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Abstract

Composition of software elements into assemblies (sy9té&srs fundamental aspect of software
development. It is an important strength of formal mathérahspecification that the descriptions of
elements can be precisely composed into the descriptioassgfmblies. Testing, on the other hand, is
usually thought to be “non-compositional.” Testing prasdnformation about any executable software
element, but testing descriptions have not been combinddgoribe assemblies of elements. The un-
derlying reason for the compositional deficiency of testgthat tests are samples. When two elements
are composed, the input samples (test points) for the fasttie an output sample, but it does not match
the input test points of the second, following element.

The current interest in software components and compdnesed software development (CBSD)
provides an ideal context for investigating elements asgmblies. In CBSD, the elements (compo-
nents) are analyzed without knowledge of the system(s) tatke assembled. A fundamental testing
theory of component composition must use measured comppraerties (test results) to predict sys-
tem properties.

This paper proposes a testing-based theory of software @oemp composition based on subdo-
mains. It shows how to combine subdomain tests of compor@etsesting predictions for arbitrarily
complex assemblies formed by sequence, conditional, aratibn constructions. The basic construction
of the theory applies to functional behavior, but the thezamy also predict system non-functional prop-
erties from component subdomain tests. Compared to theatiee of actually building and testing a
system, the theoretical predictions are computationatiyenefficient. The theory can also be described
as an exercise in modeling. Components are replaced byaatistrs derived from testing them, and
these models are manipulated to model system behavior.

Keywords: Software components, system assembly, composition ofepiiep, foundational testing
theory, component-based software development (CBSD).

1 Components for Software Development

In many engineering disciplines, the idea of aggregatiagddrdized components to create a complex sys-
tem has allowed the creation of better systems more easigpBnent descriptions are catalogued so that
a system designer can design a system “on paper.” Adequetlogae descriptions of components are

the basis for computer-aided design (CAD). CAD tools hebpgiistem designer to predict properties that
hypothetical systems would exhibit if built from those camgpnts.



The component approach has promise for dealing with thecdl§i of design and uneven quality of
software systems. Divide and conquer is the only known waytaxk the overwhelming complexity of soft-
ware; software components should be easier to design amgrarihan complete systems. Unfortunately,
the analogy between electrical/mechanical and softwamgpooents breaks down when their behavior is
considered in detail. The traditional mechanical compbhas continuous properties that can be described
by a handful of measurements, and statistical quality ocbwgfives a high probability that any given unit
will adhere to the general description. Software, on thewottand, is notoriously difficult to specify, and
sampling (testing) does not probe its properties very vpealitly because they are discontinuous and partly
because too many tests are required.

The central dilemma of software design using componentsaisdomponent developers cannot know
how their components will be used and so cannot assume atigyar environment for component testing.
Yet a component’s behavior depends critically on its emrment. A customer for components (the system
designer) does know the environment, but the informationeotoo late. If components must be assessed
at system-design time, most of the benefit of componentebdseclopment is lost. In practice, of course, a
component may be intended for applications whose envirohiset least partly known.

1.1 Ideal Component-based Software Development (CBSD)

If the design of software is to benefit from using cataloguethgonents as have other engineering dis-
ciplines, there must be a strict separation between conmpalevelopmenper se and component use in
system development. A component catalogue is the docurhaneffects this separation. It records the
work of component assessment in such a way that system éesitand their tools) can perform system-
synthesis calculations entirely without access to the aomapts themselves. It is conventional to refer to
catalogue entries as “component specifications,” althahghterminology is not used here because in Sec-
tion 6.2 it is seen to be something of a misnomer. The poitasfor CBSD to work, the catalogue must be
precise and accurate: it must tell the system designer twegyhe/she needs to know about a component
and must not be misleading. If the catalogue is inaccuragesystem designer may have to repeat or extend
component analysis to get useful system predictions.

It is characteristic of an acceptable component techndloglythe component catalogue is trusted. Peo-
ple do make mistakes, but it is quite unthinkable that cgtadoentries are purposely falsified. When there
is a lack of information, trust is impossible. To give a regsample, so-called “process metrics” are not
acceptable in a catalogue. To say “this component was des@lby an SEI level-5 organization,” is quite
unlike saying, “its failure rate is less than 0.00001/hrrilyothe latter would be tolerated in electrical or
mechanical engineering. The proper role for subjectivesuess is to engender belief in precise ones. One
may find it easier to believe that an SEI level-5 organizationld construct a quality component and could
accurately measure its failure rate. It is natural that comept developers bear the burden of describing
and measuring properties of their products. They compethebasis of quality and price, and it is in their
self-interest to balance these factors and to publish thdtreo that good work will be rewarded by being
selected for system designs.

Given an adequate component catalogue, system designdsetite/e process of selecting and combin-
ing components that should work together to meet the systenirements. Talented designers will do this
better than hacks. However, the process is complex and gmoe, so it is essential to try out proposed
system designs. When there is a theory of composition bas#tealescriptions in a catalogue, the trial can
be done “on paper.” The components are not actually assdmide are any real tests carried out. Rather,
calculations predict what the properties of the system lvgll Substituting one component for another in
a trial system requires no more than repeating the syntlcatisilation with a different catalogue entry;



the predicted system properties for the alternatives can bde compared. It is important that predictive
calculations be efficient—much faster than executing anahslystem.

The ideal of CBSD is a stringent one, far from being realizegiactice. The testing-based theory
presented here is able to conform to most of the ideal byzimgi ‘components’ that are themselves ide-
alized. By imposing extreme restrictions on the componemhfand on the system architecture, the ideal
paradigm can be studied. This form of investigation, in \hécsimple model is quantitatively examined
rather than looking at a more realistic model qualitativils a distinguished history that includes Turing’s
computation model. The goal is not direct application—ne nagines building Turing chips—but rather
understanding.

1.2 Component Properties

Historically, “component” in software is a rough synonynt fmodule” or “unit” or “routine.” The word
originated as a reference to source code in a programmiggdaye, but unfortunately this natural viewpoint
leads to inconclusive terminology wars over what definitafnicomponents’ should be used in CBSD.
Clemens Szyperski suggests shifting the focus away frone sodrce. He defines a software component
as executable, with a black-box interface that allows itealbployed by those who did not develop it [46].
This paper uses a restricted form of Szyperski’'s definitiaking a component to be an executable program
with pure-functional behavior.

System properties that arise from composing componentbeaategorized as follows:

Black-box behavior.The so-called ‘functional’ or ‘input-output’ behavior ofiyaprogram is its most impor-
tant characteristic.

Compositional non-functional behavioBome component properties such as run time and reliakility i
itively combine to yield their system values. These prdpsrare a primary concern of this paper,
described in Section 3.

‘Emergent’ behavior.Other non-functional system properties arise only becaosgonents are used to-
gether. Security properties such as restricted accesagsiftbd information are of this kind. Emer-
gent properties may still be “compositional” as describe&eéction 5.2.

Without precise component descriptions and a way to use th@nedicting system properties, software
components may be no bargain. To buy off-the-shelf softwaite unknown properties is only to trade the
difficult task of assessing your own work for the more diffidakk of assessing someone else’s [48].

