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Abstract

Composition of software elements into assemblies (systems) is a fundamental aspect of software
development. It is an important strength of formal mathematical specification that the descriptions of
elements can be precisely composed into the descriptions ofassemblies. Testing, on the other hand, is
usually thought to be “non-compositional.” Testing provides information about any executable software
element, but testing descriptions have not been combined todescribe assemblies of elements. The un-
derlying reason for the compositional deficiency of testingis that tests are samples. When two elements
are composed, the input samples (test points) for the first lead to an output sample, but it does not match
the input test points of the second, following element.

The current interest in software components and component-based software development (CBSD)
provides an ideal context for investigating elements and assemblies. In CBSD, the elements (compo-
nents) are analyzed without knowledge of the system(s) to belater assembled. A fundamental testing
theory of component composition must use measured component properties (test results) to predict sys-
tem properties.

This paper proposes a testing-based theory of software component composition based on subdo-
mains. It shows how to combine subdomain tests of componentsinto testing predictions for arbitrarily
complex assemblies formed by sequence, conditional, and iteration constructions. The basic construction
of the theory applies to functional behavior, but the theorycan also predict system non-functional prop-
erties from component subdomain tests. Compared to the alternative of actually building and testing a
system, the theoretical predictions are computationally more efficient. The theory can also be described
as an exercise in modeling. Components are replaced by abstractions derived from testing them, and
these models are manipulated to model system behavior.

Keywords: Software components, system assembly, composition of properties, foundational testing
theory, component-based software development (CBSD).

1 Components for Software Development

In many engineering disciplines, the idea of aggregating standardized components to create a complex sys-
tem has allowed the creation of better systems more easily. Component descriptions are catalogued so that
a system designer can design a system “on paper.” Adequate catalogue descriptions of components are
the basis for computer-aided design (CAD). CAD tools help the system designer to predict properties that
hypothetical systems would exhibit if built from those components.
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The component approach has promise for dealing with the difficulty of design and uneven quality of
software systems. Divide and conquer is the only known way toattack the overwhelming complexity of soft-
ware; software components should be easier to design and analyze than complete systems. Unfortunately,
the analogy between electrical/mechanical and software components breaks down when their behavior is
considered in detail. The traditional mechanical component has continuous properties that can be described
by a handful of measurements, and statistical quality control gives a high probability that any given unit
will adhere to the general description. Software, on the other hand, is notoriously difficult to specify, and
sampling (testing) does not probe its properties very well,partly because they are discontinuous and partly
because too many tests are required.

The central dilemma of software design using components is that component developers cannot know
how their components will be used and so cannot assume any particular environment for component testing.
Yet a component’s behavior depends critically on its environment. A customer for components (the system
designer) does know the environment, but the information comes too late. If components must be assessed
at system-design time, most of the benefit of component-based development is lost. In practice, of course, a
component may be intended for applications whose environment is at least partly known.

1.1 Ideal Component-based Software Development (CBSD)

If the design of software is to benefit from using catalogued components as have other engineering dis-
ciplines, there must be a strict separation between component developmentper se, and component use in
system development. A component catalogue is the document that effects this separation. It records the
work of component assessment in such a way that system designers (and their tools) can perform system-
synthesis calculations entirely without access to the components themselves. It is conventional to refer to
catalogue entries as “component specifications,” althoughthat terminology is not used here because in Sec-
tion 6.2 it is seen to be something of a misnomer. The point is that for CBSD to work, the catalogue must be
precise and accurate: it must tell the system designer everything he/she needs to know about a component
and must not be misleading. If the catalogue is inaccurate, the system designer may have to repeat or extend
component analysis to get useful system predictions.

It is characteristic of an acceptable component technologythat the component catalogue is trusted. Peo-
ple do make mistakes, but it is quite unthinkable that catalogue entries are purposely falsified. When there
is a lack of information, trust is impossible. To give a real example, so-called “process metrics” are not
acceptable in a catalogue. To say “this component was developed by an SEI level-5 organization,” is quite
unlike saying, “its failure rate is less than 0.00001/hr;” only the latter would be tolerated in electrical or
mechanical engineering. The proper role for subjective measures is to engender belief in precise ones. One
may find it easier to believe that an SEI level-5 organizationcould construct a quality component and could
accurately measure its failure rate. It is natural that component developers bear the burden of describing
and measuring properties of their products. They compete onthe basis of quality and price, and it is in their
self-interest to balance these factors and to publish the result so that good work will be rewarded by being
selected for system designs.

Given an adequate component catalogue, system design is thecreative process of selecting and combin-
ing components that should work together to meet the system requirements. Talented designers will do this
better than hacks. However, the process is complex and errorprone, so it is essential to try out proposed
system designs. When there is a theory of composition based on the descriptions in a catalogue, the trial can
be done “on paper.” The components are not actually assembled, nor are any real tests carried out. Rather,
calculations predict what the properties of the system willbe. Substituting one component for another in
a trial system requires no more than repeating the synthesiscalculation with a different catalogue entry;
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the predicted system properties for the alternatives can then be compared. It is important that predictive
calculations be efficient—much faster than executing an actual system.

The ideal of CBSD is a stringent one, far from being realized in practice. The testing-based theory
presented here is able to conform to most of the ideal by utilizing ‘components’ that are themselves ide-
alized. By imposing extreme restrictions on the component form and on the system architecture, the ideal
paradigm can be studied. This form of investigation, in which a simple model is quantitatively examined
rather than looking at a more realistic model qualitatively, has a distinguished history that includes Turing’s
computation model. The goal is not direct application—no one imagines building Turing chips—but rather
understanding.

1.2 Component Properties

Historically, “component” in software is a rough synonym for “module” or “unit” or “routine.” The word
originated as a reference to source code in a programming language, but unfortunately this natural viewpoint
leads to inconclusive terminology wars over what definitionof ‘components’ should be used in CBSD.
Clemens Szyperski suggests shifting the focus away from code source. He defines a software component
as executable, with a black-box interface that allows it to be deployed by those who did not develop it [46].
This paper uses a restricted form of Szyperski’s definition,taking a component to be an executable program
with pure-functional behavior.

System properties that arise from composing components canbe categorized as follows:

Black-box behavior.The so-called ‘functional’ or ‘input-output’ behavior of any program is its most impor-
tant characteristic.

Compositional non-functional behavior.Some component properties such as run time and reliability intu-
itively combine to yield their system values. These properties are a primary concern of this paper,
described in Section 3.

‘Emergent’ behavior.Other non-functional system properties arise only becausecomponents are used to-
gether. Security properties such as restricted access to classified information are of this kind. Emer-
gent properties may still be “compositional” as described in Section 5.2.

Without precise component descriptions and a way to use themin predicting system properties, software
components may be no bargain. To buy off-the-shelf softwarewith unknown properties is only to trade the
difficult task of assessing your own work for the more difficult task of assessing someone else’s [48].

1.3 Ideal Components and Systems

Choosing a restricted model of components for a foundational theory is an uneasy compromise between
making the model plausible yet simple enough to be tractable. Since the goal here is to carry through a
complete quantitative analysis, simplicity is primary. The theory of testing, which began with Goodenough
and Gerhart [12], suggests most of the necessary restrictions. First and foremost, testing theory takes pro-
grams to have functional semantics. A program is assumed to take an input (conceptually a single value)
and produce an output (also a single value). A program is correct if its input-output behavior matches a
specification function givena priori.

