
Science Mathematics

Engineering

Science,
Computer ‘Science’,

Mathematics,
and Software Development

Dick Hamlet
Portland State University

Portland, OR, USA

. – p.1



Science Mathematics

Engineering

Science,
Computer ‘Science’,

Mathematics,
and Software Development

Dick Hamlet
Portland State University

Portland, OR, USA

. – p.1



Science Mathematics

Engineering

Science,
Computer ‘Science’,

Mathematics,

and Software Development

Dick Hamlet
Portland State University

Portland, OR, USA

. – p.1



Science Mathematics

Engineering

Science,
Computer ‘Science’,

Mathematics,
and Software Development

Dick Hamlet
Portland State University

Portland, OR, USA

. – p.1



Science Mathematics

Engineering

Science,
Computer ‘Science’,

Mathematics,
and Software Development

Dick Hamlet
Portland State University

Portland, OR, USA

. – p.1



Outline of the Talk

I. Philosophy of Software Engineering

II. Mathematics, Science, Engineering

III. And for Software Engineering ... ?

IV. What’s To Be Done About It?

. – p.2



Outline of the Talk

I. Philosophy of Software Engineering

II. Mathematics, Science, Engineering

III. And for Software Engineering ... ?

IV. What’s To Be Done About It?

. – p.2



Fundamental Questions

I What is software engineering?

“Whatever it is I do all day...”

... is not much good

There are good answers to similar questions:

I What is physics?

I What is civil engineering?

(Some of those answers along the way)

. – p.3



Fundamental Questions

I What is software engineering?

“Whatever it is I do all day...”

... is not much good

There are good answers to similar questions:

I What is physics?

I What is civil engineering?

(Some of those answers along the way)

. – p.3



What Use is Philosophy?

I Make small talk at parties...

I Feel good (or bad) about your profession...

I Philosophy can influence your work...
B Newton was seeking God’s truth

“We all have our philosophies...and [they] are not
worth very much. But [their] impact upon our actions
and our lives is often devastating.”
–Karl Popper

. – p.4



What Use is Philosophy?

I Make small talk at parties...

I Feel good (or bad) about your profession...
I Philosophy can influence your work...

B Newton was seeking God’s truth

“We all have our philosophies...and [they] are not
worth very much. But [their] impact upon our actions
and our lives is often devastating.”
–Karl Popper

. – p.4



What Use is Philosophy?

I Make small talk at parties...

I Feel good (or bad) about your profession...
I Philosophy can influence your work...

B Newton was seeking God’s truth

“We all have our philosophies...and [they] are not
worth very much. But [their] impact upon our actions
and our lives is often devastating.”
–Karl Popper

. – p.4



Outline of the Talk

I. Philosophy of Software Engineering

II. Mathematics, Science, Engineering

III. And for Software Engineering ... ?

IV. What’s To Be Done About It?

. – p.5



Outline of the Talk

I. Philosophy of Software Engineering

II. Mathematics, Science, Engineering

III. And for Software Engineering ... ?

IV. What’s To Be Done About It?

. – p.5



Science, Math, and Engineering

Mathematics

Science

Engineering

In the beginning

. – p.6



Science, Math, and Engineering

Mathematics

Science

Engineering
“engineering science”

invention
and experience

. – p.6



Science, Math, and Engineering

Mathematics

Science

Engineering

In the beginning Mathematics

Science

Engineering

100 years later

. – p.6



What Are The Disciplines?

Questions answered by:

Mathematics:
How to describe complicated things?

Science:
How does the world really work?
What are its natural laws?

Engineering:
How can I make it happen as I want?

Science & Mathematics Technology
Understanding of reality Human control

. – p.7



What Are The Disciplines?

Questions answered by:

Mathematics:
How to describe complicated things?

Science:
How does the world really work?
What are its natural laws?

Engineering:
How can I make it happen as I want?

Science & Mathematics Technology
Understanding of reality Human control

. – p.7



Formal Definitions (c. 2000)

(Mathematical) theory: A body of definitions,
axioms, and theorems.

(Scientific) theory: A collection of assertions
about reality that may be falsified by
observation.
Ideally, applied mathematics.

Engineering design rules (Theory?): Systematic
procedures for making artifacts, drawn from
science, practice, invention, and experiment.