1.3 Ideal Components and Systems

Choosing a restricted model of components for a foundatitheory is an uneasy compromise between
making the model plausible yet simple enough to be tractaBiace the goal here is to carry through a
complete quantitative analysis, simplicity is primary.eTtheory of testing, which began with Goodenough
and Gerhart [12], suggests most of the necessary restigctiirst and foremost, testing theory takes pro-
grams to have functional semantics. A program is assumeak&odn input (conceptually a single value)
and produce an output (also a single value). A program iscbif its input-output behavior matches a
specification function given priori.

Reliability is an important non-functional property of sgére. This forces the further restriction to a
real-number input domain, since it is difficult to define ramdsampling for other spaces.



These historical choices almost completely determinetcaings on a fundamental component-composition
theory. If each component has a real-valued input domaén tb combine them requires their outputs to
also be reals.

For the system architecture there are two choices that hat@ibally been explored: (1) Functional
composition only, using recursion to handle cyclic compataand Boolean characteristic functions to
model conditional computation, or (2) The three ‘structligperations of sequence, conditional, and itera-
tion [3]. The latter is much closer to the mainstream modelaohputation in imperative languages and it is
chosen here.

In summary, in this paper a component has pure-functiomabeécs and a single real-valued input and
output; its non-functional properties are also mappingshenreals; and components form systems using
arbitrarily nested sequence, conditional, and loop canstns. Such a system then necessarily obeys the
same restrictions, making it a technically a ‘componentica closure property.

2 Dilemma of Varying Software Behavior

If software is intrinsically different from products of me&nical engineering, it is because software obeys
no natural laws, and therefore lacks the simplifying orgatibn often imposed by nature [19]. Most natural
phenomena are continuous and this continuity allows a buprecise description of a physical system. For
example, a mechanical system often has components thaeadesbribed as point masses, and Newtonian
mechanics can accurately predict the behavior of very cexnpksemblies from this description alone.
Software, in contrast, is usually discontinuous and ma lahitrary human-defined behavior that must be
described explicitly in forbidding detail. This fact expla why requirements engineering is so important
and so difficult.

The difficulty in calculating system properties from compohtest measurements can be illustrated by
a simple example. Imagine two software components placeeries. The first component; receives
the system input, does its calculation and invokes the secomponent. The second componéhitdoes
its calculation on input received frod; andC5’s output is the system output. Consider the performance
property of this composite system. To use the paradigm thatbdeen successful in other engineering
disciplines, one wants to measure the run time of each coempamisolation and then calculate the system
run time. Suppose that each component is capable of ‘slowWast’ performance, depending on its input.
The system run time will then depend on two things:

1. The distribution of system inputs over the input domaitheffirst component. For example, if many
inputs lead to the ‘slow’ behavior @f; then the system will be slower.

2. The way in whichiC'; sends its outputs into the input domain(@f. For example, if many’; outputs
happen to fall on ‘slow’ input points af’s, the system will be slower.

The usage of a system can be captured by its input profile: tabdison describing how likely it is
that each input will occur. Given this distribution, it woube possible to analyze the system above by
seeing how many inputs invoke ‘slow’ or ‘fast’ behavior inceacomponent and make a detailed, accurate
calculation of the composite behavior. But component dgpais cannot know the profile and cannot know
which components will be used together—those are bg#tenproperties. So how can correct measure-
ments be made at component-development time? This siugtipervasive in software components and
systems. It occurs in performance analysis (as in the ex@mapd in reliability estimation. It is no wonder



that engineers from other fields have thrown up their handscaiding software in systems-engineering
calculations.

Software testing theory has a way to divide and conquer proeblof disparate and extensive input
domains. So-called ‘subdomain testing’ divides an inpundim into a manageable number of subsets
(subdomains) with tests selected in each subdomain. Terstbstantial literature on subdomain testing
beginning with the work of Howden [27, 28]. In software rélidy engineering (SRE), subdomains are used
in a way that is close to the present purpose. In SRE, furadtismbdomains are assigned empirical usage
probabilities, thus defining a coarse usage profile for aesy$89]. Imagining that such a profile will be
applied to a component-based system, part of the compdesing dilemma is resolved. The component
developer need only supply property valussthe subdomain Later, these values can be weighted and
combined to get system values, yet the component devel@esismo knowledge of the system profile—
measurements by the subdomain cover all possibilities.

Testing components in subdomains also resolves the se@rhdfthe dilemma, how a system input
profile is distorted by one component before it reaches anatbmponent. Brute-force tracing of the profile
from one component to the next becomes possible becauspabe is reduced from an intractable number
of inputs to relatively few subdomains. In the analysis hesidodomain is like a single ‘point,” which makes
calculation efficient and allows tractable analysis of mop

3 Testing-based Theory of System Synthesis

This section presents a quantitative theory that predaftevare system properties from component values
measured by testing. The theory applies to any softwarespipprhose values depend only on the software
input and which is mathematically well defined. Performagroa time) and reliability are such properties
with numerical (real) values; some security properties @ao be incorporated with a bit more difficulty
(see Section 5.2). In order to be concrete, the theory wilptesented for black-box behavior and for the
non-functional property of program run time. Section 3.%albbes component analysis. Section 3.2 gives
the rule for composing two components in sequence that ibdhet of the theory. Composition rules for
conditional and iterative constructions are given in ®mi3.3 and 3.4. Section 3.6 describes calculation
of the properties of an arbitrary system.

3.1 Approximating and Measuring Component Properties

A component’s run time over input spaée is assumed to be a mappidg: D — R, whereR is the
non-negative reals. Intuitively]'(z) is the run time when the component executes on inpuh testing,

T is sampled by executing the component. Suppose that théogevealivides a component’s input space
into a finite number of subdomairts , Ss, ..., S,,. Sampling on each subdomain and averaging the sample
values approximat€es as a step function with constant valtjeon subdomairt;, so that for alll < i < n,

T(x) ~ t;, x € S;, as indicated in Fig. 1. The vectert,, to, ..., t,> = <t;>I' , approximates the run-time
functionT'. For simplicity and clarity, Fig. 1 shows the subdomainssrizals along an axis, which would
require the input domain to be ordered.

INancy Leveson says that when a safety engineer needs to assijability to an embedded software component, it is isls
to take the value as 1.0. She advises that probably 0.0 is realistic. Neither value is of any use to the system engjriesrause
the former hides any possible software failure and therlatiges out all other component contributions.

2Subdomain testing’ has also been called ‘partition tegtin
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Figure 1: Step-function approximation of a component priype

Similarly, assuming the component has an input-output mgpp: D — D, average values,, v, ..., v,
of f over each subdomain approximatevith the vector<vi,vs, ...,v,> = <v;>,. It is also possible to
approximate behaviors across subdomains with other nostaot functions. The simplest better approxi-
mation is linear, in which the approximating vector consgiairs of (slope, intercepty:(z) ~ m;z+b;, x €
Sit <(my,b1), (ma,b2), ..., (my, by)>, and similarly for7’(z). The slopes and intercepts can be obtained
by test samples and a least-squares fit over each subdomde $equel, approximating subdomain values
by constants will be called th&tep-function approximatiorand by linear functions, thpiecewise-linear
approximation The step-function approximation is just that special aafséhe piecewise-linear approxi-
mation in which all slopes are zero, but it is treated seprdiecause it is intuitively easier to describe.
Section 3.5 discusses mixing components with differing@xmations.

In any case, the result of a component-developer’s anadffig is a catalogue description consisting
of subdomains with functional and run-time values for eadbdemain. If the subdomains are well chosen,
it may be that this catalogue entry is an accurate desanigifche actual software behaviors. If not, the
accuracy should improve by shrinking subdomain size aghialiy functional discontinuities on subdomain
boundaries.

