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1 IntroductionIn most mature engineering disciplines, \quality" is a quantitative notion de�ned by testing ofcomponents (whatever `components' are in the particular discipline). When large, one-of-a-kindobjects are engineered, quality of this object can be calculated from measurements made on thecomponents that make it up. Such calculations then become an intrinsic part of design: the qualityneeded in the composite object is used to specify that of the components, and they are assembled insuch a way that the desired result should be obtained. If, contrary to expectations, the compositeobject fails, detailed analysis can pinpoint the reason, whether it be a component that did notrealize its speci�ed quality, a mistake in the design, or even a basic 
aw in the theory on which thecalculations rest. This post-mortem analysis is all-important, leading to better components, saferdesigns, or improved theory, and ultimately, engineering that by and large can be trusted.A well documented failure of this kind in civil/mechanical engineering is the collapse of thewalkway in the Hyatt-Regency Hotel in Kansas City [Pet85]. The apparent cause was componentfailure { threaded rods suspending the walkway from the ceiling appeared to have given way underload. However, further analysis revealed a design 
aw: the rods had been assembled di�erently thanoriginally speci�ed, and although it was less than obvious (the professional engineer in charge ofthe project signed o� on the design change), the result was to double the stress on the components,which then failed, even though they were adequate in the original design. In this analysis the roleof components whose qualities are speci�ed, and which realize speci�cations, is obvious and crucial.Software development does not follow the paradigm of engineering. While there are reasonablywell-de�ned software `components' (the objects of object-oriented design, for example), they arenot assessed for quality in any scienti�c way, and the system designer has no means to analyze thequality of a composite design in terms of its parts.It is our goal to de�ne a scienti�c notion of quality (we call it dependability), and provide atheory that allows it to be measured for components and composite systems. These measurementscan be supported by tools, which we hope will provide a de facto standard for the development ofhigh-quality software.1.1 The Notion of Software `Dependability'The intuition behind \dependability" is a con�dence probability. In the simplest case, this is whathappens:Some testing-like experiments or measurements will be performed on a piece of software,it will be observed that the program does not fail, and a con�dence can be calculatedtherefrom that the program will never fail.The shorthand for this is that the software is \probably correct," but the probability is partly acon�dence that the measurements are accurate assessments of that software, in addition to being2



a property of the software itself.It is possible for dependability theory to provide for software failures during testing, but in thesequel it is assumed that measurements do not expose any failures. The reason is two-fold: (1)Quality software should be purged of known failures; and (2) In practice, even a single failure seenin testing severely limits the quality that can be predicted.1.2 Dependability and the User Pro�leAn ideal measure of dependability would be independent of the usage to which software will be put.In engineering with physical materials, this ideal can never be attained simply because materialsare imperfect. However small the imperfection, it is impossible to guarantee that the stress of usagewill not exceed what the materials can bear, and the engineered object fail. Thus for example, adam may be designed to withstand water levels expected within the 100-year 
ood plain, but itmay fail if subjected to a 200-year 
ood. It could perhaps have been engineered for the 200-year
ood plain, but at a prohibitive cost, and with no guarantee should it experience a 300-year 
ood,etc. Expected usage is an essential part of the design speci�cation.The promise of software is that as a non-physical medium, it can in principle be perfect; inpursuit of this ideal many sins of computing are committed. For an embedded system, perfectsoftware seems irrelevant, since the overall system includes physical components, and may be sub-jected to usage in which the latter fail. However, if software could be speci�ed, designed, andimplemented perfectly, it would be an advantage in that an engineer would have some ability tocon�ne potential failures to where they were least damaging, least expensive to deal with, etc. Thussoftware perfection is potentially valuable, even in embedded systems. The danger lies in designingas if the software were perfect, only to discover that it is not. This design mode is responsiblefor many of the horror stories of computer systems gone wrong. And usage pro�les are often atfault: the software was perfect, except for some unexpected usage, which was either not foreseen inspeci�cation, or was foreseen but improperly realized and the imperfection unnoticed because theunusual circumstances were not tried.It is thus an important question whether or not the notion of dependability should (or can) bepro�le independent.The role played by a usage pro�le for complete software systems, and for their components, isnot symmetric. There are certainly cases in which system pro�les cannot be eliminated (howeverdi�cult it may be to determine them, and however unstable they may be). A system pro�le inducesa pro�le for each component of which it is composed, namely, the distribution of inputs suppliedas parameters to the component, when the system receives inputs from its pro�le. This inducedcomponent pro�le stands in a very involved relationship to the system pro�le, since it dependson the system's internal state at the point of invoking the component, a point that is not alwaysreached, and not always reached with the same internal state. A �nal problem is that component3



usage depends on the structure of the system code, so any change in structure will alter the pro�leseen by a component. Thus the component developer literally cannot know how the componentwill be used, and so cannot test it according to that usage. For components, there is thereforestrong motivation to seek pro�le independence.Furthermore, the necessity for considering pro�les is dictated far more strongly for systems thanfor components. It is system behavior that is the concern of safety analysis, regulatory agencies,etc. But even if it makes no sense to talk of pro�le-independent \dependability" for systems, it doesnot follow that such an idea is impossible for components. The very complexity of how componentsare used may make the induced pro�le of low importance.In this report, we present a model of pro�le-independent component dependability, and showhow it can be used for systems that themselves have requirements depending on a pro�le. Ofcourse, \component" and \system" are relative terms, especially for embedded software. We hopeto distinguish a useful case of pro�le-independence in this continuum.1.3 Dependability Standards for the Software IndustryIt is our goal to de�ne standard procedures { and support them with software tools for measure-ment and process monitoring { that software developers can use to measure the dependability ofcomponents and systems. We wish to alleviate the present unsatisfactory situation in which thepresence of any software in a larger system makes it impossible to perform reliability or safetyanalysis, because the quality properties of the software are unknown. In many situations, par-ticularly involving regulatory agencies and dangers to the public, developers would be pleased toadopt almost any standard, however di�cult or expensive to apply, that could provide a plausibleestimate of the software's quality.2 Terminology and Underlying TheoriesAlthough the ideas to be presented here are relatively general, they will be presented in a precisecontext described in Section 2.1. The reader should view the many restrictions of this context asapproximations to reality, needed to obtain initial results, but intended to be relaxed wheneverpossible.2.1 Programming ModelWe consider only programs with \pure function" semantics. The program is given a single input,it computes a single result and terminates. The result on each input in no way depends on priorcalculations. (And hence in particular, if an input is repeated, the result is always the same.) Suchprograms are not very realistic, but the relevant issues about reliability arise for them just as formore \real" programs, and they considerably simplify the formal description of testing.4