. – p.8



Applied Mathematics

I Start with a rich mathematical theory

I Identify the theory’s objects with physical
entities

I Check that the theory’s axioms are true for
those entities

I Exploit the theorems of the theory

☞ Creates a precise scientific theory ☞

. – p.9



Applied Mathematics

I Start with a rich mathematical theory

I Identify the theory’s objects with physical
entities

I Check that the theory’s axioms are true for
those entities

I Exploit the theorems of the theory

☞ Creates a precise scientific theory ☞

. – p.9



Testing a Scientific Theory

Suppose a theorem of the mathematical theory
(in the scientific theory) is observed not to hold.

We say, “The theory is wrong,” meaning the
scientific one.

I The axioms did not hold.
OR

I Mathematical logic is wrong.

. – p.10



Testing a Scientific Theory

Suppose a theorem of the mathematical theory
(in the scientific theory) is observed not to hold.

We say, “The theory is wrong,” meaning the
scientific one.

I The axioms did not hold.
OR

I Mathematical logic is wrong.

We much prefer this one

. – p.10



‘Normal’ Engineering Design

I Design rules tried and true, used before

I No new ‘engineering science’ allowed

I ‘Safety factors’ cover design errors

I Very likely to succeed in use

I Rare failures publicly analyzed

In ‘pre-normal’ times engineers can’t work properly

Many failures or innovations force design-rule
change – ending a ‘normal’ period

(See Addis, inspired by Kuhn)

. – p.11



‘Normal’ Engineering Design

I Design rules tried and true, used before

I No new ‘engineering science’ allowed

I ‘Safety factors’ cover design errors

I Very likely to succeed in use

I Rare failures publicly analyzed

In ‘pre-normal’ times engineers can’t work properly

Many failures or innovations force design-rule
change – ending a ‘normal’ period

(See Addis, inspired by Kuhn)

. – p.11



Summary: Traditional Paradigm

Science seeks to accurately describe the world’s
laws

Engineering design must conform to scientific
laws – normal design removes some of the
uncertainty (See Vincenti)

Mathematics is the handmaiden of science, the
tool of engineering

☞
Spectacular success in mechanical,

civil, aeronautical, and electrical
engineering

☞

. – p.12



Summary: Traditional Paradigm

Science seeks to accurately describe the world’s
laws

Engineering design must conform to scientific
laws – normal design removes some of the
uncertainty (See Vincenti)

Mathematics is the handmaiden of science, the
tool of engineering

☞
Spectacular success in mechanical,

civil, aeronautical, and electrical
engineering

☞

. – p.12



Traditional Engineering (Electrical)

Partial
differential
equations

Electromagnetic
theory

Electronic
engineering

∇ · ~B = 0

∇ × ~E = −
∂ ~B

∂t

∇ · ~D = ρ

∇ × ~H = ~J −
∂ ~D

∂t

☞ Maxwell equations: applied mathematics
of electromagnetic theory ☞

. – p.13



Traditional Engineering (Electrical)

Partial
differential
equations

Electromagnetic
theory

Electronic
engineering

∇ · ~B = 0

∇ × ~E = −
∂ ~B

∂t

∇ · ~D = ρ

∇ × ~H = ~J −
∂ ~D

∂t

☞ Maxwell equations: applied mathematics
of electromagnetic theory ☞

. – p.13



Today’s Philosophical Truths

I Mathematics isn’t true or false.
Mathematical objects are merely “the things
that satisfy the axioms” (if any)
We hope they also satisfy the theorems

I Science isn’t objective, but ‘theory saturated’.
Science starts with a problem to be explained,
then comes a theory, and finally observations
testing theory (Karl Popper)

I Engineering design rules must be usable –
they don’t have to be scientific.
Safety factors compensate for incorrect
theories in the rules

. – p.14



Today’s Philosophical Truths

I Mathematics isn’t true or false.
Mathematical objects are merely “the things
that satisfy the axioms” (if any)
We hope they also satisfy the theorems

I Science isn’t objective, but ‘theory saturated’.
Science starts with a problem to be explained,
then comes a theory, and finally observations
testing theory (Karl Popper)

I Engineering design rules must be usable –
they don’t have to be scientific.
Safety factors compensate for incorrect
theories in the rules

. – p.14



Today’s Philosophical Truths

I Mathematics isn’t true or false.
Mathematical objects are merely “the things
that satisfy the axioms” (if any)
We hope they also satisfy the theorems

I Science isn’t objective, but ‘theory saturated’.
Science starts with a problem to be explained,
then comes a theory, and finally observations
testing theory (Karl Popper)