Reliability is an important non-functional property of software. This forces the further restriction to a
real-number input domain, since it is difficult to define random sampling for other spaces.
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These historical choices almost completely determine constraints on a fundamental component-composition
theory. If each component has a real-valued input domain, then to combine them requires their outputs to
also be reals.

For the system architecture there are two choices that have historically been explored: (1) Functional
composition only, using recursion to handle cyclic computation and Boolean characteristic functions to
model conditional computation, or (2) The three ‘structured’ operations of sequence, conditional, and itera-
tion [3]. The latter is much closer to the mainstream model ofcomputation in imperative languages and it is
chosen here.

In summary, in this paper a component has pure-functional semantics and a single real-valued input and
output; its non-functional properties are also mappings onthe reals; and components form systems using
arbitrarily nested sequence, conditional, and loop constructions. Such a system then necessarily obeys the
same restrictions, making it a technically a ‘component,’ anice closure property.

2 Dilemma of Varying Software Behavior

If software is intrinsically different from products of mechanical engineering, it is because software obeys
no natural laws, and therefore lacks the simplifying organization often imposed by nature [19]. Most natural
phenomena are continuous and this continuity allows a briefbut precise description of a physical system. For
example, a mechanical system often has components that can be described as point masses, and Newtonian
mechanics can accurately predict the behavior of very complex assemblies from this description alone.
Software, in contrast, is usually discontinuous and may have arbitrary human-defined behavior that must be
described explicitly in forbidding detail. This fact explains why requirements engineering is so important
and so difficult.

The difficulty in calculating system properties from component test measurements can be illustrated by
a simple example. Imagine two software components placed inseries. The first componentC1 receives
the system input, does its calculation and invokes the second component. The second componentC2 does
its calculation on input received fromC1 andC2’s output is the system output. Consider the performance
property of this composite system. To use the paradigm that has been successful in other engineering
disciplines, one wants to measure the run time of each component in isolation and then calculate the system
run time. Suppose that each component is capable of ‘slow’ or‘fast’ performance, depending on its input.
The system run time will then depend on two things:

1. The distribution of system inputs over the input domain ofthe first component. For example, if many
inputs lead to the ‘slow’ behavior ofC1 then the system will be slower.

2. The way in whichC1 sends its outputs into the input domain ofC2. For example, if manyC1 outputs
happen to fall on ‘slow’ input points ofC2, the system will be slower.

The usage of a system can be captured by its input profile: a distribution describing how likely it is
that each input will occur. Given this distribution, it would be possible to analyze the system above by
seeing how many inputs invoke ‘slow’ or ‘fast’ behavior in each component and make a detailed, accurate
calculation of the composite behavior. But component developers cannot know the profile and cannot know
which components will be used together—those are bothsystemproperties. So how can correct measure-
ments be made at component-development time? This situation is pervasive in software components and
systems. It occurs in performance analysis (as in the example) and in reliability estimation. It is no wonder
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that engineers from other fields have thrown up their hands atincluding software in systems-engineering
calculations1.

Software testing theory has a way to divide and conquer problems of disparate and extensive input
domains. So-called ‘subdomain testing’ divides an input domain into a manageable number of subsets
(subdomains) with tests selected in each subdomain. There is a substantial literature on subdomain testing2

beginning with the work of Howden [27, 28]. In software reliability engineering (SRE), subdomains are used
in a way that is close to the present purpose. In SRE, functional subdomains are assigned empirical usage
probabilities, thus defining a coarse usage profile for a system [39]. Imagining that such a profile will be
applied to a component-based system, part of the component-testing dilemma is resolved. The component
developer need only supply property valuesby the subdomain. Later, these values can be weighted and
combined to get system values, yet the component developer needs no knowledge of the system profile—
measurements by the subdomain cover all possibilities.

Testing components in subdomains also resolves the second part of the dilemma, how a system input
profile is distorted by one component before it reaches another component. Brute-force tracing of the profile
from one component to the next becomes possible because the space is reduced from an intractable number
of inputs to relatively few subdomains. In the analysis, each subdomain is like a single ‘point,’ which makes
calculation efficient and allows tractable analysis of loops.

3 Testing-based Theory of System Synthesis

This section presents a quantitative theory that predicts software system properties from component values
measured by testing. The theory applies to any software property whose values depend only on the software
input and which is mathematically well defined. Performance(run time) and reliability are such properties
with numerical (real) values; some security properties canalso be incorporated with a bit more difficulty
(see Section 5.2). In order to be concrete, the theory will bepresented for black-box behavior and for the
non-functional property of program run time. Section 3.1 describes component analysis. Section 3.2 gives
the rule for composing two components in sequence that is theheart of the theory. Composition rules for
conditional and iterative constructions are given in Sections 3.3 and 3.4. Section 3.6 describes calculation
of the properties of an arbitrary system.

3.1 Approximating and Measuring Component Properties

A component’s run time over input spaceD is assumed to be a mappingT : D → R, whereR is the
non-negative reals. Intuitively,T (x) is the run time when the component executes on inputx. In testing,
T is sampled by executing the component. Suppose that the developer divides a component’s input space
into a finite number of subdomainsS1, S2, ..., Sn. Sampling on each subdomain and averaging the sample
values approximatesT as a step function with constant valueti on subdomainSi, so that for all1 ≤ i ≤ n,
T (x) ≈ ti, x ∈ Si, as indicated in Fig. 1. The vector<t1, t2, ..., tn> = <ti>

n
i=1

approximates the run-time
functionT . For simplicity and clarity, Fig. 1 shows the subdomains as intervals along an axis, which would
require the input domain to be ordered.

1Nancy Leveson says that when a safety engineer needs to assign a reliability to an embedded software component, it is is usual
to take the value as 1.0. She advises that probably 0.0 is morerealistic. Neither value is of any use to the system engineer, because
the former hides any possible software failure and the latter wipes out all other component contributions.

2‘Subdomain testing’ has also been called ‘partition testing.’
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Figure 1: Step-function approximation of a component property

Similarly, assuming the component has an input-output mapping f : D → D, average valuesv1, v2, ..., vn

of f over each subdomain approximatef with the vector<v1, v2, ..., vn> = <vi>
n
i=1

. It is also possible to
approximate behaviors across subdomains with other non-constant functions. The simplest better approxi-
mation is linear, in which the approximating vector contains pairs of (slope, intercept):f(x) ≈ mix+bi, x ∈
Si: <(m1, b1), (m2, b2), ..., (mn, bn)>, and similarly forT (x). The slopes and intercepts can be obtained
by test samples and a least-squares fit over each subdomain. In the sequel, approximating subdomain values
by constants will be called thestep-function approximation, and by linear functions, thepiecewise-linear
approximation. The step-function approximation is just that special caseof the piecewise-linear approxi-
mation in which all slopes are zero, but it is treated separately because it is intuitively easier to describe.
Section 3.5 discusses mixing components with differing approximations.

In any case, the result of a component-developer’s analysiseffort is a catalogue description consisting
of subdomains with functional and run-time values for each subdomain. If the subdomains are well chosen,
it may be that this catalogue entry is an accurate description of the actual software behaviors. If not, the
accuracy should improve by shrinking subdomain size and aligning functional discontinuities on subdomain
boundaries.