This simple programming model abstracts reality, but it is more general than it may appear.Real programs may have complex input tuples, and produce similar outputs. But we can imaginecoding each tuple into a single value, so that the simpli�cation to one input value is not a trans-gression in principle. Interactive programs that accept input a bit at a time and respond to eachbit, programs that read and write permanent data, and real-time programs, do not �t the pure-function model. However, it is possible to treat these more complex programs as purely functional,at the cost of some arti�ciality. For example, an interactive or real-time program can be thought ofas having single inputs that are actually sequences of the real input elements, starting from somestandard \reset" state. Each such sequence is one abstract input in the pure-function model.Each program has a speci�cation that is an input-output relation. That is, the speci�cation S isa set of ordered input-output pairs describing allowed behavior. A program P meets its speci�cationfor input x i�: if x 2 dom(S), then P produces output y on input x such that (x; y) 2 S. Wherex 62 dom(S), that is, when an input does not occur as any �rst element in the speci�cation,the program may do anything it likes, including fail to terminate, yet still technically meet thespeci�cation. Thus S de�nes the input domain as well as behavior on that domain. Many realspeci�cations can be recursively extended to be everywhere de�ned, by adding required `ERROR'responses; but some, notably involving unbounded searches with uncertain outcome, cannot.In the sequel it will be sometimes assumed that the programming paradigm is the imperativeone, expressed in a language like C or C++. The introduction of a particular programming languageis less fundamental than other assumptions, and it is done principally to permit a concrete discussionof tools.2.2 Tests and FailuresA test is a single value of program input, which enables a single execution of the program. A testsetis a �nite collection of tests. Thus in our program model, a testset of size N invokes a sample of aprogram's behavior, an N -fold Bernoulli trial.A program P with speci�cation S fails on input x i� P does not meet S at x. When a programfails, the event is called a failure, and the input responsible is a failure point. The program's failureset is the collection of all failure points. Hence a program that meets its speci�cation has an emptyfailure set. The opposite of fails is succeeds; the opposite of a failure is a success; the complementof the failure set is the success set.
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2.3 So-called \Faults"1 Although there is an IEEE standard term for the idea of \bug" (or \defect," or \error"), this ideais not precise, and is di�cult to make precise. The IEEE glossary [IEE83] states that a fault is thepart of a source program that causes a failure. However appealing and necessary this intuitive ideamay be, it has proved di�cult to capture formally. The di�culty is that \faults" have no uniquecharacterization. In practice, software fails for some testset, and is changed so that it succeedson that testset. The assumption is made that the change does not introduce any new failures (anassumption false in general). The \fault" is then de�ned by the \�x," and is characterized, e.g.,\wrong expression in an assignment" by what was changed. But the change is by no means unique.Literally an in�nity of other changes would have produced the same e�ect.Some �xes do appear to be unique and easily localized (e.g., a wrong operand { perhaps a typo{ in an expression). But the most common `fault' is of omission, and for missing code it is di�cultfor even reasonable programmers (a rare breed when it comes to assigning blame!) to agree on a �x.In addition, two changes may have quite di�erent overall e�ects, yet both may �x some intersectioncollection of failure points. The complications of a \partial �x" that removes fewer failure pointsthan it might have done, and a \least �x" that is in some textual way minimal for the e�ect it has,are extremely di�cult to capture.So \the fault" is not today a precise idea.On the other hand, `failure' is well de�ned, and so is a change in failure behavior resulting froma program change. Most of what we need to say can be phrased in these terms, as follows:A program change may alter the failure set; that is, the changed program's failure setwill in general be di�erent from that of the original program. A change is a �x for acollection of failure points F (the change �xes F ) i�: (1) the failure set of the changedprogram no longer includes any member of F ; (2) the failure set of the changed programis a subset of the original failure set.Thus a �x for a collection of failure points G may eliminate failure points outside G, but it maynot introduce new failures.Maintenance programmers always attempt to �nd �xes in this technical sense, and good main-tainers know that the most important and di�cult part of this is condition (2) of the de�nition:changes must not create failure points that were not there before. (Some argue that a massivechange could lead to a completely new failure set, but one that is smaller in size than the original.Those who consider this an improvement usually want to rewrite a piece of software. But they arenot maintenance programmers.)1This section, and some of the exposition in Sections 2.1 and 2.2, are adapted from the author's contribution to apaper co-authored with Phyllis Frankl, Bev Littlewood, and Lorenzo Strigini, \Choosing a Testing Method to DeliverReliability." 6