3.2 Calculating Properties of a Series System

Suppose that two componensandC' are to be composed in a series systéras shown in Figure 2. The
information shown in shadowed boxes defines each compogantitlomains, input-output values, and run-
time values, as measured by testing componénhend C, and to be calculated for the composite system
U. Figure 2 shows the step-function approximation vectw$pbows: Let the component subdomains be
SP 8B ..., 8B andS{, SE ..., SC respectively (usually, # m), and let their corresponding output-value
vectors be<vf v, ... vB> and <v{ 0¢, ..., 05 >. Let their run-time vectors bet? 8 .. tB> and
<t{,t¢,...,t$>. Itis desired to calculate a set bfsubdomains for the systebi: SV, SY ..., SV, and
two corresponding step functionsw!, vY, ..., oY > for system output anett?, t¥, ..., t¥ > for system run
time.

The calculation derives an ‘equivalent component’ for thges systent/, a ‘component’ whose de-
scription is in the same form as the description of its camstit components. Thus the calculations can be
used repeatedly to synthesize the properties of arbitsatems (see Section 3.6). To calculate the equiva-
lent component means finding a set of subdomains and the ayppitit and run-time vectors for the system
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Figure 2: Block diagram of a series system

U.

For the step-function approximation, the system subdosnaie those of the initial componeBt, so
k:nandSiU:SZB,l <i<n.

On subdomairs?, B has output?. Let this fall in the;*® subdomain of the following compone6t
Then the system output value 6# is ch_ That is:

v = vjc, where v? € Sjc. (1)

The run time of the system on subdomaifi is the run time ofB there plus the run time faf’ on S].C:
tV =18 +tjc, where v € Sjc. (2)

Using the piecewise-linear approximation is a consideramiprovement because it tracks the way in
which outputs from one subdomain of componéntlisperse into distinct subdomains of componéhts
the step-function approximation does not. To see the wayhicthis happens, consider one subdomain
interval S? = [L, R) of the first component, in which the functional behavior isatéed by a line with
slopek and intercepy (that is, this line is\xz(kx + ¢)). Then the output range is the intenvigll = [kL +
q, kR+q). This output may fall into several subdomains of the secamiponent. Let one such intersection
be with 5§ and let the linear approximation of the functional valueSii of the second component be
\z(K'x + ¢'). Then the equivalent system component has a subdomainsthateflection back ints?
of part of the output interval:S” = S’ N Sjc . If this output intersection is the interval’, R’), then the
corresponding part of? is [(L' — q)/k, (R — q)/k) (if the slopek is 0, the new subdomain is all of
SB)4. Figure 3 illustrates this subdomain construction. Theis@rheavy line is & subdomain and the
horizontal heavy line is a subdomain of the calculated edeint component, formed by reflectis into
the B subdomains. On this new subdomain the composite functmpmaloximation is the composition of
the two lines, that is, it has slogé’ and intercepk’q + ¢’. The composite run-time behavior is similarly
obtained for the new subdomain, but it is the sum of the limeartime functions for the components (say

3In the interests of readability the presentation avoidsetibts that identify the subdomain.
“The derivation is correct only for sloge> 0. Whenk < 0, the end points of the interval in the second component’sailom
reverse, and there is a technical difficulty because the eigt of the interval is open.
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Figure 3: Splitting subdomains in a series synthesis usiagtepwise-linear approximation

these areAz(ha + r) andAz(h'z + r')), with the second adjusted to receive an input that is thetfomal
output of the first component. This run-time sum line haselop- k7' and intercept + h'q + r'.

Repeating this calculation for the intersections betwmhé‘jc and the output ranges of ead¥
results in a list of subdomains and linear functions on themtlie composite functional and run-time
behavior. The piecewise-linear approximation improvesghbdomains of the calculated system because
whenever a linear output frof crosses a subdomain boundaryir{e.qg., atL’ in Figure 3), the equivalent
component for the series system acquires a new subdomaiéu

In either approximation, the component data vectors allawutation of system vectors (from equations
(1) and (2) for the step-function case, or from Figure 3 aedliscussion above for the piecewise-linear
case). System vectors define an equivalent component fosystem in exactly the same form as the
original component vectors. Hence the calculations carsbd tepetitively to synthesize arbitrary systems
as described in Section 3.6.

The quality of the calculated equivalent component—thgathis degree to which it accurately approxi-
mates the actual series system—uwill of course depend orctheacy of the approximations for the com-
ponents. The intuition behind the theory is that as subdasnstirink in size, the approximation should be
better and the theoretical predictions should improve.digital input-output data the space is discrete, so
each subdomain contains a finite number of points. Hencentlalesst possible subdomains are singletons
and in this limit the equivalent-component calculations exact.

3.3 Conditional System Control Structure
The sequential construction of Section 3.2 can be appliedctanditional:
if B then Cr else Cp fi.

Let the three componenfs, Cr, andC» have subdomains, input-output values, and run-time valusisg
the notation of Section 3.2. Ld® havep subdomains, while®s and C'r haven andm subdomains,
respectively.

®It is conventional to use the output & only to determine the branch; whichever@f andCr is selected receives the same
input thatB received, nofB’s output.



The conditional test component partitions the input domai® into:
Dr ={x € D|B(x)} and Dp = {z € D|-B(x)}.

Input x € D reaches componerdty iff = € Dp and similarly input elements oDy reachCr. The
subdomains of the equivalent component to be computed ereftine:

DrnS{T1<i<n; DpnSST1<j<m. (3)

On these subdomains, the input-output behavior of the abpriy component is that @fr or Cr respec-
tively. The run-time behavior of the equivalent componenthat of B in series withC'r or with Cr
respectively.

The calculation of an equivalent system component for aitioncconstruction is the same for the step-
function and piecewise-linear approximations: the splitdomains carry whichever approximation is being
used.Dr and Dr are natural subdomains to use for the conditional-test oot B because they exactly
captureB’s input-output behavior. For input-output behavior it reakno sense to considé&r subdomains
that cross thérue — falseboundary (that isSZ N Dy # @ ASE N Dr # @, for somel < k < p), which
also means that the piecewise-linear approximation fanthgoitput behavior is not meaningful. However,
it may be useful for capturing the run-time behaviorito breakD; and D into smaller subdomains or
to use a piecewise-linear approximation f&'s run time.

A conditional construction with nelsepart is equivalent to taking'r an identity component with zero
run time, which has a perfect piecewise-linear approxiomati

Whenever a synthesis construction uses subdomain intierséihat is: for conditionals, in a piecewise-
linear series combination, and in iteration because comdits are used to unroll loops), the count of syn-
thesized subdomains may be as large as the product of théscimurthe components. This means that
there is a possibility that the subdomain count will growaxgntially in the number of system components.
Fortunately, there are some mitigating factors. Firstiesyis are seldom built with more than a handful of
components. Second, whenever a series synthesis has aifiysbaent with a step-function approximation,
it fixes the synthesis count irrespective of the second-amapt’s count. And finally, since the output range
of a first component must be contained in the input domain eftbat follows, subdomain boundaries tend
to line up so that intersections stabilize. The only diffiquiactical case is piecewise-linear approximation
in loop synthesis.

3.4 lterative System Control Structure

The remaining basic system construct is iteration. Iteeatbnstructions are the bane of program analysis,
because in general their behavior cannot be algorithrgicddtained in closed form. For this theory things
are better than usual. Since there are only a finite numbeibafsnains, the approximation to loop behavior
can be calculated deterministically.