I Engineering design rules must be usable –
they don’t have to be scientific.
Safety factors compensate for incorrect
theories in the rules

. – p.14



Quotations Supporting the Truths

I “Mathematics is the subject in which we never
know what we are talking about, nor whether what
we are saying is true.” –Bertrand Russell

I “It is also a good rule not to put overmuch
confidence in the observational results that are put
forward until they are confirmed by theory.”
–Sir Arthur Eddington

I “The Doric design procedures ... were elegantly
simple... They required the selection of a single
fundamental ‘module’ equal to one half the
diameter of a column, all parts of the work
adjusted by means of calculations based upon it.”
–William Addis

. – p.15



Quotations Supporting the Truths

I “Mathematics is the subject in which we never
know what we are talking about, nor whether what
we are saying is true.” –Bertrand Russell

I “It is also a good rule not to put overmuch
confidence in the observational results that are put
forward until they are confirmed by theory.”
–Sir Arthur Eddington

I “The Doric design procedures ... were elegantly
simple... They required the selection of a single
fundamental ‘module’ equal to one half the
diameter of a column, all parts of the work
adjusted by means of calculations based upon it.”
–William Addis

. – p.15



Outline of the Talk

I. Philosophy of Software Engineering

II. Mathematics, Science, Engineering

III. And for Software Engineering ... ?

IV. What’s To Be Done About It?

. – p.16



Outline of the Talk

I. Philosophy of Software Engineering

II. Mathematics, Science, Engineering

III. And for Software Engineering ... ?

IV. What’s To Be Done About It?

. – p.16



Software Engineering?

I It is technology – software controls the world
today

Is it like this?

Logic,
algebra

Computer
science

Software
engineering

. – p.17



Software Engineering?

I It is technology – software controls the world
today

Is it like this?

Logic,
algebra

Computer
science

Software
engineering

. – p.17



Computer Science?

I Donald Knuth’s volumes are entitled
The Art of Computer Programming

I C.A.R. Hoare (q.v.) looks (forward!) to ‘laws’
and ‘science’ for programming. But (on Ada):

“Almost anything in software can be implemented,
and even used, given enough determination.”

B Not even the DoD can buy physical laws

I In an accredited CS curriculum physics and
calculus are required but not used

I “If a discipline has ‘science’ in its name, it
isn’t.”

. – p.18



Computer Science?

I Donald Knuth’s volumes are entitled
The Art of Computer Programming

I C.A.R. Hoare (q.v.) looks (forward!) to ‘laws’
and ‘science’ for programming. But (on Ada):

“Almost anything in software can be implemented,
and even used, given enough determination.”

B Not even the DoD can buy physical laws

I In an accredited CS curriculum physics and
calculus are required but not used

I “If a discipline has ‘science’ in its name, it
isn’t.”

. – p.18



Computer Science?

I Donald Knuth’s volumes are entitled
The Art of Computer Programming

I C.A.R. Hoare (q.v.) looks (forward!) to ‘laws’
and ‘science’ for programming. But (on Ada):

“Almost anything in software can be implemented,
and even used, given enough determination.”

B Not even the DoD can buy physical laws

I In an accredited CS curriculum physics and
calculus are required but not used

I “If a discipline has ‘science’ in its name, it
isn’t.”

. – p.18



Computer Science?

I Donald Knuth’s volumes are entitled
The Art of Computer Programming

I C.A.R. Hoare (q.v.) looks (forward!) to ‘laws’
and ‘science’ for programming. But (on Ada):

“Almost anything in software can be implemented,
and even used, given enough determination.”

B Not even the DoD can buy physical laws

I In an accredited CS curriculum physics and
calculus are required but not used

I “If a discipline has ‘science’ in its name, it
isn’t.”

. – p.18



Computer Science?

I Donald Knuth’s volumes are entitled
The Art of Computer Programming

I C.A.R. Hoare (q.v.) looks (forward!) to ‘laws’
and ‘science’ for programming. But (on Ada):

“Almost anything in software can be implemented,
and even used, given enough determination.”

B Not even the DoD can buy physical laws

I In an accredited CS curriculum physics and
calculus are required but not used

I “If a discipline has ‘science’ in its name, it
isn’t.”

. – p.18



Computer Science?

I Donald Knuth’s volumes are entitled
The Art of Computer Programming

I C.A.R. Hoare (q.v.) looks (forward!) to ‘laws’
and ‘science’ for programming. But (on Ada):

“Almost anything in software can be implemented,
and even used, given enough determination.”