In these terms, the closest we can come to speaking of a \fault" is to talk of a failure region, acollection of failure inputs that some change �xes exactly. Every change that does not introducenew failure points of course has such a region (if no more than the empty one). It is tempting tobegin thinking of such a �x as the basis for de�ning \fault," but this will not satisfy the intuitionbehind the IEEE de�nition. Fixes arise from failure regions, not the other way around, and one canhardly say that an elaborate change tailored to some failure region bears any relation to a mistakemade by a programmer.In this presentation, we will try to avoid using the term \fault." The reader must judge whetherthe gain in precision is worth the loss of intuition.2.4 Software Reliability TheoryTo de�ne \reliability" testing requires only a few concepts, of which the operational pro�le is themost important. It is assumed that a program has an input probability density U that characterizesits usage. U maps the (assumed to be discrete) input domain (that is, dom(S) for speci�cationS) into the real interval [0,1]. For input x, U(x) is the probability that x will occur as input tothe program. U is called the operational pro�le, (or user pro�le), although sometimes U is calleda density and \pro�le" is reserved for a practical approximation to U given as a relatively crudehistogram. The term \operational distribution" is also used, although care should be taken todistinguish the density U from the cumulative probability Uc(x) =Pt�x U(t); which is also calledthe \distribution."Random testing (or reliability testing, or operational testing) consists of selecting test inputpoints according to U ; for example, by repeatedly choosing a uniform pseudorandom number r in[0,1] and the largest test point t such that Uc(t) � r:It is further assumed that there exists a constant � called the failure probability, the probabilitythat the program will fail on a random input drawn from the operational pro�le. Estimates of thefailure probability can be obtained during random testing as the ratio of failed tests to total tests,which estimates are assumed to tend to � as the number of tests increases. Thus � depends on thepro�le U .Estimating � is not entirely satisfactory in practice, because estimates of the failure probabilitymight be expected to approach Fjdom(S)j , where F is the number of failure points in the input spacedom(S). But if the operational pro�le U(xf) = 0 at some failure point xf , xf will never be seen; or,if U(xf ) is very small compared to other values of U , there can be an apparent, false convergence inobserved values. In a pathological case that M failure points have small U probabilities, while theremaining failure points have substantially larger U values, estimates of � will appear to convergeto F�Mjdom(S)j . The pro�le U can be such that estimates remain near the false value for an arbitrarilylarge sample.In practice, failures are not observed in testing when software is of reasonable quality and close7



to release status. The reason is to be found in the immense size of the input domain compared tothe small size of the testsets there is time to run. Hence direct assessment gives only an estimate 0for failure probability. An upper con�dence bound in a given failure probability can be predicted,however. Suppose a successful reliability test uses N points. Then the chance C that the actualfailure probability is greater than � (technically, C is an upper con�dence bound) is:C = (1� �)N : (1)(The chance that the program will fail one test is �, or 1�� that it will not fail one test, (1��)N thatit will not fail any of N independent tests. Thus this is the con�dence bound that the experimentis misleading, that is, that the actual failure probability is greater than � yet the failure(s) thatshould have been observed were not.)Even this somewhat dubious theory is not very helpful in practice, because a high-con�denceprediction that the failure probability is below roughly 1n requires a test of roughly 2n points, sothat today's technology is adequate only for predicting in the neighborhood of 10�3 or 10�4 [BF93].The reliability of the program over N runs is de�ned to be the probability that it will not failwithin N executions drawn from the operational pro�le, that is, R(N) = (1� �)N .In other engineering disciplines, there is no question but that physical objects will fail, onlya matter of how long it will take them to do so. Hence although � is the parameter describingthe object, engineers insist on knowing the time scale, and expressing quality by R. When theyuse \reliable" in a shorthand way, they mean that R(n) is near 1 for all n of interest. It may besigni�cant that for software, the shorthand use of \reliable" usually refers to a small value of �, asif failure were not inevitable and the number of runs of no consequence, even though � > 0.2.5 Sensitivity and the `Squeeze Play'Je� Voas has proposed [VM92] that reliability testing be combined with sensitivity analysis. Sen-sitivity is a lower bound probability of failure if software can fail, based on a model of the failureprocess. A sensitivity near 1 indicates a program that \wears its faults on its sleeve": if it canfail, it is very likely to fail under test. High sensitivity captures the intuition that \almost anytest" would expose a particular failure, which is involved in the belief that well tested software isprobably correct.To de�ne sensitivity as the conditional probability that a program will fail under test if it canfail at all, Voas models the failure process as localized to one program location. For there to bea failure, the location must be executed, must produce an error in the local state, and that errormust then persist to a�ect the result. The sensitivity of a program location can then be estimatedby executing the program as if it were being tested, but instead of observing the result, countingthe execution (E), state-corruption \infection" (I), and propagation (P) frequencies. Voas's \PIE"model, in its simplest form, takes the sensitivity to be the product of the frequency estimates.Sensitivity analysis thus employs a testset, but not an oracle.8
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0 1chance of failure x
Pr[not correct =) failure less likely than x](from testability measurement)Pr[failure more likely than x](from equation 1)hd Figure 1: `Squeeze play' between sensitivity and reliabilityFor a particular testset, when the sensitivity is high at a location, it means that the testsetcaused that location to be executed frequently; these executions had a good chance of corruptingthe local state; and, an erroneous state was unlikely to be lost or corrected. The high sensitivityobserved with a certain testset does not mean that the program will fail because of a particularlocation; it means that if the assumed failure process could occur at all (but we do not know if itcould), then that testset is likely to force the failure.Suppose that all the locations of a program are observed to have high sensitivity, using a testsetthat re
ects the operational pro�le. Then suppose that this same testset is used in successfulrandom testing. (That is, the results are observed, and no failures are seen.) The situation isthen that (i) no failures were observed, but (ii) if failures were possible, they would have beenobserved. The conclusion is that no failures are possible, that is, the program is correct. However,this conclusion is not certain, but only probable, and the con�dence to be placed in the program'scorrectness depends on the size of the operational sample, according to equation (1). If the sampleis too small, the lack of observed failures may only re
ect insu�cient data.Playing o� sensitivity against reliability to gain con�dence in correctness is called the squeezeplay [VM92]. Figure refsqueeze-�g shows the quantitative analysis of the squeeze play betweenreliability and sensitivity [HV93]. In �gure 1, the falling curve is the con�dence C from equation(1); the step function comes from observing a sensitivity h. Together the curves make it unlikelythat the chance of failure is large (testing), or that it is small (sensitivity). The only other possibilityis that the software is correct, for which 1� d = 1� (1� h)N is a con�dence bound, where d is thevalue of the con�dence curve at h. Con�dence that the software is correct can be made close to 1by forcing h to the right [HV93]. For example, with a sensitivity of .001, a random testset of 20,0009