The step-function approximation is easiest to analyzeirBegunrolling the loop

while Bdo (C'od to if Bthen C fi;while B do C od.

The trailing loop after the unrolled conditional is calldgtesidual loop On any subdomainﬁic where
B(v¢) is false the residual loop makes no contribution; these ‘false’deutiains can be eliminated from
consideration. If there remaif¥ subdomains for whict3(v{) is true, the loop can be unrolled a second
time and further subdomains may disappear beca&ugefalse on them. Continuing, at each unrolling at



least one subdomain is eliminated, or none is eliminatedhériatter case, the remaining subdomains are
all mapped to one other &y and this situation cannot change, so the approximationetitéhated behavior
does not terminate. But unless this occurs, the residuplwab entirely disappear in at most unrollings,
wheren is the number of subdomains 6f Thus the equivalent component for an iterative consndt
algorithmically determined in the step-function approatian.

For the piecewise-linear approximation, the series coitipnsof the successive unrolled loops can
introduce new subdomains as described in Section 3.2,&g&judowever, the process is necessarily limited.
In the worst case, each 6f's n subdomains will be split inta pieces; then no further splitting can occur.
The argument for the step-function case then shows that at mounrollings will either eliminate the
residual loop or stabilize on a set of ‘true’ subdomains tieter changes so the approximation loop will
not terminate. In practice, the worst case is unlikely; ewvecontrived examples it is hard to force a need
for more than about 20% of unrollings.

If the C' subdomains are not fine enough to capture the functionavimhaf the loop body well, two
difficulties may arise: First, it may falsely appear thamaps out ofD for some subdomain(s) in equation
(3), so that the loop calculation terminates when actuaiylbop does not. The equivalent component will
then be erroneous on those subdomains. Second, the resy@itingC’ may falsely appear to always fall
in D7 for some subdomain(s) so that the calculated equivalenpoaent is undefined in those subdomains
even though the loop actually does terminate there. The gayfor algorithmic loop analysis is that the
equivalent-component calculation only approximates #tealvior of the iteration construct.

3.5 Combining Different Component Approximations

Although the step-function approximation to componentvéir is in general less accurate than the piecewise-
linear approximation, steps are sometimes preferred, Bsedatean-valued discontinuous conditional com-
ponents. Similarly, if there is to be any hope of handling-nameric functional values, it does not lie with
linear approximation. (Section 6.5 provides discussiom ofon-numeric case.) Furthermore, the input-
output (functional) behavior of a component and its norefiomal behavior may not be best approximated
in the same way. Run time, for example, always has a meanipgfocewise-linear approximation; relia-
bility (see Section 5.1) does not. Thus there are a numbentefesting cases in which components to be
combined might have differing approximation measuremerig synthesis theory of the previous sections
can be easily adjusted to cover mixed cases.

Input-output functional synthesis makes no use of a nowtional property like run time, so they need
not be approximated in the same way. Although run time syigh#oes require an input-output approxima-
tion, nothing says what form that must take. Hence mixedschise step-function input-output approxima-
tion and piecewise-linear run time approximation requivechanges to the synthesis algorithms.

The iteration construction of Section 3.4 is presented ims$eof conditionals and sequences, so it
requires no modification for a mixed case.

The conditional construction of Section 3.3, once a set @rgection subdomains has been obtained,
only reproduces the behavior of the components itnisandfalsebranches, which may thus be differently
approximated.

Only the series construction of Section 3.2 remains. Thertlgn for piecewise-linear approximation
handles both possibilities, which may therefore be mixeolweler, if one of two components in series has
a step-function approximation, it does compromise theltiaguapproximation for the combination. When
it is the first component in series that is a step functiongli®no subdomain splitting. No matter which of
the two has a step-function approximation, the result valblstep function.
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3.6 Synthesizing a Component-based System

At the top level of a ‘main’ imperative program, any systenm ¢e built up inductively using the three
elementary structured-programming constructions of segg, conditional, and iteration. The standard
software analysis/synthesis paradigm is to:

e Obtain a general rule for each elementary constructionoiati®n, then
e Perform system calculations piece by piece, using eachrcmtion for a given system.

In this way, the largest system is no more difficult to handéntthe simplest—it just takes more applications
of the three elementary-construction rules.

The rules for constructing an equivalent system ‘compdrfenteach of the constructs are given in
Sections 3.2 (sequence), 3.3 (conditional), and 3.4 {itera To synthesize an arbitrary system, these rules
are applied repeatedly. Each time a part of the system ifsgizied, it is replaced by a calculated equivalent
component, which then enters into subsequent synfhesis

It is convenient to describe an arbitrary system structan@verse Polish notation, using the operators
S,C,andL:

Construct Polish
XY XY S
if Zthen X elseY fi ZXY C
while Z do X od ZX L

For example, Fig. 4 shows the Polish representation forastriative flowchart and its reduction to an
equivalent component,). In the figure, components are named by integers. The fimapooent £, in
Fig. 4) has the calculated behavior of the complete systeits asctional- and run-time vectors.

4 Performance of Analysis and Synthesis Algorithms

The usual way to learn about a system’s behavior from tessirig build and execute it. The theory of
Section 3 provides an alternative: The equivalent compidioea system can be calculated and studied. That
equivalent component is only an approximation to the adystem behavior, but producing and studying it
can be much more efficient than system assembly and testing.

Component analysis itself, the data that goes into systathagis calculations in Section 3, necessarily
uses brute-force sampling. Conventional testing is thg waly to obtain component data, and no savings
can be expected there. However, it is the whole point of CH&Dthe cost of components analysis is borne
up-front by their developers, not considered a part of syslesign. Component measurements are made
once and used by all subsequent system designers.

It is in system synthesis that the theoretical calculatioinSection 3 can be made much more rapidly
than a real system can be executed. Actual run time of a systibmlepend on execution parameters: the
actual run times of components, the number of loop iteratitiat occur, and the relative frequency with
which conditionals take each branch. The theoretical taticuns require a time that is independent of these
execution parameters, but does depend on the number ofrsgstaponents and the number of subdomains

6Although system synthesis was envisaged from the outseglgorithms given in previous published versions of therhe
[22, 23] cannot be used with components that result fromipusvcompositions. This was a mistake that came to light afign
supporting tools were implemented.
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Figure 4: System synthesis by computing equivalent compsne

chosen. Because the variables are different, only a rougipanson is possible. However, it is shown that
the theoretical predictions can in general be arbitradlstér than actual execution, because they depend
only on subdomain counts.

For simplicity, suppose that there aké components in a system, each with roughly the same number
of subdomain$ K. The simplest system structure is all components in setiesthe average run time of
components be. Then to execute the system on one test point requires abéubr at/NV points/subdomain,

a total time of N Kr M.