B Not even the DoD can buy physical laws

I In an accredited CS curriculum physics and
calculus are required but not used

I “If a discipline has ‘science’ in its name, it
isn’t.”

. – p.18



What is Programming?

I Programming is at the heart of CS

I There is no science of programming
B Programming skill is taught by example
B Particular programs are studied as artifacts

I What are the laws of programming?
B You must use C++?
B You must choose identifiers to company

standard?
B You must not write:

if X = Y for if (X == Y) ?

. – p.19



What is Programming?

I Programming is at the heart of CS

I There is no science of programming
B Programming skill is taught by example
B Particular programs are studied as artifacts

I What are the laws of programming?
B You must use C++?
B You must choose identifiers to company

standard?
B You must not write:

if X = Y for if (X == Y) ?

. – p.19



Where Does Programming Fit?

Logic,
algebra

Computer
science

Software
engineering

. – p.20



Where Does Programming Fit?

Logic,
algebra

Computer
science

Software
engineering

here?

. – p.20



Where Does Programming Fit?

Logic,
algebra

Computer
science

Software
engineering

or here?

. – p.20



Computer ‘Science’ Isn’t

I There are no falsifying experiments
B ‘Experiment’ in CS means to implement an

idea and force it to work
I Programming languages are invented

B They can be changed at will (past time!)
B Language properties can be proved (and if

the proof fails, changed)

☞ Scientists can’t change reality
to fit theory ☞

. – p.21



Computer ‘Science’ Isn’t

I There are no falsifying experiments
B ‘Experiment’ in CS means to implement an

idea and force it to work
I Programming languages are invented

B They can be changed at will (past time!)
B Language properties can be proved (and if

the proof fails, changed)

☞ Scientists can’t change reality
to fit theory ☞

. – p.21



Digression: There’s Some Science...

I Information theory and undecidability
(complexity) theory are something like
thermodynamic laws

I ‘Science’ overlaps with ‘rational discussion’
“I may be wrong and you may be right, and by an
effort we may get nearer to the truth.”
–Karl Popper

B Mathematics and CS: consistency, depth,
and elegance replace experiments

I The sociology and economics of software
engineering are human laws, but they have
immense inertia

. – p.22



Computer Mathematics?

Math

Computer
science

Software
engineering

information theory

programming

economics of SE

sociology of SE

. – p.23



Computer Mathematics?

Math

Computer
science

Software
engineering

information theory

programming

economics of SE

sociology of SE

. – p.23



Computer Mathematics?

Math

Computer
science

Software
engineering

information theory

programming

economics of SE

sociology of SE

. – p.23



Computer Mathematics?

Math

Computer
science

Software
engineering

information theory

programming

economics of SE

sociology of SE

. – p.23



Computer Mathematics?

Math

Computer
science

Software
engineering

information theory

programming

economics of SE

sociology of SE

. – p.23



Computer Mathematics?

Math

Computer
science

Software
engineering

information theory

programming

economics of SE

sociology of SE

. – p.23



Evaluating Engineering Designs

I Solving problems – an analogy:
B Civil engineering: Design a bridge

consistent with reality (impossible?)
B Software engineering: Design a program

consistent with customer requirements (??)

I Einstein said that in making the laws of
physics, God was “subtle, but not damn mean”
B Sometimes customers are damn mean...

☞ How is a good design different
from a poor one? ☞

. – p.24



Evaluating Engineering Designs

I Solving problems – an analogy:
B Civil engineering: Design a bridge

consistent with reality (impossible?)
B Software engineering: Design a program

consistent with customer requirements (??)

I Einstein said that in making the laws of
physics, God was “subtle, but not damn mean”
B Sometimes customers are damn mean...

☞ How is a good design different
from a poor one? ☞

. – p.24



Evaluating Engineering Designs

I Solving problems – an analogy:
B Civil engineering: Design a bridge

consistent with reality (impossible?)
B Software engineering: Design a program

consistent with customer requirements (??)

I Einstein said that in making the laws of
physics, God was “subtle, but not damn mean”
B Sometimes customers are damn mean...