3.2 Calculating Properties of a Series System

Suppose that two componentsB andC are to be composed in a series systemU as shown in Figure 2. The
information shown in shadowed boxes defines each component by subdomains, input-output values, and run-
time values, as measured by testing componentsB andC, and to be calculated for the composite system
U . Figure 2 shows the step-function approximation vectors, as follows: Let the component subdomains be
SB

1
, SB

2
, ..., SB

n andSC
1

, SC
2

, ..., SC
m respectively (usuallyn 6= m), and let their corresponding output-value

vectors be<vB
1

, vB
2

, ..., vB
n > and<vC

1
, vC

2
, ..., vC

m>. Let their run-time vectors be<tB
1
, tB

2
, ..., tBn > and

<tC
1
, tC

2
, ..., tCm>. It is desired to calculate a set ofk subdomains for the systemU : SU

1
, SU

2
, ..., SU

k , and
two corresponding step functions:<vU

1
, vU

2
, ..., vU

k > for system output and<tU
1
, tU

2
, ..., tUk > for system run

time.
The calculation derives an ‘equivalent component’ for the series systemU , a ‘component’ whose de-

scription is in the same form as the description of its constituent components. Thus the calculations can be
used repeatedly to synthesize the properties of arbitrary systems (see Section 3.6). To calculate the equiva-
lent component means finding a set of subdomains and the input-output and run-time vectors for the system
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Figure 2: Block diagram of a series system

U .
For the step-function approximation, the system subdomains are those of the initial componentB, so

k = n andSU
i = SB

i , 1 ≤ i ≤ n.
On subdomainSU

i , B has outputvB
i . Let this fall in thejth subdomain of the following componentC.

Then the system output value onSU
i is vC

j . That is:

vU
i = vC

j , where vB
i ∈ SC

j . (1)

The run time of the system on subdomainSU
i is the run time ofB there plus the run time forC onSC

j :

tUi = tBi + tCj , where vB
i ∈ SC

j . (2)

Using the piecewise-linear approximation is a considerable improvement because it tracks the way in
which outputs from one subdomain of componentB disperse into distinct subdomains of componentC, as
the step-function approximation does not. To see the way in which this happens, consider one subdomain
intervalSB

i = [L,R) of the first component, in which the functional behavior is described3 by a line with
slopek and interceptq (that is, this line isλx(kx + q)). Then the output range is the intervalS′ = [kL +
q, kR+q). This output may fall into several subdomains of the second component. Let one such intersection
be with SC

j and let the linear approximation of the functional value inSC
j of the second component be

λx(k′x + q′). Then the equivalent system component has a subdomain that is a reflection back intoSB
i

of part of the output interval:S′′ = S′ ∩ SC
j . If this output intersection is the interval[L′, R′), then the

corresponding part ofSB
i is [(L′ − q)/k, (R′ − q)/k) (if the slopek is 0, the new subdomain is all of

SB
i )4. Figure 3 illustrates this subdomain construction. The vertical heavy line is aC subdomain and the

horizontal heavy line is a subdomain of the calculated equivalent component, formed by reflectingS′′ into
theB subdomains. On this new subdomain the composite functionalapproximation is the composition of
the two lines, that is, it has slopekk′ and interceptk′q + q′. The composite run-time behavior is similarly
obtained for the new subdomain, but it is the sum of the linearrun-time functions for the components (say

3In the interests of readability the presentation avoids subscripts that identify the subdomain.
4The derivation is correct only for slopek ≥ 0. Whenk < 0, the end points of the interval in the second component’s domain

reverse, and there is a technical difficulty because the right end of the interval is open.
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Figure 3: Splitting subdomains in a series synthesis using the stepwise-linear approximation

these are:λx(hx + r) andλx(h′x + r′)), with the second adjusted to receive an input that is the functional
output of the first component. This run-time sum line has slope h + kh′ and interceptr + h′q + r′.

Repeating this calculation for the intersections between each SC
j and the output ranges of eachSB

i

results in a list of subdomains and linear functions on them for the composite functional and run-time
behavior. The piecewise-linear approximation improves the subdomains of the calculated system because
whenever a linear output fromB crosses a subdomain boundary inC (e.g., atL′ in Figure 3), the equivalent
component for the series system acquires a new subdomain boundary.

In either approximation, the component data vectors allow calculation of system vectors (from equations
(1) and (2) for the step-function case, or from Figure 3 and its discussion above for the piecewise-linear
case). System vectors define an equivalent component for thesystem in exactly the same form as the
original component vectors. Hence the calculations can be used repetitively to synthesize arbitrary systems
as described in Section 3.6.

The quality of the calculated equivalent component—that is, the degree to which it accurately approxi-
mates the actual series system—will of course depend on the accuracy of the approximations for the com-
ponents. The intuition behind the theory is that as subdomains shrink in size, the approximation should be
better and the theoretical predictions should improve. Fordigital input-output data the space is discrete, so
each subdomain contains a finite number of points. Hence the smallest possible subdomains are singletons
and in this limit the equivalent-component calculations are exact.

3.3 Conditional System Control Structure

The sequential construction of Section 3.2 can be applied toa conditional:

if B then CT else CF fi.

Let the three componentsB, CT , andCF have subdomains, input-output values, and run-time values5 using
the notation of Section 3.2. LetB havep subdomains, whileCT and CF haven and m subdomains,
respectively.

5It is conventional to use the output ofB only to determine the branch; whichever ofCT andCF is selected receives the same
input thatB received, notB’s output.
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The conditional test componentB partitions the input domainD into:

DT = {x ∈ D|B(x)} and DF = {x ∈ D|¬B(x)}.

Input x ∈ D reaches componentCT iff x ∈ DT and similarly input elements ofDF reachCF . The
subdomains of the equivalent component to be computed are therefore:

DT ∩ SCT

i , 1 ≤ i ≤ n; DF ∩ SCF

j , 1 ≤ j ≤ m. (3)

On these subdomains, the input-output behavior of the equivalent component is that ofCT or CF respec-
tively. The run-time behavior of the equivalent component is that ofB in series withCT or with CF

respectively.
The calculation of an equivalent system component for a condition construction is the same for the step-

function and piecewise-linear approximations: the split subdomains carry whichever approximation is being
used.DT andDF are natural subdomains to use for the conditional-test componentB because they exactly
captureB’s input-output behavior. For input-output behavior it makes no sense to considerB subdomains
that cross thetrue – falseboundary (that is,SB

k ∩ DT 6= ∅ ∧SB
k ∩ DF 6= ∅, for some1 ≤ k ≤ p), which

also means that the piecewise-linear approximation for input-output behavior is not meaningful. However,
it may be useful for capturing the run-time behavior ofB to breakDT andDF into smaller subdomains or
to use a piecewise-linear approximation forB’s run time.

A conditional construction with noelsepart is equivalent to takingCF an identity component with zero
run time, which has a perfect piecewise-linear approximation.

Whenever a synthesis construction uses subdomain intersection (that is: for conditionals, in a piecewise-
linear series combination, and in iteration because conditionals are used to unroll loops), the count of syn-
thesized subdomains may be as large as the product of the counts for the components. This means that
there is a possibility that the subdomain count will grow exponentially in the number of system components.
Fortunately, there are some mitigating factors. First, systems are seldom built with more than a handful of
components. Second, whenever a series synthesis has a first component with a step-function approximation,
it fixes the synthesis count irrespective of the second-component’s count. And finally, since the output range
of a first component must be contained in the input domain of one that follows, subdomain boundaries tend
to line up so that intersections stabilize. The only difficult practical case is piecewise-linear approximation
in loop synthesis.