The theoretical calculation does not depend on actual mesti Each step in the synthesis requires
a time involving only location of values in subdomain tableéSuppose that whenever a value must be
located among< subdomains a time proportional 6 log K is required, for example by binary search,
with a proportionality constant (say). ThenM components in series requires theoretical-synthesis time
of aboutaM (K log K) in the step-function approximation. The piecewise-linggproximation may split
subdomains, but the mechanics of this is that the splitgngelf-limiting to a constant factor that could be
absorbed intax. The factorM K is common, so the comparison comes down to factor& offor actual
executionvs. o log K for theoretical synthesis. Either factor can be made to dateithe other since they
depend on unrelated variables. Perhaps the best intudimparison that can be made is this: If an adequate
system test takes a substantial tilNe in each subdomain (say milliseconds) amds the overhead in a
binary search program (microseconds) K is on the order ofl0? for the two factors to be the same.
Giving the calculation a hundred-fold advantage malkesik about 10, orK about 1000. That is, the
calculation will be 100 times faster for about 1000 subdo®ai

"Testing an actual system need not use subdomains, but fgsazison the number of system test points is expressed as the
product of K and a subdomain sampling frequency.
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A conditional construction executes its three component®ughly2/N Kr. The synthesis time for a
conditional is essentially that required to intersect twts ©f K subdomains, which can be done(K)

[6, chapter 2]. Thus in the all-series system consideredelyeplacing three components in series with a
conditional gives the calculation an improved edge.

To execute a loop for each iteration requires roughWyK . The synthesis time for the first unrolling is
O(K log K), and subsequent unrollings require at least one fewer suéitdiceach, so this is an overestimate
if applied to each unrolling. At mosk unrollings are required, a total calculation time@fk 2 log K).
The number of actual iterations may be arbitrarily gredtent<, and in the case of an nonterminating loop
will be very large just to make a tentative decision that tregpam is looping. Thus replacing one sequence
construct in a system with a loop construct may penalizettberetical-calculation time by a limited amount
if the loop actually iterates fewer thd times, but can penalize the actual-execution time arllitrbadly
otherwise.

In summary, the number of subdomains in the synthesis edionlcan be quite large and still give the
calculation a large advantage, no matter what form the sy&tkes. If there are long-running components or
there is substantial looping, the actual execution timegraw while the theoretical synthesis time remains
fixed by the subdomain count. Hence the calculation may eama@rbitrarily large advantage. In an example
using prototype tools (Section 8.2) the theory is about 24 faster.

5 Other Non-functional Properties

A quantitative description of component synthesis basetesting has been presented, for functional and
non-functional behavior. The theory is more general thanrtin-time example used to present it, and
this section shows how it can be applied to other non-funetigroperties, both those that are intuitively

‘compositional’ (e.g., reliability) and some that are ‘exgent’ (e.g., memory leaks).

5.1 Application to Reliability

Reliability is the basic quality parameter for all enginiegrartifacts; only software has no generally ac-
cepted reliability theory. The reliability application dirsuggested the subdomain approach [17] and in
reference [22] the first version of this theory was presefaedeliability alone.

To define software reliability for a program requires an i@tienal profile,” a probability distribution
over the program’s input domain that gives the likelihoodeath input occurring in use. Reliability is
defined as the probability that if is selected at random from the operational-profile dengity,program
meets its specification on input

For a component with a collection of subdomains, a religbgtep-function can be measured by sam-
pling each subdomain uniformly. Assuming no failures arseoed in subdomaif; for N test samples
there, choosing any upper confidence bougnithe reliability is bounded below by [14]:

ti=(1—c)'/V.

Uniform sampling recognizes that nothing distinguishes point from another within the subdomain. How-
ever, for the entire input domain, an operational profile lbarexpressed as a normalized vector of weights
for the S;, used to form a weighted sum of thg which is a reliability bound for the program over the full
input domain.
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For components in series, the composite reliability bowrdwo linked subdomains indexedand j

corresponding to equation (2) in Section 3 is the product:
tZU = tf tjc, where UZB € Sjc. (4)
That is, the reliability composition operator is multi@icon in place of addition for run time.

The run-time non-functional property was chosen insteacklibility for the exposition of Section 3
only partly because it is more directly intuitive. The deegason why reliability synthesis is problematic
concerns software reliability theory itself and componadependence. In calculating run time for a system
the possibility of failures is ignored—it is assumed tha tomponents are computing properly and that
measured run-time values are correct. But for reliabifigylure is the basic property being investigated.
When a component fails, calculations of how it interactshwither components may be incorrect because
of that very failure. If a component has a reliability di#fat from 1.0, its functional values must sometimes
be wrong no matter what subdomains are taken, and so theaggnticomponents and equation (4) will be
in error, to a degree that is unknown.

Another way to describe the reliability case is to note tloptation (4) is a valid combination rule only
when the two components are independent. The measured;wﬁlmdtjc are independent, whether they
represent run times or reliability estimates. However,itlikex j is calculated using information (namely,
vP) from componen3, which Iinkstjc to B. Since the mechanism compromising independence is phgcise
known in this theory, it may be possible to study the corretatAs a beginning, one would expect that for
low failure rates of the first compone#t, it is unlikely that the choice oﬁf is wrong, hence equation (4)
is probably correct—that is, the components appear indkgperin the theory. This would suggest taking
many subdomain§’? and sampling them extensively.

Intuitively, reliability is a property that composes subtkin-by-subdomain. If the underlying software
reliability theory were more acceptable, the synthesierthpresented here would apply.

5.2 Application to Security and Safety

Testing for the purpose of validating security and safetypprties may sometimes be cast as a special
case of testing for reliability. The class of failures istriesed to violations of assertions defining security;
software security is defined as the probability that a sgcassertion holds. At the component level this
probability can be estimated and a confidence assigned testiraate when a collection of random tests
have been run without violating the security assertion. ddreesponding system-level security probability
can be calculated as in Section 5.1, with the same caveats gimoshortcomings of the underlying theory.

Sometimes security properties only emerge at the systeeh. |EVhis happens when neither of two
components has the property, yet it arises from their propeperation. Such components may sometimes
still be thought to have properties that combine with a systemposition operator, but the operator and the
properties must be cleverly chosen to result in the emegeperty.

Absence of memory leaks is a good example of an emergent yepasable security property. A
system is secure in this regard (‘leak free’) if it never gatmory that it does not later release. If memory
is obtained in one component and released in another, thdrka property can emerge only at the system
level. The theory of Section 3 can be applied to a non-funeliproperty that is the set of memory addresses
allocated/deallocated by a component. This propertpmpositional, and from it the leak-free property can
be determined.

Formally, letM be the set of all memory addresses. Take the non-functi@iaést; to be subsets of
M allocated and deallocated by a component or a system. Thatds2™ x 2M wheret; = (a;,d;) are
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the sets allocated:z) and deallocateddf). These are net values, internal cancellation having baleant
into accountia; N d; = @. A composition operatér@” for componentsB andC forming a series system
U, corresponding to equation (2) for run time is:
U U U
t; = (a7,d7)
= tB @tf, where v? € Sjc

= (af,d7) @ (af , df)

= ((ef\df)uaf,df U (df \af)) (5)
(*\” is the set difference operator). The rule captures thetiotuthat net memory allocated by a series
composition is that allocated by and not subsequently deallocatedd@yombined with that allocated by
C, and similarly for net deallocation. The system is leak ffieg); a? C U, dY. Thus an emergent property
can be predicted using the compositional theory.

The archetype emergent security property of maintainifgrination at different levels of classification
can be similarly predicted by keeping access lists for eabd@main in each component.

In security applications, approximations from testing nsagm inappropriate. After all, the reason to
separate out security properties is their importance amdlility to deal with them using formal mathemat-
ical methods. However, testing can quickly catch grossakés that occur early in system design. Even if
almost every system input violates security it can be difffimudiscover this by formal methods.