points predicts the probability that the tested program is not correct to be only about 2� 10�9.We de�ne the software dependability as the con�dence 1� d.The dependability is a con�dence that the software cannot fail in operation (de�ned by thepro�le used in the squeeze play). The technical relationship between dependability 1 � d andfailure probability � is that 1 � d is the con�dence that � = 0: The failure probability expressesthe chance of a single operational run failing { it is the parameter in which reliability is expressed,and therefore the parameter of interest to safety experts and regulatory agencies. It is temptingto confuse d and �, because they have a similar intuitive meaning in extreme cases. When 1 � dis near 1, there is high con�dence that � = 0; hence d near 0 makes � = 0 likely. At the extreme,d = 0 logically implies � = 0. At the other extreme, when � is near 1, it means there should belittle con�dence in � = 0, i.e., 1 � d near 0, or d near 1, in agreement with �, and � = 1 ) d = 1.(Neither argument can be made to go the other way: 1�d near 0 gives no information about �, and� near 0 says nothing about 1� d.) No quantitative relationship is established by such arguments,except for the unattainable exact zero values. Two intuitive arguments can be given in favor of dbeing an upper bound on the failure probability:1. Imagine doing a series of reliability experiments. In each experiment, one operational run ofthe software is made, and the result observed. The ratio of the number of successful runs tototal runs should be the con�dence bound in � = 0, namely 1� d. That is, for M total runs,Md runs should fail. Thus Md=M = d is an estimate of the failure probability.2. d is a con�dence bound that � > 0. Then in particular, for any failure probability b, � < bis at least as likely as 1� d, since at worst all the probability mass away from 0 lies above b,and the con�dence that � lies at 0 is 1� d.The weakness in these arguments is that they are not careful to distinguish con�dence valuesfrom probability values. In the sequel we will try to state results in terms of dependability, andleave the connection with failure probability open. For the future, the investigation of bounds onthe failure probability in terms of the dependability, is obviously important. Chris Michael hasmade a start [MV96].2.6 Pro�les and the Squeeze PlayIn the discussion of Section 2.5 the operational pro�le was assumed, but an arbitrary pro�le can beused for both sensitivity and reliability measurements (but of course the same pro�le must be usedfor both). A cautious statement of the signi�cance of the squeeze play would explicitly mentionthe pro�le used:When N successful test points are drawn from pro�le V , and the sensitivity is estimatedto be h using V , the con�dence that the software cannot fail (the dependability) whenits usage pro�le is V is 1� (1� h)N . 10



The important question to be discussed now is whether the italicized phrase can be omitted fromthis cautious statement. That is, can one pro�le be used for the squeeze play measurements, andthe dependability prediction hold good for a di�erent pro�le when the software is used?Intuitively, the answer is `no' { the operational pro�le is essential. The argument in support ofthis negative position is the one that requires all testing activity to be \representative." If testsneglect part of the input space, how can their predictions be trusted should that part becomeimportant?However, there is another intuitive argument that gives the opposite answer { that the squeezeplay does estimate a correctness probability for all pro�les, no matter which of them is used in itsmeasurements. This argument examines the way in which sensitivity reacts to pro�le. Imagineone particular program location that might be a source of operational failure. If that locationis neglected during testing, then its sensitivity will be low, and hence the prediction of probablecorrectness will be modest. Thus the sensitivity part of the squeeze play compensates for pro�le.These two intuitive arguments do not con
ict on a somewhat di�erent question: Does thesqueeze play make di�erent predictions for di�erent test pro�les? Both agree that it can do so. Butthat di�erent question is not of interest for software dependability. We wish to conduct test-likemeasurements, and be able to trust predictions based on those measurements. There might be anideal pro�le that would give the best measurements, and it might be worth expending e�ort to �ndit. But the fundamental question is: if the test pro�le, be it ideal for the squeeze play or no, is notthe user pro�le, then can the squeeze play predictions be believed?Quantitative calculations shed some light on the validity of squeeze-play predictions underdi�erent pro�les. We consider the sensitivity of a single program location, and construct examplesto show how the squeeze play behaves.First, imagine that a certain faulty location is never executed under the test pro�le, yet isimportant in the user pro�le. The program would be expected to fail often in use, that is, tohave a failure probability near 1. The sensitivity is 0 (because the execution probability estimateis 0), hence the dependability prediction is that the software is correct with con�dence at least1� (1� 0)N = 0, which is correct, if not very useful. At the other extreme, suppose the sensitivityat the faulty location is close to 1 for the test pro�le, because this location is executed by mostof the tests, and changes in the state occur, and these persist. Then the program is very likely tofail under test, and no failure-free runs can be obtained, so the prediction is 1� (1� h)0 = 0, alsocorrect.Between these extremes, it is possible to falsify the prediction of the squeeze play, but not easyto make it wildly wrong. Here we must assume that the dependability can serve as a bound forthe failure probability, as discussed at the end of Section 2.5. For example, suppose the softwarehas a failure probability caused by a certain program location of .015, under the user pro�le. Letthe user pro�le execute this location with frequency E near 1. The frequencies for infection I and11