3.4 Iterative System Control Structure

The remaining basic system construct is iteration. Iterative constructions are the bane of program analysis,
because in general their behavior cannot be algorithmically obtained in closed form. For this theory things
are better than usual. Since there are only a finite number of subdomains, the approximation to loop behavior
can be calculated deterministically.

The step-function approximation is easiest to analyze. Begin by unrolling the loop

while B do C od to if B then C fi; while B do C od.

The trailing loop after the unrolled conditional is called the residual loop. On any subdomainSC
i where

B(vC
i ) is false, the residual loop makes no contribution; these ‘false’ subdomains can be eliminated from

consideration. If there remainC subdomains for whichB(vC
i ) is true, the loop can be unrolled a second

time and further subdomains may disappear becauseB is false on them. Continuing, at each unrolling at
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least one subdomain is eliminated, or none is eliminated. Inthe latter case, the remaining subdomains are
all mapped to one other byC and this situation cannot change, so the approximation to the iterated behavior
does not terminate. But unless this occurs, the residual loop will entirely disappear in at mostn unrollings,
wheren is the number of subdomains ofC. Thus the equivalent component for an iterative construction is
algorithmically determined in the step-function approximation.

For the piecewise-linear approximation, the series composition of the successive unrolled loops can
introduce new subdomains as described in Section 3.2, Figure 3. However, the process is necessarily limited.
In the worst case, each ofC ’s n subdomains will be split inton pieces; then no further splitting can occur.
The argument for the step-function case then shows that at most n2 unrollings will either eliminate the
residual loop or stabilize on a set of ‘true’ subdomains thatnever changes so the approximation loop will
not terminate. In practice, the worst case is unlikely; evenin contrived examples it is hard to force a need
for more than about 20% ofn unrollings.

If the C subdomains are not fine enough to capture the functional behavior of the loop body well, two
difficulties may arise: First, it may falsely appear thatC maps out ofDT for some subdomain(s) in equation
(3), so that the loop calculation terminates when actually the loop does not. The equivalent component will
then be erroneous on those subdomains. Second, the result ofexecutingC may falsely appear to always fall
in DT for some subdomain(s) so that the calculated equivalent component is undefined in those subdomains
even though the loop actually does terminate there. The payment for algorithmic loop analysis is that the
equivalent-component calculation only approximates the behavior of the iteration construct.

3.5 Combining Different Component Approximations

Although the step-function approximation to component behavior is in general less accurate than the piecewise-
linear approximation, steps are sometimes preferred, as inBoolean-valued discontinuous conditional com-
ponents. Similarly, if there is to be any hope of handling non-numeric functional values, it does not lie with
linear approximation. (Section 6.5 provides discussion ofa non-numeric case.) Furthermore, the input-
output (functional) behavior of a component and its non-functional behavior may not be best approximated
in the same way. Run time, for example, always has a meaningful piecewise-linear approximation; relia-
bility (see Section 5.1) does not. Thus there are a number of interesting cases in which components to be
combined might have differing approximation measurements. The synthesis theory of the previous sections
can be easily adjusted to cover mixed cases.

Input-output functional synthesis makes no use of a non-functional property like run time, so they need
not be approximated in the same way. Although run time synthesis does require an input-output approxima-
tion, nothing says what form that must take. Hence mixed cases like step-function input-output approxima-
tion and piecewise-linear run time approximation require no changes to the synthesis algorithms.

The iteration construction of Section 3.4 is presented in terms of conditionals and sequences, so it
requires no modification for a mixed case.

The conditional construction of Section 3.3, once a set of intersection subdomains has been obtained,
only reproduces the behavior of the components in itstrueandfalsebranches, which may thus be differently
approximated.

Only the series construction of Section 3.2 remains. The algorithm for piecewise-linear approximation
handles both possibilities, which may therefore be mixed. However, if one of two components in series has
a step-function approximation, it does compromise the resulting approximation for the combination. When
it is the first component in series that is a step function, there is no subdomain splitting. No matter which of
the two has a step-function approximation, the result will be a step function.
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3.6 Synthesizing a Component-based System

At the top level of a ‘main’ imperative program, any system can be built up inductively using the three
elementary structured-programming constructions of sequence, conditional, and iteration. The standard
software analysis/synthesis paradigm is to:

• Obtain a general rule for each elementary construction in isolation, then

• Perform system calculations piece by piece, using each construction for a given system.

In this way, the largest system is no more difficult to handle than the simplest—it just takes more applications
of the three elementary-construction rules.

The rules for constructing an equivalent system ‘component’ for each of the constructs are given in
Sections 3.2 (sequence), 3.3 (conditional), and 3.4 (iteration). To synthesize an arbitrary system, these rules
are applied repeatedly. Each time a part of the system is synthesized, it is replaced by a calculated equivalent
component, which then enters into subsequent synthesis6.

It is convenient to describe an arbitrary system structure in reverse Polish notation, using the operators
S, C , andL :

Construct Polish
X; Y XY S
if Z then X else Y fi ZXY C
while Z do X od ZX L

For example, Fig. 4 shows the Polish representation for an illustrative flowchart and its reduction to an
equivalent component (E4). In the figure, components are named by integers. The final component (E4 in
Fig. 4) has the calculated behavior of the complete system asits functional- and run-time vectors.

4 Performance of Analysis and Synthesis Algorithms

The usual way to learn about a system’s behavior from testingis to build and execute it. The theory of
Section 3 provides an alternative: The equivalent component for a system can be calculated and studied. That
equivalent component is only an approximation to the actualsystem behavior, but producing and studying it
can be much more efficient than system assembly and testing.

Component analysis itself, the data that goes into system synthesis calculations in Section 3, necessarily
uses brute-force sampling. Conventional testing is the only way to obtain component data, and no savings
can be expected there. However, it is the whole point of CBSD that the cost of components analysis is borne
up-front by their developers, not considered a part of system design. Component measurements are made
once and used by all subsequent system designers.

It is in system synthesis that the theoretical calculationsof Section 3 can be made much more rapidly
than a real system can be executed. Actual run time of a systemwill depend on execution parameters: the
actual run times of components, the number of loop iterations that occur, and the relative frequency with
which conditionals take each branch. The theoretical calculations require a time that is independent of these
execution parameters, but does depend on the number of system components and the number of subdomains

6Although system synthesis was envisaged from the outset, the algorithms given in previous published versions of the theory
[22, 23] cannot be used with components that result from previous compositions. This was a mistake that came to light onlywhen
supporting tools were implemented.
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Figure 4: System synthesis by computing equivalent components

chosen. Because the variables are different, only a rough comparison is possible. However, it is shown that
the theoretical predictions can in general be arbitrarily faster than actual execution, because they depend
only on subdomain counts.

For simplicity, suppose that there areM components in a system, each with roughly the same number
of subdomains7 K. The simplest system structure is all components in series.Let the average run time of
components ber. Then to execute the system on one test point requires aboutrM , or atN points/subdomain,
a total time ofNKrM .