A nice compromise between sampling (testing) and proof agpm recent work by Jackson on the
Alloy system [29] and Boyapati et al. on Korat [5]. They exjgl@n infinite logic-based space of properties
by exhaustively testing only an initial finite segment of #pace.

6 Theoretical Discussion

This section offers some insights about testing comporemisabout the use of subdomains, based on the
theory of Section 3.

6.1 Combining Tested Components with Correct Ones

Mathematical functional analysis of programs in principtdves the problem of calculating any system
propertyT from component properties. Exact system predictions reqoformation equivalent to a cor-
rectness proof of each component [38] as well as analysits afan-functional mapping@’. In a system
of many components, a few may have been analyzed mathetyatiroast components will be measured
and analyzed using testing methods. Fortunately, it isiples® combine the two kinds of analysis in the
step-function-approximation theory.

Let B andC' be two components whose properties are defined by testingureaents. Suppose that
B is followed by a sequence of proved-correct, analyticabgatibed components, which without loss of
generality take to be one correct compongnt/ is in turn followed byC'. That is, the component sequence
is: B; V; C. Becausd’/ has been mathematically analyzed, its functional- andfaonotional behaviors are
known: letV (z) be its output on input and7’(z) its run time.

8Equation (5) captures the simplest composition rule—argagidress may be allocated or deallocated even it is already i
that state. The composition formula that makes it an err¢say) deallocate already-free memory is more complicaethore
accurate operator would make it possible to also deternhieeetergent property of ‘safe memory release’ that a systamarn
releases memory that is already free.
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To calculate the functional behavior of this series sysiaraguation (1) of Section 3.2 instead of finding
j by wherev? falls, useV (v?):
v = vjc, where V(vP) € SJ-C, (6)
For the system run time, replace equation (2) with:
tV =8 + T(vP) + t]C, where V(vP) € S]-C. (7)

(Similarly change equation (4) for reliability, but thegerio additional factor introduced f(ﬂ(viB ) because
reliability for the proved component has value 1.)

Thus component’ just extends the functionality d8.

It is disappointing that for the piecewise-linear approiion similar general constructions do not work;
the equivalent components do not have linear behavior sines linear.

6.2 Test-based, Approximate ‘Specifications’

It is usual to say that an engineering component catalogo&its ‘specifications’ for its entries, descrip-
tions of their properties to be used in selection and in sysdesign. However, ‘specification’ carries a
different connotation for software than for physical com@ots, as a consequence of software’s arbitrary
nature. A mechanical engineer expects the catalogue gasario be all-inclusive, relying on the continuity
of physical systems to interpolate across a range of behfraim the published parameters. But for soft-
ware, any abbreviated description may fail to capturetsedtiwould be better to qualify the name given to
a catalogue description of a software component by caltiag fapproximate specification.” It has no valid
implications that go beyond its explicit limits, and shoulok be confused with a specification in the sense
of an independent description of what software should degrgin some intuitive or mathematical form
that includes all cases. For the cases covered by its catalsgecification, the component is by definition
correct; it may not be correct for a wider specification intiseal sense if the catalogue description fails to
agree with this ‘real’ specification.

This somewhat peculiar sense of ‘approximate specificaboours in recent work by Ernst on the
Daikon system [40] and by Henkel [24]. They induce mathetahtispecifications’ from a collection of
test data, Ernst in the form of pre- and post-conditions tdirsutines, Henkel in the form of algebraic
equations for abstract data types. (Henkel calls theséogarapecifications.”) These ‘specifications’ have
the same character as the catalogue descriptions in thes,ga they are in an entirely different form and
obtained by quite different means. Here, testing is therthbehind the measurements; for the others the
underlying theory is logical or algebraic and the testinty @device to probe it. It would be of great interest
to compare the three forms, but unfortunately their resbins are largely mutually exclusive. If a program
is given only test points on which its input-output behavglinear, Daikon generates the equation, which
matches the catalogue description here on a single subdaoaiaining those points. But for most simple
input-output behaviors that the theory of this paper wowdtere approximately, Daikon generates only
empty pre- and post-conditions. In a personal communicatit@nkel indicated that he believes his system
would give similar vacuous results on simple examples. iéeimathematical ‘specification’ system has
been applied to non-functional properties.

6.3 Choosing the Right Subdomains

The accuracy of system calculations made from componeatalague data as described in Section 3 de-
pends heavily on the subdomain breakdown chosen by the ec@npdesigners. The insight that led testing
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theorists to look at subdomains in the first place [28] wasdlsubdomain should group together inputs that
are in some sense ‘the same.” One collection of subdomamshieamost promise: the path subdomains.
For the run-time property the path subdomains are in pri@@prfect. within one path domain, a constant
run time is fixed by the instruction sequence executed

In practical system testing, the most used subdomain bosakds into so-called functional subdomains
derived from the program specification. Each such subdoowimprises those inputs for which the system
is specified to perform one intuitive action in the applicatdomain. Functional subdomains are the only
sensible basis for so-called black-box testing, but thereijustification for using them to test components
in this theory. They describe what a prograhoulddo, not what in fact it does do.

Unfortunately, true “same” subdomains for input-outputdngor have never been investigated. In par-
ticular, neither path subdomains nor specification-bagadtional subdomains seem to bear any relation to
subdomains on which functional values are approximatehsizmt.

In its most extreme form, failure to predict the functionehbavior of a system arises from the output
distribution of the first component in a composition. If tfiaét component spreads its outputs relatively
evenly across the input subdomains of a following compantren the tests done by the developer of
the latter are valid, because each such subdomain has bgemsyically sampled. However, if the first
component in the composition produces an output profile witpike’ in any following subdomain, then
the developer’s testing of the second component in thatsuhih is called into questioh As an extreme
example, if a component computing the constant functioh wvatue K (its output isK for any input) is first
in a composition, then the subdomaii: of the following component in whicli falls has a spike ais’.
Uniform sampling ofSx by the developer of the second component may then be wildlycirate unless the
second-component subdomain behavior is really constané gpecial case, suppose the second component
checks for inputK and runs very quickly there, while over most of the restS@f it is slow. Then the
component developer’s average run-time measuremestfavill be ‘slow,” while in this particular system
it should have been ‘fast.’

6.4 Implications for Testing Practice

Almost every practical testing method falls under the hegdif ‘subdomain testing,” yet the efficacy of test-
ing by subdomains has proved difficult to validate. Theoettomparisons [7, 15, 4] between subdomain
testing and random testing (disregarding subdomain baiggjehave not shown a conclusive advantage
either way in detecting failures. The theory of Section 3gass an explanation as follows: Subdomain
testing is most often used at the unit level, which is analsgo component-development time in CBSD.
Furthermore, only a few unit-test subdomains are seleatachaphazard way and each is sparsely sampled.
If subdomain definition and testing as practiced were usezborponents to make system-level predictions,
say of reliability, the results would be very inaccurateildfa to take care with subdomain boundaries and
the paucity of subdomains and samples mean that as a predigescription, common-practice unit testing
is almost worthless. If anything is to be predicted acclyaiesystem level, quite a different order of effort
and care would be required.

The eXtreme Programming (XP) methodology [1] presents am ewore striking example. In XP,
testing from customer scenarios, perhaps with only a fewcases, serves as the only specification from
which an incremental design is made. Such a use-case ‘g@eicifi’ is really just a finite description of the

®Mason [33] notes that care must be taken with potential imie-errors for this to be correct in principle. In practiceréare
many factors that can make the same sequence of instruttikesliffering times to execute, e.g., cache behavior.