propagation P are not measured for the user pro�le. The squeeze play measurements use a di�erenttest pro�le. In the test pro�le, let E = :01; P = 1; I = :5; so that the sensitivity h = :005: Thenwith 200 tests in the squeeze play, the dependability prediction is (1� :005)200 = :37. Taken as anupper bound on the failure probability, the result does not contradict the assumed value of .015.For 1000 tests in the squeeze play, the dependability predicted is .0067, too low by a factor of about2 to bound the failure probability. Evidently, by increasing the number of squeeze-play tests, theprediction can be made as small as we like, less and less accurate for the user pro�le. But there isan additional constraint: it must be plausible that the squeeze play could be conducted at all. Thereliability part of the squeeze play requires a failure-free test { is that likely? About 10 of 1000tests will execute the location (E = :01), and assuming the usage failure rate of .015, the chancethat there will be a failure is 15%. Thus there is an 85% chance that the squeeze play could havebeen conducted as assumed. However, increasing the number of tests to make the prediction wildlyinaccurate is not possible { for example, it is virtually impossible that 5000 tests could be executedwithout failure in the squeeze play.The example of the previous paragraph assumed that the test points executing the faultylocation in the squeeze play are in some sense the same as inputs that execute it in actual use.This assumption is the source of the constraint that the reliability part of the squeeze play cannotbe conducted if the operational failure probability is too high. But the assumption is in generalunjusti�ed. Indeed, many examples of testing gone wrong (in that tests did not expose problemsthat later appeared in use), are examples of di�erent inputs executing the same locations, but insuch a di�erent way that all is altered. If we relax the assumption about this \sameness" betweenthe two pro�les, then we can produce examples where the predictions of the squeeze play arearbitrarily wrong when the wrong pro�le is used. For example, in the last case of the previousparagraph, taking 5000 tests gives a predicted bound on the failure probability of .000000000013,o� by a factor of about a billion. What makes these examples work is that the test pro�le andthe user pro�le are assumed to have entirely di�erent properties: in the test pro�le the P; I; andE frequencies may all be small enough so that a large number of tests can be run without failure,predicting dependability near 1; while under the user pro�le P; I; and E are larger, so failures areobserved, inconsistent with high con�dence that the failure probability is 0. That is, the wrongpro�le leads to a wrong prediction.In the sequel we adopt the conservative view corresponding to the negative intuition aboutpro�le-independence of the squeeze play. We assume that one can only trust the squeeze-playprediction if the pro�le is unchanged.3 Dependability for Components and SystemsThe background work of Section 2 was developed with complete programs in mind, without regardfor their possible components. Indeed, except for the squeeze play, programs play hardly any part12



in the theory, which is only concerned with the function that a program computes { its input-outputbehavior { as sampled through the input domain. However, this theory can be applied to bothcomponents and complete systems.3.1 Subdomain-de�ned Pro�leThe probability density U over the input domain that de�nes a user pro�le cannot be realized inpractice. Real users simply do not know how likely it is that each input point will be invoked. Theapproximation to U used in practice [Mus93] is based on functional subdomains of the input domain.The user identi�es a number of \functions" (usually mutually exclusive) that the software shouldperform, which de�nes a division of the input domain into subdomains, one for each function. Theinputs in the subdomain for function g are all those for which the software should compute g. Testingusing these subdomains is usually called \functional testing" (or \speci�cation-based testing," sincethe subdomains are de�ned by functions that come from the speci�cation; or, \blackbox testing,"since no use is made of the program structure). Functional testing becomes an approximation torandom testing when a pro�le histogram is created by assigning relative weights to the subdomains.These weights take two forms: (1) if a subdomain occupies only a small part of the input domain,a �xed number of test points chosen in each subdomain give a small subdomain more weight thangiven to a larger subdomain; (2) the number of test points selected from each subdomain can beadjusted to apply an arbitrary weighting. Pascale Th�evenod has looked at uniform sampling withinfunctional subdomains experimentally [TF93]. She calls this \statistical testing," and �nds that itis a better fault-�nding technique than subdomain coverage without the additional samples.The assumption of uniform sampling within subdomains is crucial { without it the problem ofpro�le arises again in each subdomain. Uniform sampling can be justi�ed as the only practicalpossibility. Users are unable to distinguish practically between di�erent points in the functionalsubdomains, and so in terms of the pro�le histogram, the subdomains are \homogeneous." Shouldsome part of some subdomain be considered di�erent by the user, then that part should be brokeno� as a distinct subdomain, with its own weighting, to be uniformly sampled in turn. Such aprocess of subdomain re�nement can in fact be used to obtain the pro�le histogram.It is common practice in practical testing also to use subdomains de�ned by the programstructure (for example, subdomains corresponding to a particular program path, or other cover-age criterion). A valuable compromise is \broken-box testing," in which functional subdomainsare re�ned by including gross program characteristics such as the size of internal data structures[Mar95]. All such program-based ideas must be excluded from the subdomains that de�ne a pro�lehistogram, because however valuable program structural coverage may be in uncovering problems,it has nothing to do with the user pro�le. The ideas to be presented here can be used for anysubdomains, however de�ned, but the connection to operational failure probability requires thatsubdomains de�ne the pro�le histogram. 13



The idea to be pursued below (Section 3.2) is to base software quality measurements on adecomposition of the input space into functional subdomains, the subdomains that are weightedto de�ne a practical user pro�le. However, no weightings are used; instead, the subdomains areutilized in the squeeze play with random tests in each subdomain drawn from a uniform pro�lethere. Thus the measurements and predictions are pro�le independent. However, they do dependon the choice of subdomains. If the subdomains are poorly de�ned { the test of this would be thatthey cannot be weighted to form an accurate user pro�le { then the quality measurement will alsobe inaccurate.Subdomains could be in error in two ways: �rst, a subdomain may not be homogeneous, sothat uniform sampling within it is not appropriate; second, a subdomain may be misde�ned (thefunctional criterion is after all a subjective one). Both possibilities produce the same kind ofproblem: the measurement for a subdomain may be misleading, because the measurement processmisses part of the subdomain where things are di�erent (a local inhomogeneity, or an embeddedpiece that should have been a di�erent subdomain). To quantify this misleading e�ect requiresonly that we bound the size of the hypothetical missed part. As the sample size increases in asubdomain, it is less and less likely that a part of �xed size has been missed. The situation isexactly analogous to sampling for program failures, with the hidden subdomain playing the role ofthe unknown failure points. That is, if N uniform samples are taken, then the con�dence C that aregion has not been missed is C = 1� (1� f)N , where f is an upper bound on the fractional sizeof the missed region. For example, to have 90% con�dence that a region of size 50 in a subdomainof size 100,000 has not been missed entirely, requires log(1�:9)log(1�:0005) � 4600 samples.In the theory to be presented below, it is of no consequence if the subdomains overlap; however,it is crucial that they exhaust the input space. If some part of the space is omitted, this is anultimate subdomain error: the results of test measurements can have meaning only for user pro�lesin which the missing subdomain is never used. It is one of the cardinal properties of a goodrequirements speci�cation that any categorization of inputs exhaust the input domain, and goodtechniques exist for analyzing this property, beginning with the work of Goodenough and Gerhart[GG75].3.2 Pro�le-independent DependabilitySuppose then that a developer has de�ned functional subdomains for a software component (asdescribed in Section 3.1), but does not know the weightings of those subdomains that would forma pro�le for the component. As indicated in Section 1.2, it is impossible to trust conventionalreliability testing without the weightings, for it could happen that low (test) emphasis was givento an important (for the user) subdomain. Even if the developer were able to obtain a pro�le forthe user's system, that does not practically lead to a pro�le for the component. The squeeze playprovides a way out of this di�culty. 14