The theoretical calculation does not depend on actual run times. Each step in the synthesis requires
a time involving only location of values in subdomain tables. Suppose that whenever a value must be
located amongK subdomains a time proportional toK log K is required, for example by binary search,
with a proportionality constant (say)α. ThenM components in series requires theoretical-synthesis time
of aboutαM(K log K) in the step-function approximation. The piecewise-linearapproximation may split
subdomains, but the mechanics of this is that the splitting is self-limiting to a constant factor that could be
absorbed intoα. The factorMK is common, so the comparison comes down to factors ofNr for actual
executionvs. α log K for theoretical synthesis. Either factor can be made to dominate the other since they
depend on unrelated variables. Perhaps the best intuitive comparison that can be made is this: If an adequate
system test takes a substantial timeNr in each subdomain (say milliseconds) andα is the overhead in a
binary search program (microseconds),log K is on the order of103 for the two factors to be the same.
Giving the calculation a hundred-fold advantage makeslog K about 10, orK about 1000. That is, the
calculation will be 100 times faster for about 1000 subdomains.

7Testing an actual system need not use subdomains, but for comparison the number of system test points is expressed as the
product ofK and a subdomain sampling frequency.

12



A conditional construction executes its three components in roughly2NKr. The synthesis time for a
conditional is essentially that required to intersect two sets ofK subdomains, which can be done inO(K)
[6, chapter 2]. Thus in the all-series system considered above, replacing three components in series with a
conditional gives the calculation an improved edge.

To execute a loop for each iteration requires roughly2NKr. The synthesis time for the first unrolling is
O(K log K), and subsequent unrollings require at least one fewer subdomain each, so this is an overestimate
if applied to each unrolling. At mostK unrollings are required, a total calculation time ofO(K2 log K).
The number of actual iterations may be arbitrarily greater thanK, and in the case of an nonterminating loop
will be very large just to make a tentative decision that the program is looping. Thus replacing one sequence
construct in a system with a loop construct may penalize the theoretical-calculation time by a limited amount
if the loop actually iterates fewer thanK times, but can penalize the actual-execution time arbitrarily badly
otherwise.

In summary, the number of subdomains in the synthesis calculation can be quite large and still give the
calculation a large advantage, no matter what form the system takes. If there are long-running components or
there is substantial looping, the actual execution time cangrow while the theoretical synthesis time remains
fixed by the subdomain count. Hence the calculation may enjoyan arbitrarily large advantage. In an example
using prototype tools (Section 8.2) the theory is about 25 times faster.

5 Other Non-functional Properties

A quantitative description of component synthesis based ontesting has been presented, for functional and
non-functional behavior. The theory is more general than the run-time example used to present it, and
this section shows how it can be applied to other non-functional properties, both those that are intuitively
‘compositional’ (e.g., reliability) and some that are ‘emergent’ (e.g., memory leaks).

5.1 Application to Reliability

Reliability is the basic quality parameter for all engineering artifacts; only software has no generally ac-
cepted reliability theory. The reliability application first suggested the subdomain approach [17] and in
reference [22] the first version of this theory was presentedfor reliability alone.

To define software reliability for a program requires an ‘operational profile,’ a probability distribution
over the program’s input domain that gives the likelihood ofeach input occurring in use. Reliability is
defined as the probability that ifx is selected at random from the operational-profile density,the program
meets its specification on inputx.

For a component with a collection of subdomains, a reliability step-function can be measured by sam-
pling each subdomain uniformly. Assuming no failures are observed in subdomainSi for N test samples
there, choosing any upper confidence boundc, the reliability is bounded below byti [14]:

ti = (1 − c)1/N .

Uniform sampling recognizes that nothing distinguishes one point from another within the subdomain. How-
ever, for the entire input domain, an operational profile canbe expressed as a normalized vector of weights
for theSi, used to form a weighted sum of theti, which is a reliability bound for the program over the full
input domain.
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For components in series, the composite reliability bound for two linked subdomains indexedi andj
corresponding to equation (2) in Section 3 is the product:

tUi = tBi tCj , where vB
i ∈ SC

j . (4)

That is, the reliability composition operator is multiplication in place of addition for run time.
The run-time non-functional property was chosen instead ofreliability for the exposition of Section 3

only partly because it is more directly intuitive. The deeper reason why reliability synthesis is problematic
concerns software reliability theory itself and componentindependence. In calculating run time for a system
the possibility of failures is ignored—it is assumed that the components are computing properly and that
measured run-time values are correct. But for reliability,failure is the basic property being investigated.
When a component fails, calculations of how it interacts with other components may be incorrect because
of that very failure. If a component has a reliability different from 1.0, its functional values must sometimes
be wrong no matter what subdomains are taken, and so the equivalent components and equation (4) will be
in error, to a degree that is unknown.

Another way to describe the reliability case is to note that equation (4) is a valid combination rule only
when the two components are independent. The measured values tBi andtCj are independent, whether they
represent run times or reliability estimates. However, theindex j is calculated using information (namely,
vB
i ) from componentB, which linkstCj toB. Since the mechanism compromising independence is precisely

known in this theory, it may be possible to study the correlation. As a beginning, one would expect that for
low failure rates of the first componentB, it is unlikely that the choice ofSC

j is wrong, hence equation (4)
is probably correct—that is, the components appear independent in the theory. This would suggest taking
many subdomainsSB

i and sampling them extensively.
Intuitively, reliability is a property that composes subdomain-by-subdomain. If the underlying software

reliability theory were more acceptable, the synthesis theory presented here would apply.

5.2 Application to Security and Safety

Testing for the purpose of validating security and safety properties may sometimes be cast as a special
case of testing for reliability. The class of failures is restricted to violations of assertions defining security;
software security is defined as the probability that a security assertion holds. At the component level this
probability can be estimated and a confidence assigned to theestimate when a collection of random tests
have been run without violating the security assertion. Thecorresponding system-level security probability
can be calculated as in Section 5.1, with the same caveats about the shortcomings of the underlying theory.

Sometimes security properties only emerge at the system level. This happens when neither of two
components has the property, yet it arises from their propercooperation. Such components may sometimes
still be thought to have properties that combine with a system composition operator, but the operator and the
properties must be cleverly chosen to result in the emergentproperty.

Absence of memory leaks is a good example of an emergent yet composable security property. A
system is secure in this regard (‘leak free’) if it never getsmemory that it does not later release. If memory
is obtained in one component and released in another, the leak-free property can emerge only at the system
level. The theory of Section 3 can be applied to a non-functional property that is the set of memory addresses
allocated/deallocated by a component. This propertyis compositional, and from it the leak-free property can
be determined.

Formally, letM be the set of all memory addresses. Take the non-functional valuesti to be subsets of
M allocated and deallocated by a component or a system. That is, ti ∈ 2M × 2M , whereti = (ai, di) are

14



the sets allocated (ai) and deallocated (di). These are net values, internal cancellation having been taken
into account:ai ∩ di = ∅. A composition operator8 “⊕” for componentsB andC forming a series system
U , corresponding to equation (2) for run time is:

tUi = (aU
i , dU

i )

= tBi ⊕ tCj , where vB
i ∈ SC

j

= (aB
i , dB

i ) ⊕ (aC
j , dC

j )

= ((aB
i \ dC

i ) ∪ aC
j , dB

i ∪ (dC
j \ aB

i )) (5)

(“\” is the set difference operator). The rule captures the intuition that net memory allocated by a series
composition is that allocated byB and not subsequently deallocated byC combined with that allocated by
C, and similarly for net deallocation. The system is leak freeiff

⋃
i aU

i ⊆
⋃

i d
U
i . Thus an emergent property

can be predicted using the compositional theory.
The archetype emergent security property of maintaining information at different levels of classification

can be similarly predicted by keeping access lists for each subdomain in each component.
In security applications, approximations from testing mayseem inappropriate. After all, the reason to

separate out security properties is their importance and the ability to deal with them using formal mathemat-
ical methods. However, testing can quickly catch gross mistakes that occur early in system design. Even if
almost every system input violates security it can be difficult to discover this by formal methods.