10A similar difficulty occurs in random system testing when &amn profile is used because a user profile is not availalsle, a
discussed in reference [18].
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kind described in Section 6.2, and thus should not be trustesh oracle unless it includes far more cases
than is common.

Testing using subdomains and inducing an approximatiommeponent and system behaviors seem to
be good ideas, but research is needed on what works and wthyth&iprobable result that current practice
must be much improved to have significant value. It is implitian algorithmic-synthesis theory like this
one that unit (i.e., component) testing should carry thenrbarden of verification. Reference [20] explores
the relationship between unit- and system testing, sugggettat system testing could be better done on a
synthesized model than by actual construction and testing.

6.5 Functional and Non-functional System Properties

The restrictions of the approximation model presented tii@e 3 are necessary for the powerful synthesis
algorithms given there. These algorithms are difficult gytoin the restricted case; it is impossible to
imagine that algorithmic synthesis could be carried outgisi ‘practical’ model such as UML. But does
this theoretical limiting case have any hope of practicalliaption? Real components seldom compute
numerical functions; and approximations, even very atceuvaes, cannot be used to check agreement with
exact specifications. There is, however, one situation iichvhoth of these difficulties might be overcome.
Non-functional properties like run time and reliability Have real output domains; and for théwunds
on behavior are sometimes all that is needed. For examphgyitbe useful to predict from synthesized ap-
proximations that the system run time (response) will {ike¢ less than 1 s. There remains the difficulty
of dealing with non-numeric input and non-numeric funcéibautput which enters the run-time synthesis.
For example, consider character input/output. It may betteafunctional approximation, though in prin-
ciple meaningless, is good enough to be used in the nonifuattcalculations. A component returning a
character value might be ‘approximated’ as returning arrage’ of (say) mi , because the run time does
not depend strongly on the character value, and subseqaemganents’ run times are similarly insensi-
tive to the character received. Thus the functional appnatibn may be good enough to obtain accurate
predictions of interesting non-functional bounds.

7 Related Work

Most of the research needed to realize the promise of satwamponents is properly concerned with
creating, combining, and deploying components themselResearch on qualitative CBSD draws on the
communities of software reuse, software architecture, emath systems and networks. Perhaps the most
interesting thread in this extensive research literatsitbe work based on software architecture originated
by Garlan [2] and others. In the architectural abstractcmmponents interface to each other through con-
nectors, which both enable and constrain the componemaatiens. In the work of Medvidovic and his
students [35], the abstract model is implemented as a framkew which a particular style and its connec-
tors are a practical basis for component combination.

In contrast, this paper focuses on the quantitative cortippal aspects of CBSD, how component
properties (particularly non-functional ones) synthegiz system properties. Approaches to this property-
synthesis aspect of component-based systems are the onegeslin this section.

7.1 Proof-based and Analytical Theories

In principle, excellent explanatory theories of comporfenctional composition have been available since
the late 1960s, in the work of Floyd [8] and Hoare [25, 26],@agt[13] and others [10, 11], Mills [38, 9],
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and many others. In these theories a component is describétematically, by a collection of logical
assertions, or by an algebra, or functionally. The mathieadatiescriptions have a syntactic interface part
and a semantic part completely describing behavior. Comaptoproperties such as run time are described
by analytical equations in the input variables. The comsimn of component-based systems might then be
described as follows:

Components can only be used together if their interfacegshmaind this match may include
semantic properties. For example, one component may eethat a list delivered to it by an-

other be sorted so that binary search can be applied to th&lige components are properly
matched, the functions describing their input-output beitaand their non-functional proper-

ties can be mathematically composed to obtain the systepepies.

These theories are elegant and they completely solve th®epnoof synthesizing system behavior from
component behavior.

Logic-based theories following Hoare [25] have receivesl rtiost development. Bertrand Meyer pro-
posed ‘design by contract’ [37] as the form appropriate tsable components. A version specifically
directed at components-based system design and the gosesidll to modify the pre- and post-conditions
of contracts is being investigated by Reussner and Schaqdéf].

7.2 Testing-based Models

Rosenblum [43] has taken a unique approach to relating coemdests to system properties, based on
very general axioms describing test properties. His woik ésense at the opposite pole from that reported
here. By using only very weak axioms, he achieves the getyetlaht the theory presented here lacks, but
correspondingly the results are much weaker than ours.

Karl Meinke [36] uses testing-based program approximaitioa different way to seek a failure point
for a programP. He requires a first-order formal specification and searbfirea failure point roughly as
follows: Given a functionf that is a piecewise polynomial approximation to the inputipat behavior ofP,
there is an algorithm to search for a painsuch thatf(x) is incorrect according t@’s specification. Ley
be the output o on inputz. Perhapsg is incorrect; if so, Meinke has succeeded. If not, he gddg) to
f to form f’, a more detailed approximation. The process is iterateillaititer a real failure is found or the
piecewise approximation becomes so accurate that the tesieves there are no real failures. Meinke’s
procedure produces a set of subdomains (the ‘pieces’ ofghmgimation) that can claim to objectively
capture a ‘functional’ breakdown d@?’s domain, itself an important theoretical accomplishm@ite work
presented in this paper does not require a formal specditaliut the payment is that here a tester must
construct subjective subdomains by hand. Meinke uses\piseeapproximations of order higher than
linear since he is not concerned with composing them.

The bulk of prior work on composing component propertiegstitg theory uses the reliability property.
Markov-chain models are used to describe a system as atamilexf transition probabilities for invoking
each component, and when invoked the component contrifitstesliability value. Littlewood’s seminal
paper [32] appeared long before “component” was a populaeveord. Mason and Woit [34] obtained
good results from decomposing the UNgX ep utility into elements that resemble functional-programani
units.

Markov models of systems composed of components hide theatipeal-profile problem described
in Section 2 in their assumptions about transition proligsl Most models begin with a fixed system

H"The description is not attributed to any particular authat, paraphrases descriptions that occur in work (for exajrgfithe
ADJ group [10].
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architecture. The transition probabilities can then besuesl from expected-usage data for the system.
Krishnamurthy and Mathur [30] do not explicitly use a Markowdel, but determine the path probabilities
in a system by exercising it with a collection of tests. Simglal. [45] and Kubal, May, and Hughes [31]
use a Bayesian approach, beginning with guesses for treticarprobabilities and refining these as system
test cases are run. To obtain accurate Markov models, ttesstda simple control-flow model must be
split to account for data-varying transition probabiltigoarticularly in loop control. It is difficult to obtain
plausible probabilities for the split-state transitiomsl @here is a state explosion.

If a theory is to predict system properties from componenperties, the latter must be measured in
isolation outside the system. In most models, this is dorik svfixed operational profile for each compo-
nent. Thus component reliabilities are single numbers lwhie then assumed to be appropriate for use in
any system in any position within the system. Some modelsd8M little better, measuring component
reliabilities in place for the operational profile given teetsystem. With enough data this approach can
be defended, but in the limit it amounts to simply testing ¢chenposite system without any independent
component measurements.

7.3 Summary of Related Work

Most work cited in this section falls in two categories:

1. Mathematical, analytical methods are entirely corregrinciple but are seldom chosen over testing
and measurement.

2. High-level modeling of component-based reliability isant to apply to real systems, but not to aid
understanding of component composition itself.