Let the developer proceed as follows to attain a pro�le-independent con�dence goal 1� d thatthe component is correct:Choose K uniform random tests within each of the subdomains, such that K is largeenough to ensure that no part of the subdomain is badly neglected. Combine the testsfor all subdomains into a composite test, and measure a con�dence of correctness 1�dKwith the squeeze play. If 1�dK > 1�d, stop. Otherwise, choose one of the subdomains,say S1, and choose additional uniform random tests there for a total of K1 points in S1.Repeat the composite test, measuring 1� dK1 . If substantial improvement over 1� dKoccurs, continue to increase the testing within S1, until the goal 1 � d is reached, orimprovement diminishes. In the latter case, add points to another subdomain S2, andcontinue with one subdomain after another and more uniformly chosen points in each,for a total of m steps, until the the goal is reached, or until the measured con�dence1�dKm is stable without reaching the goal. In the latter case, 1�d cannot be attained.The procedure can also be used without setting a dependability goal, but rather by �xing theresources available for testing, and then attaining the best possible dependability within the resourceconstraints. If no goal is set and there are no constraints, then a dependability is obtained that isa property only of the software, as shown below.This procedure is not quite mechanical, since the developer must decide when further additionsto a subdomain are to be abandoned in favor of another subdomain. However, in practice it shouldbe relatively straightforward to carry out. The procedure may also help to re�ne or correct thesubdomain de�nitions, because the tester may see that the reason the goal is not being reached isthat some inputs are neglected { these should then become an additional subdomain. However, itis always possible that the dependability which can be attained is limited by intrinsic qualities ofthe component under test.We claim that (given that the L subdomains used are correct in the sense that the actual userpro�le could be obtained by weighting them) the dependability 1 � d obtained by the procedureabove in the absence of goal or constraints, is pro�le independent. That is, no matter whatweightings might be given to the subdomains, the dependability remains above 1� d, or acceptingthe interpretation at the end of Section 2.5, failure probability would never exceed d for any pro�le.Consider an arbitrary pro�le, de�ned by a normalized weighting fwigLi=1 of the subdomains. Thedi�erence between the new pro�le and the one used to obtain 1 � d is that for the new pro�le, insome subdomains more points will be used, while in others, fewer points will be used. Only theformer need concern us, since with fewer points failure is less likely. But using more points in somesubdomain cannot improve 1� d, since the procedure has itself tried additional tests until there isno further improvement. 15



3.3 Dependability for Systems and ComponentsDesigning a system using components that come with dependability values and a collection ofsubdomains used to measure those values, is quite di�erent than current practice in design.First, the system designer must explicitly deal with the possibility of component failure. Insome cases this is easy { in a non-critical batch system, for example, processing can be abortedwith a call for human attention. The system and component developers can then analyze theproblem, and correct the software so that the run can continue. In real-time applications thingsare obviously more di�cult. However, fault-tolerant techniques might be used to handle failures,particularly ones resulting from concurrent non-determinism. Continually providing for failure isnot easy, but the payo� is a system that is conservative in the sense that it either works properly(with high probability), or reports its own failure in such a way that correction is possible. Incontrast, systems using components of unknown quality are easier to design, but can fail silentlywith unknown consequences.Second, components that come with dependability values dictate a system design in whichcritical components are of higher quality (and correspondingly more di�cult or expensive to obtain),while less important components can be of lower quality. The designer must analyze the pattern ofcomponent use to make decisions about the quality of components needed. The design process thusacquires an added dimension that requires the software engineer to determine if each component isgood enough to meet the overall requirements of the system. Usage pro�les for the overall systemare important in this analysis, since the pro�le determines which components will be used.Testing of a system with components of measured quality can substitute for system analysis.Instead of calculating the conditions under which a component will be invoked and the necessaryquality, the running system can be instrumented to measure worst-case con�dence in the overallresult, by monitoring the values returned by the components. For example, for one system input,the system dependability might be as low as that of any component that is invoked. If multiplecomponents are invoked, or a component invoked repeatedly on one system input, then systemdependability might be a low as the sum of their dependabilities.3.4 Example: A Communication ProtocolTo illustrate the idea of subdomain-based dependability, we take a particularly simple example.Suppose a component is speci�ed to implement a protocol de�ned as follows:Input is a string of 8-bit characters, ending with a NUL (000000002). The output isto be a string of �xed length 255, consisting of exactly the input characters in theinput order, except that (1) the terminating NUL is not included, (2) any non-ASCIIcharacters (that is, those with the high-order bit set) are deleted, and (3) the outputstring has an additional 8-bit (unsigned) �rst character C that is a binary count one16