A nice compromise between sampling (testing) and proof appears in recent work by Jackson on the
Alloy system [29] and Boyapati et al. on Korat [5]. They explore an infinite logic-based space of properties
by exhaustively testing only an initial finite segment of thespace.

6 Theoretical Discussion

This section offers some insights about testing componentsand about the use of subdomains, based on the
theory of Section 3.

6.1 Combining Tested Components with Correct Ones

Mathematical functional analysis of programs in principlesolves the problem of calculating any system
propertyT from component properties. Exact system predictions require information equivalent to a cor-
rectness proof of each component [38] as well as analysis of its non-functional mappingT . In a system
of many components, a few may have been analyzed mathematically; most components will be measured
and analyzed using testing methods. Fortunately, it is possible to combine the two kinds of analysis in the
step-function-approximation theory.

Let B andC be two components whose properties are defined by testing measurements. Suppose that
B is followed by a sequence of proved-correct, analytically described components, which without loss of
generality take to be one correct componentV . V is in turn followed byC. That is, the component sequence
is: B; V ; C. BecauseV has been mathematically analyzed, its functional- and non-functional behaviors are
known: letV (x) be its output on inputx andT (x) its run time.

8Equation (5) captures the simplest composition rule—a given address may be allocated or deallocated even it is already in
that state. The composition formula that makes it an error to(say) deallocate already-free memory is more complicated.A more
accurate operator would make it possible to also determine the emergent property of ‘safe memory release’ that a system never
releases memory that is already free.
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To calculate the functional behavior of this series system,in equation (1) of Section 3.2 instead of finding
j by wherevB

i falls, useV (vB
i ):

vU
i = vC

j , where V (vB
i ) ∈ SC

j , (6)

For the system run time, replace equation (2) with:

tUi = tBi + T (vB
i ) + tCj , where V (vB

i ) ∈ SC
j . (7)

(Similarly change equation (4) for reliability, but there is no additional factor introduced forT (vB
i ) because

reliability for the proved component has value 1.)
Thus componentV just extends the functionality ofB.
It is disappointing that for the piecewise-linear approximation similar general constructions do not work;

the equivalent components do not have linear behavior unless V is linear.

6.2 Test-based, Approximate ‘Specifications’

It is usual to say that an engineering component catalogue contains ‘specifications’ for its entries, descrip-
tions of their properties to be used in selection and in system design. However, ‘specification’ carries a
different connotation for software than for physical components, as a consequence of software’s arbitrary
nature. A mechanical engineer expects the catalogue description to be all-inclusive, relying on the continuity
of physical systems to interpolate across a range of behavior from the published parameters. But for soft-
ware, any abbreviated description may fail to capture reality. It would be better to qualify the name given to
a catalogue description of a software component by calling it an “approximate specification.” It has no valid
implications that go beyond its explicit limits, and shouldnot be confused with a specification in the sense
of an independent description of what software should do, given in some intuitive or mathematical form
that includes all cases. For the cases covered by its catalogue ‘specification,’ the component is by definition
correct; it may not be correct for a wider specification in theusual sense if the catalogue description fails to
agree with this ‘real’ specification.

This somewhat peculiar sense of ‘approximate specification’ occurs in recent work by Ernst on the
Daikon system [40] and by Henkel [24]. They induce mathematical ‘specifications’ from a collection of
test data, Ernst in the form of pre- and post-conditions for subroutines, Henkel in the form of algebraic
equations for abstract data types. (Henkel calls these “probed specifications.”) These ‘specifications’ have
the same character as the catalogue descriptions in this paper, but they are in an entirely different form and
obtained by quite different means. Here, testing is the theory behind the measurements; for the others the
underlying theory is logical or algebraic and the testing only a device to probe it. It would be of great interest
to compare the three forms, but unfortunately their restrictions are largely mutually exclusive. If a program
is given only test points on which its input-output behavioris linear, Daikon generates the equation, which
matches the catalogue description here on a single subdomain containing those points. But for most simple
input-output behaviors that the theory of this paper would capture approximately, Daikon generates only
empty pre- and post-conditions. In a personal communication, Henkel indicated that he believes his system
would give similar vacuous results on simple examples. Neither mathematical ‘specification’ system has
been applied to non-functional properties.

6.3 Choosing the Right Subdomains

The accuracy of system calculations made from components’ catalogue data as described in Section 3 de-
pends heavily on the subdomain breakdown chosen by the component designers. The insight that led testing
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theorists to look at subdomains in the first place [28] was that a subdomain should group together inputs that
are in some sense ‘the same.’ One collection of subdomains has the most promise: the path subdomains.
For the run-time property the path subdomains are in principle perfect: within one path domain, a constant
run time is fixed by the instruction sequence executed9.

In practical system testing, the most used subdomain breakdown is into so-called functional subdomains
derived from the program specification. Each such subdomaincomprises those inputs for which the system
is specified to perform one intuitive action in the application domain. Functional subdomains are the only
sensible basis for so-called black-box testing, but there is no justification for using them to test components
in this theory. They describe what a programshoulddo, not what in fact it does do.

Unfortunately, true “same” subdomains for input-output behavior have never been investigated. In par-
ticular, neither path subdomains nor specification-based functional subdomains seem to bear any relation to
subdomains on which functional values are approximately constant.

In its most extreme form, failure to predict the functional behavior of a system arises from the output
distribution of the first component in a composition. If thatfirst component spreads its outputs relatively
evenly across the input subdomains of a following component, then the tests done by the developer of
the latter are valid, because each such subdomain has been systematically sampled. However, if the first
component in the composition produces an output profile witha ‘spike’ in any following subdomain, then
the developer’s testing of the second component in that subdomain is called into question10. As an extreme
example, if a component computing the constant function with valueK (its output isK for any input) is first
in a composition, then the subdomainSK of the following component in whichK falls has a spike atK.
Uniform sampling ofSK by the developer of the second component may then be wildly inaccurate unless the
second-component subdomain behavior is really constant. As a special case, suppose the second component
checks for inputK and runs very quickly there, while over most of the rest ofSK it is slow. Then the
component developer’s average run-time measurement forSK will be ‘slow,’ while in this particular system
it should have been ‘fast.’

6.4 Implications for Testing Practice

Almost every practical testing method falls under the heading of ‘subdomain testing,’ yet the efficacy of test-
ing by subdomains has proved difficult to validate. Theoretical comparisons [7, 15, 4] between subdomain
testing and random testing (disregarding subdomain boundaries) have not shown a conclusive advantage
either way in detecting failures. The theory of Section 3 suggests an explanation as follows: Subdomain
testing is most often used at the unit level, which is analogous to component-development time in CBSD.
Furthermore, only a few unit-test subdomains are selected in a haphazard way and each is sparsely sampled.
If subdomain definition and testing as practiced were used oncomponents to make system-level predictions,
say of reliability, the results would be very inaccurate. Failure to take care with subdomain boundaries and
the paucity of subdomains and samples mean that as a precise unit description, common-practice unit testing
is almost worthless. If anything is to be predicted accurately at system level, quite a different order of effort
and care would be required.