In contrast, the approach taken here is based on testingunee@snts and the model is chosen to capture
as much detail of the component-based system as possibthefpurpose of explaining and understanding
what takes place.

A striking feature of this theory is that it treats a numbenoh-functional properties uniformly. Within
the restricted context given in Section 1.3 it applies to tiore, reliability, or any property for which a
composition operator can be defined—even emergent prepertn essentially the same way.

The connection between this theory and formalism-base#t that uses testing in a subsidiary role has
been briefly mentioned at the end of Sections 5.2 and 6.2.

8 Follow-on Work

This paper is limited to the presentation of a subdomaitirigdased theory of component composition of
pure-function behaviors. The theory was developed in [gnaith implementation of research-prototype
tools. Theory and tools have been extended to include coempdacal state and validation experiments
have been conducted using the tools.

8.1 Components with Persistent Local State

Persistent state is a necessary feature of useful comotiaitis not captured by the model presented
in Section 3. Software reliability engineering handlesdestay making state variables ‘hidden inputs’ and
adding them to the input space for random testing. Thisrreat is simply wrong: state variables are not
independent, because their values are created by the sefitsalf and completely out of testing control.
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A correct treatment tests software with state by initialigihe state and then subjecting the software to a
sequenc®f inputs, which results in program creation of a corresjiogdtate sequence.

To model components with local persistent state, a statd setonsidered along with the input domain
D, and the output and run-time functions map (inpstiate) pairs;f : D x H — DandT : D x H — R.

The state itself is mapped by a new functipn D x H — H. Instead of step functions in one input, the
approximations to be measured for a component are stefaptabe two inputs.

To give a flavor of the state-inclusive theory, consider sgsizing a series combination of components
B andC to form a systent/ as in Fig. 1 of Section 3.2. In addition to its input subdorsaiff, S5, ..., S5,
componentB has state subdomaidilB,HZB, ...,Hfi, and similarly form’ state subdomains af’. The
series system has the same input subdomainB,asnd the system has state subdomains that are cross
products of the two component state-subdomain collectieigs, H2 x HQC . Then to synthesiz&, consider
its arbitrary subdomaitk = SP” x HZ x HS,. On subdomairs? x HZ, B has output and run timet
from its step-plateau approximations. Letall in subdomainy” = S]C X Hf,i that is, in theC' subdomain
corresponding ta3’s output, but to theC-state part of arbitrary system staig namerHﬁ . Then the
system output and result-state valuesXoare obtained frond"s step-plateau approximations evaluated in
Y’; the system run time iX is the sum of the3 run timet and theC run time inY’.

Similar modifications of the constructions in Sections $18 8.4 yield a system-synthesis algorithm for
arbitrary systems made from components with local state.

Adding state raises an interesting new aspect of compoestihg: portions of the two-dimensional
input—state space may be unreachable in principle. Inig®based on logic, unreachable states are those
in which invariants are violated; it becomes a proof burdeishow that they cannot occur, that is, that
invariants are preserved. However, it is usual to test statthout regard for their feasibility: the state is
initialized systematically to values it ‘should’ have amting to a specification. This systematic sampling
can create spurious executions that lead the tester a3thaycorrect sampling using sequences of inputs,
however, may fail to excite some hard-to-reach state tHatisible. It is an unsolvable problem to identify
exactly the feasible states.

Details of a persistent-state theory that extends thaepted in Section 3, and some experiments with
component tests and system synthesis are reported in tentreanferences [20, 21].

8.2 Tools and Experiments

The theory presented in Section 3 and its extension to iediockl state indicated in Section 8.1 have been
implemented in tools that measure the step-plateau appadixin (inpui state)-output, -run-time, and -
result-state vectors for components, using subdomaingda® by the component developer. With these
component descriptions, other tools can synthesize arxzippation to an arbitrary system. The synthesis
tool is a CAD tool for system design by calculation.

The tools have been used to conduct experiments in compopergosition, especially to investigate
the shrinking of subdomains around rapidly changing orafifiouous behavior. The experiments reveal
the way in which the theory successfully approximates sysiehavior using component approximations.
Subdomain refinement generally produces accurate systeaicpons. For example, in a typical stateless
system of six components requiring all of the synthesissiikeeping the r-m-s component measurement er-
rors below 1% confines the system prediction error to aboutA¥gpical time comparison for this example
using a 1.7 Ghz PC is 23 s for actual system execution and xsd@ynthesis calculation. It is surprising
how quickly system behaviors become extremely complex eiemn their component behaviors are simple.
The way in which a discontinuity behaves as the subdomailoging it shrinks is also unexpected.

A companion paper [16] describes these tools and experimeietail.
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9 Future Work

Among many additional lines of investigation raised by thigk, two stand out.

9.1 Error Analysis

It is to be expected that the error in predictions of systeaperties obtained from this synthesis theory
will decrease as the approximation of component behaviprawes. However, no theoretical quantitative
relationship has been established between approximatidrpgediction. A component developer cannot
know how accurately each component must be described—#pandls on its unknown application. But
component errors could be used at system-design time toastthe error in the predicted behavior. “Safety
factors” and practical “rules of thumb” are possible wheneamr analysis identifies the relevant factors,
even if precise error predictions cannot be obtained.

A useful error analysis is likely to arise from the study gficdly changing component behavior. Where
component functional behavior changes slowly across assuauh, the approximations are good. Sampling
can never be sure that a discontinuity or rapid behavior @hdras not been missed, but by shrinking the
subdomains, the region of inaccuracy can be confined.

An error analysis for the reliability application (Sectibrl) is the most important and the most difficult.
However, it could be that the very difficulties with compasit of reliability values can help with error
analysis. A component’s failure rate is an estimate of hdwelyi it is to produce an erroneous functional
value, so it might be possible to carry a reliability caldida as an error predictor along with the calculation
of any other non-functional property. Weyuker and Weisg ke devised a reliability theory that includes
a measure of the functional error, which may be just what éslad for analysis.

9.2 Concurrent Theory

The theory presented here is a sequential one. Extensioontuaency requires adding a concurrency
operator to the composition algebra and synthesizing aivagut component for processing in parallel.
Such an addition would greatly complicate the present thémwever, the reliability version of a concurrent
theory could be used to discuss methods that seek to impsadiability through redundancy. A voting
scheme based on multi-version programming (MVP) is the &nlywn means of adding redundancy to a
system and increasing its reliability over that of its comgats. The question of independence is critical
and can only be discussed within a concurrent theory.

The DOTS (Diversity Off The Shelf) project is a large-scadsaarch effort investigating the foundations
of MVP, for example in reference [41].

10 Summary and Conclusions

A fundamental, testing-based theory of component compasitas been presented. It approximates func-
tional and non-functional behavior of stateless compaesing subdomain testing, and uses these approx-
imations to calculate approximate properties of systenisfbom the components. This theory can also be
viewed as a mathematical model of component compositiowhich step-function approximations model
actual components and systems.

Perhaps the most important insight to emerge from the thisdhat accurate subdomain boundaries are
critical to accurate test-based descriptions. When ragithtior changes (including discontinuities) occur
inside a subdomain, the predictions involving that subdomall be poor. Component developers cannot
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know where crucial system subdomain boundaries will falk, they should refine subdomains to capture
component behavior as accurately as their resources allow.

The implication for conventional unit testing is a disturdpione: since in practice a very few subdomain
tests are often used as a quality measure, the confiden@dgsiould not be trusted.
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