☞ How is a good design different
from a poor one? ☞

. – p.24



Examples of Models in Engineering

I Aeronautical engineering: wing behavior
B May be proved wrong by experiment
B Mistakes covered by a safety factor

I Software engineering: efficacy of testing
B Can be verified by mathematical proof
B Mistakes may be arbitrarily bad

☞ In software, a model is mathematics
to explain some other mathematics ☞

. – p.25



Software Modeling

‘Reality’

main() { int x;
scanf("%d", &x);
if (x >= 100)

x += 100;
if (x > 150 && x < 170)

printf("%d", x+1);
else

printf("Error");
printf("Done");
}

. – p.26



Software Modeling

Model

Dx

Ux

UxDx

Ux

Ux

‘Reality’

main() { int x;
scanf("%d", &x);
if (x >= 100)

x += 100;
if (x > 150 && x < 170)

printf("%d", x+1);
else

printf("Error");
printf("Done");
}

. – p.26



Software Modeling

Model

Dx

UxDxUx

Ux

Ux

UxUx

‘Reality’

main() { int x;
scanf("%d", &x);
if (x >= 100)

x += 100;
if (x > 150 && x < 170)

printf("%d", x+1);
else

printf("Error");
printf("Done");
}

. – p.26



Software Modeling

Model

Dx

UxDxUx

Ux

‘Reality’

main() { int x;
scanf("%d", &x);
if (x >= 100)

x += 100;
if (x > 150 && x < 170)

printf("%d", x+1);
else

printf("Error");
printf("Done");
}

. – p.26



Software Modeling

Model

Dx

UxDxUx

Ux

‘Reality’

main() { int x;
scanf("%d", &x);
if (x >= 100)

x += 100;
if (x > 150 && x < 170)

printf("%d", x+1);
else

printf("Error");
printf("Done");
}

☞ Initially, the model changes to fit ‘reality’
Later, ‘reality’ is adjusted to fit the model ☞

. – p.26



Outline of the Talk

I. Philosophy of Software Engineering

II. Mathematics, Science, Engineering

III. And for Software Engineering ... ?

IV. What’s To Be Done About It?

. – p.27



Outline of the Talk

I. Philosophy of Software Engineering

II. Mathematics, Science, Engineering

III. And for Software Engineering ... ?

IV. What’s To Be Done About It?

. – p.27



The Woes of the Craft

I Software gets to do the hard parts
B The others, limited by natural law, can’t!

I Crackpot requirements

I Few professional tools
B A builder needs a better saw than a

hobbyist – but all Windows are the same

I Ugly theory (bad mathematics)

I 60-hour weeks
B “We delivered the compiler on time, but

none of the marriages survived.”

. – p.28



All Problems Solved by Philosophy?

I Fundamental understanding should help us
deal with our difficulties

☞ Software is not subject to natural law ☞

I Recommendations:
B Take responsibility
B Use good mathematics
B Keep things straight

. – p.29



All Problems Solved by Philosophy?

I Fundamental understanding should help us
deal with our difficulties

☞ Software is not subject to natural law ☞

I Recommendations:
B Take responsibility
B Use good mathematics
B Keep things straight

. – p.29



Take Responsibility

☞ Without natural law we have no one
to blame but ourselves

☞

I Civil engineer’s “No” backed by physical law

I Software engineer’s “No” based only on
sociology and economics

B Crazy requirements and schedules
B Releasing untested or failed software
B But: keep politics out of “No”

I Better tools and working conditions

. – p.30



Use Good Mathematics

☞ Bad mathematics is a matter of choice ☞

I Safe programming languages 40 years old
B Java isn’t bad but for the wrong reasons
B Giving a software engineer a Turing

complete programming language is like
giving a child an AK-47

I What about ‘Formal Methods’?
B Pro: Mathematical theory of a single

program – capture it in deep theorems
B Con: Mathematics may be all right for

expressing God’s high-quality laws...

. – p.31



Use Good Mathematics

☞ Bad mathematics is a matter of choice ☞

I Safe programming languages 40 years old
B Java isn’t bad but for the wrong reasons
B Giving a software engineer a Turing

complete programming language is like
giving a child an AK-47

I What about ‘Formal Methods’?
B Pro: Mathematical theory of a single

program – capture it in deep theorems
B Con: Mathematics may be all right for

expressing God’s high-quality laws...

. – p.31



Keep Things Straight

☞ Don’t confuse sociology/economics
with mathematics

☞

I Taylorism can hide in software process
“Management is not a skill or a craft or a
profession but a command relationship; a sort of
bad habit inherited from the army or the church.”
–A Lucas Aerospace worker

I eXtreme Programming fixes many woes

I Mathematics doesn’t have to be ‘validated’
B To model bean counting it isn’t necessary

to amass thousands of beans and check
1 + 0 = 1, ..., 2 + 2 = 4, ...

