J. W. Duran, and S. C. Ntafos, On
some reliability estimation problems in random and
partition testing, Proc. Second International Sympo-
sium on Software Reliability Engineering, Austin,
TX, May, 1991.

[Voas&Miller92]
J. M. Voas and K. W. Miller, Improving the
software development process using testability
research, Proc. Third International Symposium on
Software Reliability Engineering, Research Triangle
Park, NC, October, 1992, 114-121.

[Weyuker+91]
E. J. Weyuker, S. N. Weiss, and D. Hamlet, Com-
parison of program testing strategies, Proc. Sympo-
sium of Software Testing, Analysis, and Verification
(TAV4), Victoria, October, 1991, 1-10.