more than the number of characters reproduced following it, from 1 to 255; charactersin the output after the �rst C positions are arbitrary. If the input string has more than1023 characters before a NUL occurs, or if more than 254 ASCII characters occur beforea NUL, then in the output C is 0, and the remaining characters of the output stringare arbitrary.This speci�cation is de�cient in that it fails to describe the input string beyond the presumedNUL terminator. Should an implementation fail to recognize the NUL, this omission might haveserious consequences, because tests may not have examined many variations on this situation. Intesting, these additional characters must be supplied as input.There are many ways of de�ning \functional" input subdomains for this speci�cation relation;one is given below. In the descriptions of input subdomains, the input \string" does not includethe terminating NUL, if any, and the choice of "ASCII" characters does not include NUL.S0 The string of zero length. (That is, the �rst input character is NUL.)S1 All-ASCII strings of length 1-254. (This is the presumed \normal" case.)S2 Strings of length 1-255 containing one non-ASCII character.S3 Strings of length N < 1024 containing (N � 254) > 0 non-ASCII characters.S4 Strings of length N < 1024 containing (N � 255) > 0 non-ASCII characters.S5 Strings of length N < 1024 containing more than 255 ASCII characters.S6 Strings of length N > 1023 containing fewer than 255 ASCII characters.Any operational pro�le can be given by weighting these subdomains. The procedure of Section3.2 can then be used to measure the component's dependability. Rather than setting a goal, thedeveloper might allocate resources for the testing, and obtain the best possible dependability usingthose resources. During measurement of the dependability, failures may be encountered. If so, thecomponent should be repaired, and the measurement starts over from scratch. In what follows, itis assumed that the squeeze play uncovers no (further) failures, as will eventually be the case.S0 appears to be a special case of a �nite subdomain, which any single test exhausts. However,as noted above, there are actually an in�nity of inputs in which the string of zero length is followedby other characters, which may matter if the program being tested misses the NUL.S6 is in principle an in�nite subdomain, containing strings of arbitrary length. To sample it willrequire setting a bound on string length. If we are con�dent that should the program fail to stopat 1024 for a string much longer than 1024, then it will also fail to stop for a string of length 1024,then it makes more sense to approximate the subdomain with a collection of 1024-long strings.17



However, we choose instead to sample from all strings of length 1024 - 2000. (Thus S6 is the bestcandidate for a subdomain improperly de�ned, in which other subdomains are hidden.)For S1-S5, exhaustive testing is possible (with the same quali�cation as for S0), but impractical.(S2, for example, contains P254k=1 k(128)k strings).Suppose then that the procedure of Section 3.2 is carried out using no less than 1000 pointsin each subdomain, and a sensitivity of 0.01 is obtained, so that the dependability is at least1� (1� :01)1000 = 4:3� 10�5:It is instructive to consider how two di�erent components might fare in a dependability com-parison. First, the developers might choose di�erent subdomains. For example, another choicewould be to combine S3 and S4 into a single subdomain; yet another would be to split o� (andexhaustively test) particular conditions such as that the �rst 254 characters are ASCII `X' andcharacter 255 is 111100002; and so on. The more elaborate the subdomains, and the more theyintuitively correspond to possible malfunctions of the component, the more intuitive signi�cancethe component's dependability will carry. However, adding subdomains increases the testing e�ort,and certain subdomains may contribute little to improving the squeeze-play measurements.Second, even if their developers take common subdomains, two components can di�er in the de-pendability value measured. Since the sensitivity h is partly a property of the code, one componentmay have a larger h. The number of tests N re
ects the e�ort that goes into the measurement.Since part of the squeeze play is a reliability test requiring an oracle, one developer may be able toemploy a much larger value of N because (say) an automated oracle based on a formal speci�cation[PP94] was employed, or an automated testing harness was utilized. Or, one developer may simplyhave allotted more time for testing, and been able to use it because the development process waswell organized and the schedule did not slip. Of these factors, the result is most sensitive (punintended) to the value of h.An honest developer of the program whose hypothetical dependability is given above shouldbelieve that the protocol implementation is correct. Other correct implementations might yielddi�erent dependabilities, for the same or di�erent subdomains, making a comparison between thempossible. The developers may all believe that their software is correct; only the dependabilityvalues are available to others to judge component quality. The developer who wants to improve thedependability can always re�ne the subdomains to be more intuitively appealing, and can redesignfor better sensitivity h (for example using assertions [VM94]), and �nally can run more tests N toimprove the dependability.However, the developer of a component that is not correct faces real limitations. Such a com-ponent, where the sensitivity is high, cannot be tested extensively without failing. The developermust then correct the code, and try again. If the quality is really poor, the process may exhaustthe resources set aside for testing, and the �nal resolution may have to be that N is kept small(and hence the dependability poor) so that residual failures do not show up. Or, if the sensitivity18



is low, the component's errors may be hidden from test, but the dependability will remain low. Ineither case, the developer may be able to do nothing except attempt to conceal the poor quality.3.5 Tools for Dependability MeasurementDependability assessment as de�ned in Section 3.2 requires an investment that software developersdo not make today, partly because more testing e�ort is required, but more importantly because anoperational pro�le must be de�ned and used. John Musa has done a great deal of practical workwith pro�les [MIO87], and has argued that they should be used in any responsible testing e�ort, butthe substantial investment remains. Here the problem of pro�le de�nition is somewhat less severe,because our subdomains for functional testing of a software component need not be weighted { allthat is required are the subdomain de�nitions. For the testing and sensitivity analysis that thesqueeze play requires, good tool support can be provided.3.5.1 Component DevelopmentImagine then that a certain component has a given list of subdomains, and that a minimum samplesize is �xed in each domain by giving the fraction of the domain that the developer believes cansafely remain unsampled, as discussed at the end of Section 3.1. The procedure of Section 3.2can then be used to measure the dependability. Testsets are chosen by selecting points from asubdomain at random, using a uniform distribution. The component is executed on these testsetswithout failure, and the sensitivity estimated, so that the squeeze play can be used.The existing tool PiSCES performs all the necessary calculations for C programs, except thatPiSCES analyzes a stand-alone \main" program, and has no support for con�ning tests to a sub-domain. To modify PiSCES so that it supports the calculation of dependability de�ned in Section3.2 is straightforward. A driver program must be included to convert a component to a stand-alone program. This is a well understood process supported by several commercial testing systems.Provision must be made for subdomains, and for uniform random test generation con�ned to asubdomain. Finally, it will be useful to provide a harness for an oracle to judge test results. Thesefeatures might be supported outside of the existing PiSCES, because the tool can use arbitrary �lesfor input and output; in an experimental implementation, these �les can be manipulated by otherprograms that provide subdomain bookkeeping, the random test generation, and the oracle.Figure 2 gives a schematic diagram for measuring and calculating the dependability for a com-ponent, showing which parts of the process may be automated.3.5.2 System DevelopmentNow suppose that a component C is used in constructing some larger software system S, andsuppose that C comes with a dependability measure (and associated subdomains) as in Section19