. – p.32



Keep Things Straight

☞ Don’t confuse sociology/economics
with mathematics

☞

I Taylorism can hide in software process
“Management is not a skill or a craft or a
profession but a command relationship; a sort of
bad habit inherited from the army or the church.”
–A Lucas Aerospace worker

I eXtreme Programming fixes many woes

I Mathematics doesn’t have to be ‘validated’
B To model bean counting it isn’t necessary

to amass thousands of beans and check
1 + 0 = 1, ..., 2 + 2 = 4, ...

. – p.32



Keep Things Straight

☞ Don’t confuse sociology/economics
with mathematics

☞

I Taylorism can hide in software process
“Management is not a skill or a craft or a
profession but a command relationship; a sort of
bad habit inherited from the army or the church.”
–A Lucas Aerospace worker

I eXtreme Programming fixes many woes

I Mathematics doesn’t have to be ‘validated’
B To model bean counting it isn’t necessary

to amass thousands of beans and check
1 + 0 = 1, ..., 2 + 2 = 4, ...

. – p.32



Science Mathematics

Engineering

QUESTIONS?
COMMENTS?

. – p.33



Science Mathematics

Engineering

QUESTIONS?
COMMENTS?

. – p.33



Annotated Bibliography

William Addis, Structural Engineering: The
Nature of Theory and Design, Ellis Horwood,
1991.
I A marvelous book by one of the few philosophers

of engineering. Addis speaks as a civil engineer
who has studied his discipline historically, and he
is not daunted by the immense difficulty of really
understanding the past. His purpose is to define
engineering design, which he rightly believes is a
better name for what engineers do than the
overused ‘practice’.

. – p.34



More Bibliography

Thomas S. Kuhn, The Structure of Scientific
Revolutions, 3rd ed., University of Chicago
Press, 1996.
I Kuhn’s thesis is that science has ‘normal’ periods

in which a dominant theoretical paradigm enables
scientists to work productively, and ‘revolutions’ in
which the theoretical paradigm is forced to
change. This view of the field is arguably the most
influential today. In particular, it has inspired
engineers like Addis and Vincenti.

. – p.35



More Bibliography

Karl R. Popper, Conjectures and Refutations:
The Growth of Scientific Knowledge, 5th ed.,
Routledge, 1992.
I Although Popper and Kuhn do not agree about

intrinsic ‘truth’ in science (Kuhn thinks there is
none, while Popper still hopes for it), they do agree
that the usual descriptions of the so-called
scientific method are nonsense. Popper’s view is
that theory directs most scientific work, and that
science is defined by theories that can be tested
and may prove false. Popper believes strongly in
the process of rational dispute, and he therefore
calls mathematics a science.

. – p.36



More Bibliography

C.A.R. Hoare, “Programming: Science or
Sorcery?,” in Essays in Computing Science,
Prentice-Hall, 1989.
I Hoare presents his vision of a software profession.

I would change his ‘science’ to ‘mathematics,’ and
his ‘law’ to ‘theorem.’

Walter G. Vincenti, What Engineers Know and
How they Know it, Johns Hopkins Press, 1990.
I Vincenti does not have Addis’s philosophical turn

of mind, but he knows aeronautical engineering
and has made a taxonomy of engineering
knowledge, with good examples (especially on
parameter variation).

. – p.37


	
	Outline of the Talk
	Fundamental Questions
	What Use is Philosophy?
	Outline of the Talk
	Science, Math, and Engineering
	What Are The Disciplines?
	Formal Definitions (c. 2000)
	Applied Mathematics
	Testing a Scientific Theory
	`Normal' Engineering Design
	Summary: Traditional Paradigm
	Traditional Engineering (Electrical)
	Today's Philosophical Truths
	Quotations Supporting the Truths
	Outline of the Talk
	Software emph {Engineering}?
	Computer emph {Science}/?
	What is Programming?
	Where Does Programming Fit?
	Computer `Science' Isn't
	Digression: There's emph {Some} Science...
	Computer emph {Mathematics}?
	Evaluating Engineering Designs
	Examples of Models in Engineering
	Software Modeling
	Outline of the Talk
	The Woes of the Craft
	All Problems Solved by Philosophy?
	Take Responsibility
	Use Good Mathematics
	Keep Things Straight
	
	Annotated Bibliography
	More Bibliography
	More Bibliography
	More Bibliography