The eXtreme Programming (XP) methodology [1] presents an even more striking example. In XP,
testing from customer scenarios, perhaps with only a few usecases, serves as the only specification from
which an incremental design is made. Such a use-case ‘specification’ is really just a finite description of the

9Mason [33] notes that care must be taken with potential run-time errors for this to be correct in principle. In practice there are
many factors that can make the same sequence of instructionstake differing times to execute, e.g., cache behavior.

10A similar difficulty occurs in random system testing when a uniform profile is used because a user profile is not available, as
discussed in reference [18].
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kind described in Section 6.2, and thus should not be trustedas an oracle unless it includes far more cases
than is common.

Testing using subdomains and inducing an approximation to component and system behaviors seem to
be good ideas, but research is needed on what works and why, with the probable result that current practice
must be much improved to have significant value. It is implicit in an algorithmic-synthesis theory like this
one that unit (i.e., component) testing should carry the main burden of verification. Reference [20] explores
the relationship between unit- and system testing, suggesting that system testing could be better done on a
synthesized model than by actual construction and testing.

6.5 Functional and Non-functional System Properties

The restrictions of the approximation model presented in Section 3 are necessary for the powerful synthesis
algorithms given there. These algorithms are difficult enough in the restricted case; it is impossible to
imagine that algorithmic synthesis could be carried out using a ‘practical’ model such as UML. But does
this theoretical limiting case have any hope of practical application? Real components seldom compute
numerical functions; and approximations, even very accurate ones, cannot be used to check agreement with
exact specifications. There is, however, one situation in which both of these difficulties might be overcome.

Non-functional properties like run time and reliability dohave real output domains; and for thembounds
on behavior are sometimes all that is needed. For example, itmay be useful to predict from synthesized ap-
proximations that the system run time (response) will likely be less than 1 s. There remains the difficulty
of dealing with non-numeric input and non-numeric functional output which enters the run-time synthesis.
For example, consider character input/output. It may be that the functional approximation, though in prin-
ciple meaningless, is good enough to be used in the non-functional calculations. A component returning a
character value might be ‘approximated’ as returning an ‘average’ of (say)’m’, because the run time does
not depend strongly on the character value, and subsequent components’ run times are similarly insensi-
tive to the character received. Thus the functional approximation may be good enough to obtain accurate
predictions of interesting non-functional bounds.

7 Related Work

Most of the research needed to realize the promise of software components is properly concerned with
creating, combining, and deploying components themselves. Research on qualitative CBSD draws on the
communities of software reuse, software architecture, andeven systems and networks. Perhaps the most
interesting thread in this extensive research literature is the work based on software architecture originated
by Garlan [2] and others. In the architectural abstraction,components interface to each other through con-
nectors, which both enable and constrain the component interactions. In the work of Medvidovic and his
students [35], the abstract model is implemented as a framework in which a particular style and its connec-
tors are a practical basis for component combination.

In contrast, this paper focuses on the quantitative compositional aspects of CBSD, how component
properties (particularly non-functional ones) synthesize to system properties. Approaches to this property-
synthesis aspect of component-based systems are the ones surveyed in this section.

7.1 Proof-based and Analytical Theories

In principle, excellent explanatory theories of componentfunctional composition have been available since
the late 1960s, in the work of Floyd [8] and Hoare [25, 26], Guttag [13] and others [10, 11], Mills [38, 9],
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and many others. In these theories a component is described mathematically, by a collection of logical
assertions, or by an algebra, or functionally. The mathematical descriptions have a syntactic interface part
and a semantic part completely describing behavior. Component properties such as run time are described
by analytical equations in the input variables. The construction of component-based systems might then be
described as follows11:

Components can only be used together if their interfaces match, and this match may include
semantic properties. For example, one component may require that a list delivered to it by an-
other be sorted so that binary search can be applied to the list. Once components are properly
matched, the functions describing their input-output behavior and their non-functional proper-
ties can be mathematically composed to obtain the system properties.

These theories are elegant and they completely solve the problem of synthesizing system behavior from
component behavior.

Logic-based theories following Hoare [25] have received the most development. Bertrand Meyer pro-
posed ‘design by contract’ [37] as the form appropriate to reusable components. A version specifically
directed at components-based system design and the possible need to modify the pre- and post-conditions
of contracts is being investigated by Reussner and Schmidt [42, 44].

7.2 Testing-based Models

Rosenblum [43] has taken a unique approach to relating component tests to system properties, based on
very general axioms describing test properties. His work isin a sense at the opposite pole from that reported
here. By using only very weak axioms, he achieves the generality that the theory presented here lacks, but
correspondingly the results are much weaker than ours.

Karl Meinke [36] uses testing-based program approximationin a different way to seek a failure point
for a programP . He requires a first-order formal specification and searchesfor a failure point roughly as
follows: Given a functionf that is a piecewise polynomial approximation to the input-output behavior ofP ,
there is an algorithm to search for a pointx such thatf(x) is incorrect according toP ’s specification. Lety
be the output ofP on inputx. Perhapsy is incorrect; if so, Meinke has succeeded. If not, he adds(x, y) to
f to formf ′, a more detailed approximation. The process is iterated until either a real failure is found or the
piecewise approximation becomes so accurate that the tester believes there are no real failures. Meinke’s
procedure produces a set of subdomains (the ‘pieces’ of the approximation) that can claim to objectively
capture a ‘functional’ breakdown ofP ’s domain, itself an important theoretical accomplishment. The work
presented in this paper does not require a formal specification, but the payment is that here a tester must
construct subjective subdomains by hand. Meinke uses piecewise approximations of order higher than
linear since he is not concerned with composing them.

The bulk of prior work on composing component properties in testing theory uses the reliability property.
Markov-chain models are used to describe a system as a collection of transition probabilities for invoking
each component, and when invoked the component contributesits reliability value. Littlewood’s seminal
paper [32] appeared long before “component” was a popular buzzword. Mason and Woit [34] obtained
good results from decomposing the UNIXgrep utility into elements that resemble functional-programming
units.

Markov models of systems composed of components hide the operational-profile problem described
in Section 2 in their assumptions about transition probabilities. Most models begin with a fixed system

11The description is not attributed to any particular author,but paraphrases descriptions that occur in work (for example) of the
ADJ group [10].
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architecture. The transition probabilities can then be measured from expected-usage data for the system.
Krishnamurthy and Mathur [30] do not explicitly use a Markovmodel, but determine the path probabilities
in a system by exercising it with a collection of tests. Singhet al. [45] and Kubal, May, and Hughes [31]
use a Bayesian approach, beginning with guesses for the transition probabilities and refining these as system
test cases are run. To obtain accurate Markov models, the states of a simple control-flow model must be
split to account for data-varying transition probabilities, particularly in loop control. It is difficult to obtain
plausible probabilities for the split-state transitions and there is a state explosion.

If a theory is to predict system properties from component properties, the latter must be measured in
isolation outside the system. In most models, this is done with a fixed operational profile for each compo-
nent. Thus component reliabilities are single numbers which are then assumed to be appropriate for use in
any system in any position within the system. Some models [30] do a little better, measuring component
reliabilities in place for the operational profile given to the system. With enough data this approach can
be defended, but in the limit it amounts to simply testing thecomposite system without any independent
component measurements.

7.3 Summary of Related Work

Most work cited in this section falls in two categories:

1. Mathematical, analytical methods are entirely correct in principle but are seldom chosen over testing
and measurement.

2. High-level modeling of component-based reliability is meant to apply to real systems, but not to aid
understanding of component composition itself.