Driverwith Oracle ComponentCodeSpeci�cationSubdomainDe�nitions Modi�edPiSCESDependabilityMeasure
UniformRandomTestcasesInformation created:by handsemi-automaticautomaticallyFigure 2: Assessing dependability of a software component3.5.1, provided by C's developer. When the composite system S is executed with input Y , runtimeinstrumentation can determine a bound on the probability that S might fail. Each time C is usedfor input Y (and it might be used many times if called in a loop, or not used at all), then its knowndependability comes into play. The dependability of S for input Y could be as bad as the sumof the subdomain failure probabilities encountered in C and other components. Each componentmight not be perfect, and the chance that the system is not perfect might be as large as that itscomponents are not, in the way they were actually used by S on Y .Unfortunately, a system S can fail even though its components do not fail, because S may notemploy their results properly. For example, S may invoke a sorting component on a list, whichcorrectly returns a sorted list; but, S may then mistakenly use the original list rather than thereturned one. In constructing systems from components, there is a continuum of possibilities forthe system structure, from implementing almost everything at the system level, to a trivial systemstructure in which components do all the work. It is evident that the latter is the best choicefor building systems of high quality using high quality components. In the sequel, we ignore thepossibility of failure outside of component failure. One way to validate this assumption is to provethat the system is correct, contingent on the correctness of its components. If the system structure20



is extremely simple, program proofs of this kind need not be di�cult, and we recommend exactlythose system structures.If S were released to its customers with instrumentation in place to monitor component usageand predict runtime con�dence in each result, it would realize what some customers want fromsoftware: with each result R, the system S would provide a worst-case probability that R couldbe trusted. The instrumentation would also allow S to be tested without an oracle, using insteadsome cuto� value of the runtime con�dence to decide if each result is correct.Given a user pro�le for the system S as described in Section 3.1, the system developer can alsocarry out further testing to provide a dependability bound for S, as follows:� Form a testset by uniform random selection from the pro�le.� Run this testset without failure, obtaining worst-case values for the con�dence (as describedabove) for each point Y .� Take the minimum con�dence over the testset as the dependability bound for S.This procedure produces a pro�le-dependent dependability bound for any composite S, be ita complete system or a component built from other components. (But recall the crucial assump-tion that the structure of S is correct, so S cannot fail except through component failure.) Thedependability bound obtained is less accurate than if it were measured directly, because of theworst-case assumptions involved. However, as noted below, there are a number of advantages tothe indirect measurement, that may make it desirable despite the loss in accuracy. One use is as aquick indicator that one component of a system is not of adequate quality. If system dependabilityis unsatisfactory, and this can be traced to the contribution of a particular component, then thatcomponent can be replaced, or the system design changed to use that component less frequently.Tool support for the systems developer is also easily provided. Standard self-instrumentingtechniques can be used to trap component usage, and the bookkeeping needed to calculate thecomposite dependability is straightforward. Figure 3 indicates the elements that go into a systemmeasurement.The loss of accuracy in measuring a composite dependability as above is substantial. However,there are three important advantages over direct measurement:1. The dependability measurement can be done by the system developer or by a third party,because it does not require access to the code of the components, for which their dependabil-ities stand in. If the component sources are not available, there is nothing else to be done.A corollary can also be important in practice: the use of component dependabilities in placeof direct component measurement saves system test time, since the component developer hasdone the work in advance. 21
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Information created:by handsemi-automaticautomaticallyFigure 3: Assessing dependability of a software system2. The dependability measurement requires no oracle of system behavior, since it monitors notwhether the composite system meets its speci�cation on an input, but rather correctnessprobabilities for that input based on component usage and quality.3. The developer does not have to deal with any theory of the composition of components; infact, there are no assumptions about composition. Point-by-point measurements are takenon the composite system, looking at component usage as it occurs. (It is the proof of correctsystem structure that underlies this advantage, however.)A compromise is possible between measuring a system's dependability with its user pro�le asdescribed in this section, and a pro�le-independent measurement as if the system were a component,as in Section 3.5.1. The procedure of this section can be carried out, not for tests drawn from the22



pro�le, but for uniform random tests drawn from each subdomain as in Section 3.2. The resultingbound can be shown to apply to all pro�les. However, the drawback is that the developer no longercan a�ord to use lower-quality components in low-usage positions. Every component is likely tomake a substantial contribution to the worst-case failure probability. In fact, these compromisemeasurements are most likely to lead to bounds that are of no practical use, since the worst casewill be that the system is sure to fail.3.6 A Standard for Developing Quality SoftwareThe purpose of a dependability theory is to provide the theoretical foundations for software devel-opment practices to bring software quality into line with other artifacts of human construction. Thetheory presented in this paper is not ideal, �rst because it relies on a subjective de�nition (by thedeveloper, who may use this subjective element to fudge results!) of an input-space decompositioninto subdomains. Second, it uses the squeeze play, which is in turn based on a very simple model ofsoftware failure, to de�ne its basic measurements. These two de�ciencies aside, the theory providescomponent developers with a way to expend e�ort in quantifying the quality of what they produce.It is not certain that a high-quality component will yield good dependability under the theory, norbe distinguished from a poor-quality component, because if the sensitivity h is low, there may notbe adequate testing resources to distinguish the two. However, the developer can also expend e�ortto avoid this situation, by increasing h.AcknowledgmentsChris Michael read a draft of this paper, and provided many helpful comments. He is also respon-sible for an insightful discussion of the squeeze play and its dependence on pro�le. We continue todisagree on some aspects of the squeeze play, but my ideas are much clearer because of his com-ments. Boris Beizer reminded me that system developers are not able to perform measurements onproprietary components.References[BF93] R. W. Butler and G. B. Finelli. The infeasibility of quantifying the reliability of life-criticalreal-time software. IEEE Trans. on Soft. Eng., pages 3{12, 1993.[GG75] J. Goodenough and S. Gerhart. Towards a theory of test data selection. IEEE Trans. onSoft. Eng., 1975.[HV93] D. Hamlet and J. Voas. Faults on its sleeve: amplifying software reliability. In Interna-tional Symposium on Software Testing and Analysis, pages 89{98, Boston, MA, 1993.23
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