In contrast, the approach taken here is based on testing measurements and the model is chosen to capture
as much detail of the component-based system as possible, for the purpose of explaining and understanding
what takes place.

A striking feature of this theory is that it treats a number ofnon-functional properties uniformly. Within
the restricted context given in Section 1.3 it applies to runtime, reliability, or any property for which a
composition operator can be defined—even emergent properties—in essentially the same way.

The connection between this theory and formalism-based work that uses testing in a subsidiary role has
been briefly mentioned at the end of Sections 5.2 and 6.2.

8 Follow-on Work

This paper is limited to the presentation of a subdomain-testing-based theory of component composition of
pure-function behaviors. The theory was developed in parallel with implementation of research-prototype
tools. Theory and tools have been extended to include component local state and validation experiments
have been conducted using the tools.

8.1 Components with Persistent Local State

Persistent state is a necessary feature of useful components that is not captured by the model presented
in Section 3. Software reliability engineering handles state by making state variables ‘hidden inputs’ and
adding them to the input space for random testing. This treatment is simply wrong: state variables are not
independent, because their values are created by the software itself and completely out of testing control.
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A correct treatment tests software with state by initializing the state and then subjecting the software to a
sequenceof inputs, which results in program creation of a corresponding state sequence.

To model components with local persistent state, a state setH is considered along with the input domain
D, and the output and run-time functions map (input×state) pairs:f : D × H → D andT : D × H → R.
The state itself is mapped by a new functiong : D × H → H. Instead of step functions in one input, the
approximations to be measured for a component are step plateaus in two inputs.

To give a flavor of the state-inclusive theory, consider synthesizing a series combination of components
B andC to form a systemU as in Fig. 1 of Section 3.2. In addition to its input subdomainsSB

1
, SB

2
, ..., SB

n ,
componentB has state subdomainsHB

1
,HB

2
, ...,HB

n′ , and similarly form′ state subdomains ofC. The
series system has the same input subdomains asB, and the system has state subdomains that are cross
products of the two component state-subdomain collections, e.g.,HB

3
×HC

2
. Then to synthesizeU , consider

its arbitrary subdomainX = SB
i × HB

i′ × HC
i′′ . On subdomainSB

i × HB
i′ , B has outputv and run timet

from its step-plateau approximations. Letv fall in subdomainY = SC
j × HC

i′′ , that is, in theC subdomain
corresponding toB’s output, but to theC-state part of arbitrary system stateX, namelyHC

i′′ . Then the
system output and result-state values forX are obtained fromC ’s step-plateau approximations evaluated in
Y ; the system run time inX is the sum of theB run timet and theC run time inY .

Similar modifications of the constructions in Sections 3.3 and 3.4 yield a system-synthesis algorithm for
arbitrary systems made from components with local state.

Adding state raises an interesting new aspect of component testing: portions of the two-dimensional
input–state space may be unreachable in principle. In theories based on logic, unreachable states are those
in which invariants are violated; it becomes a proof burden to show that they cannot occur, that is, that
invariants are preserved. However, it is usual to test states without regard for their feasibility: the state is
initialized systematically to values it ‘should’ have according to a specification. This systematic sampling
can create spurious executions that lead the tester astray.The correct sampling using sequences of inputs,
however, may fail to excite some hard-to-reach state that isfeasible. It is an unsolvable problem to identify
exactly the feasible states.

Details of a persistent-state theory that extends that presented in Section 3, and some experiments with
component tests and system synthesis are reported in two recent conferences [20, 21].

8.2 Tools and Experiments

The theory presented in Section 3 and its extension to include local state indicated in Section 8.1 have been
implemented in tools that measure the step-plateau approximation (input×state)-output, -run-time, and -
result-state vectors for components, using subdomains provided by the component developer. With these
component descriptions, other tools can synthesize an approximation to an arbitrary system. The synthesis
tool is a CAD tool for system design by calculation.

The tools have been used to conduct experiments in componentcomposition, especially to investigate
the shrinking of subdomains around rapidly changing or discontinuous behavior. The experiments reveal
the way in which the theory successfully approximates system behavior using component approximations.
Subdomain refinement generally produces accurate system predictions. For example, in a typical stateless
system of six components requiring all of the synthesis rules, keeping the r-m-s component measurement er-
rors below 1% confines the system prediction error to about 4%. A typical time comparison for this example
using a 1.7 Ghz PC is 23 s for actual system execution and .9 s for the synthesis calculation. It is surprising
how quickly system behaviors become extremely complex evenwhen their component behaviors are simple.
The way in which a discontinuity behaves as the subdomain enclosing it shrinks is also unexpected.

A companion paper [16] describes these tools and experiments in detail.
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9 Future Work

Among many additional lines of investigation raised by thiswork, two stand out.

9.1 Error Analysis

It is to be expected that the error in predictions of system properties obtained from this synthesis theory
will decrease as the approximation of component behavior improves. However, no theoretical quantitative
relationship has been established between approximation and prediction. A component developer cannot
know how accurately each component must be described—that depends on its unknown application. But
component errors could be used at system-design time to estimate the error in the predicted behavior. “Safety
factors” and practical “rules of thumb” are possible when anerror analysis identifies the relevant factors,
even if precise error predictions cannot be obtained.

A useful error analysis is likely to arise from the study of rapidly changing component behavior. Where
component functional behavior changes slowly across a subdomain, the approximations are good. Sampling
can never be sure that a discontinuity or rapid behavior change has not been missed, but by shrinking the
subdomains, the region of inaccuracy can be confined.

An error analysis for the reliability application (Section5.1) is the most important and the most difficult.
However, it could be that the very difficulties with composition of reliability values can help with error
analysis. A component’s failure rate is an estimate of how likely it is to produce an erroneous functional
value, so it might be possible to carry a reliability calculation as an error predictor along with the calculation
of any other non-functional property. Weyuker and Weiss [47] have devised a reliability theory that includes
a measure of the functional error, which may be just what is needed for analysis.

9.2 Concurrent Theory

The theory presented here is a sequential one. Extension to concurrency requires adding a concurrency
operator to the composition algebra and synthesizing an equivalent component for processing in parallel.
Such an addition would greatly complicate the present theory; however, the reliability version of a concurrent
theory could be used to discuss methods that seek to improve reliability through redundancy. A voting
scheme based on multi-version programming (MVP) is the onlyknown means of adding redundancy to a
system and increasing its reliability over that of its components. The question of independence is critical
and can only be discussed within a concurrent theory.

The DOTS (Diversity Off The Shelf) project is a large-scale research effort investigating the foundations
of MVP, for example in reference [41].

10 Summary and Conclusions

A fundamental, testing-based theory of component composition has been presented. It approximates func-
tional and non-functional behavior of stateless components using subdomain testing, and uses these approx-
imations to calculate approximate properties of systems built from the components. This theory can also be
viewed as a mathematical model of component composition, inwhich step-function approximations model
actual components and systems.

Perhaps the most important insight to emerge from the theoryis that accurate subdomain boundaries are
critical to accurate test-based descriptions. When rapid behavior changes (including discontinuities) occur
inside a subdomain, the predictions involving that subdomain will be poor. Component developers cannot
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know where crucial system subdomain boundaries will fall, but they should refine subdomains to capture
component behavior as accurately as their resources allow.

The implication for conventional unit testing is a disturbing one: since in practice a very few subdomain
tests are often used as a quality measure, the confidence gained should not be trusted.
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