Some Important Proofs on Sequence Pair
Representations of Floorplans

Given: A sequence-pair {I't, '~} for K rectangular modules

Def: (cluster)

A set of proximate modules whose topology remains fixed over all possible floor-

plans.
Def: (cluster sequence)

Let C be a cluster. The cluster sequence is the minimum length subsequence in

a sequence-pair that contains all modules r € C.
Def: (cluster gap)

Any position(s) in a cluster sequence that contains a module y ¢ C.
Def: (cluster gap module)

Any module located within a cluster gap.

For any cluster C, there is a cluster sequence Sg contained in 't and another cluster sequence
Sz contained in I'". We indicate an ordering within a cluster sequence by z < y, which says x
appears before y when the cluster sequence is scanned from left to right. In general Sg' +S;
because each may contain different cluster gap modules. In fact, even if Sg' and &g contain the
exact same modules, the ordering will most likely be different.

Consider a m x m mesh with the horizontal and vertical mesh lines labeled by Tt and T'~.
(The labeling is done top-to-bottom and left-to-right.) Figure 1 is the mesh constructed for
the sequence-pair I't = {f ¢,b,9,e,a,d} and T~ = {g,b,e,¢,d,a, f}. The cluster consists of
modules a,b,c and e—i.e., C = {a,b,c,e}. Consequently, module g is a cluster gap module in
I't, whereas module d is a cluster gap module in I'~. The module z is placed at the crosspoint
(z,z).

Def: (crosspoint)

Any point in a mesh with coordinates (r,r), where r € Tt and r € ™.

Def: (submesh)

Let [T and r* be the leftmost and rightmost modules respectively in Sg’ C Tt and I~
and r~ the same for S; C I'". The submesh is bounded by the horizontal and vertical

lines of the mesh with labels [T, #* [~ and r~.

Figure 1: A mesh constructed for the sequence-pair Tt = {f ¢,b,g,e,a,d} and T~ =
{g9,b,e,¢,d,a, f}. The cluster is C = {a,b,c} and the corresponding submesh is shaded. The
crosspoints are shown as black dots.

Theorem 1 A submesh interior only contains crosspoints of modules that are in both Sg and

;.

Proof. (by contradiction) Suppose the crosspoint of y lies in the submesh interior of a cluster
C, but assume y is a module in either S} or S; (but not both).

The boundary of the submesh is defined by the leftmost module ! and the rightmost module
r of a cluster sequence. Hence, any module y is to the right of / and to the left of in the cluster
sequence—i.e., [< y < 7.

Without loss in generality, assume y is in Sé" only, which means only the mesh rows need to
be considered. By following the mesh labeling procedure, there exists a horizontal row with a
y label between the rows with labels [T and r+—ie. It <y < rt.

Now assume y is in S; only. By the same reason stated above, there exists a column with
a y label between the columns with labels [~ and r~.

Note that the crosspoint of y lies in the submesh interior iff [t < y < vt and [~ < y <
r~ both hold. But this means y must be in both Sg and S, which contradicts the initial

assumption. a

Corollary 1 The crosspoint of any module a; € C lies on the boundary or in the interior of the

submesh assoctated with C.

Proof. Clearly a; is on the boundary whenever a; = [T,{~, 7% or r=. The proof for the interior

follows from Theorem 1 and the definition of a cluster sequence. a

Referring again to Figure 1, module ¢ is a cluster gap module in both Tt and '~ and its

crosspoint is in the submesh interior. On the other hand, modules g and d are cluster gap

modules in only one sequence-pair while f is not a cluster module at all; none of these modules
are in the submesh interior.

We adopt the sequence-pair notation used in Murata’s paper!:
o M%(z) = {2'|z' is before z in both T+ and '~}

o Mb(z) = {2'|z' is before z in 't and after z in [~}

o M®(z) = {2'|z' is after z in ['t and before = in I~}

o M®(z) = {z'|2' is after z in ['t and after z in T~}

These two sets are used to construct the horizontal-constraint digraph (Gyr) and the vertical-

constraint digraph (Gv), from which the overall chip area can be computed.

Theorem 2 If the ordering between modules a; and a; giwen by < holds over all Sg and S,

then a; and a; are modules in C.

Proof. By the definition of a cluster sequence, a; and a; must appear in all Sg and Sz . Suppose
a; < aj in all Sg' and Sz . Then in all cluster sequences we have a; € Mbb(aj), which means
a; must always be to the left of a;. Similarly, if a; < a; in all S&", but a; < a; in all S,
then a; € M?(a;) in all cluster sequences, which means a; must always be above a;. Either

situation establishes a fixed topology of between modules a; and a; over all floorplans. a

Theorem 3 Let {f‘\ﬂ f:} be any permutation of {T't, T~} and let a; and a; be two arbitrary
modules in a cluster C. If the ordering < between a; and a; is identical in both {ﬁ,f:} and

{T+ T}, then C emists in the floorplans defined by {ﬁ, l::} and {T'T T~}.

Proof. Tt is always possible to construct a ST C Tt and a S; C T~. Let {5‘1, éfc_\} denote the
cluster sequence-pairs of {ﬁ', f:} If the ordering of a; and a; in {I:‘T‘, f:} and {T+ T~} is
identical, then the ordering is also identical in {gg,gg} and {SF,8-}. This will be true in
any permutation of {I't, '~} where ordering of a; and a; is preserved. Consequently, it is true
in all such permutations and therefore all {gg', SAE} By Theorem 2, a; and a; are in the same

cluster C. O

Corollary 2 Given a module y ¢ C. Then any permutation of Tt or '~ that only alters the

position of y will preserve C.

Proof. By only altering the position of y, no other ordering of other modules in I't or I'" is

affected. By Theorem 3 the cluster remains intact. a

1 H. Murata et. al, “VLSI module placement based on rectangle-packing by the sequence-pair”, IEEE

Trans. Comput. -Aided Des. 15(12), 1518-1524, 1996

We now consider the following issue. The ordering talked about up to this point only
establishes a relative positioning between modules in a cluster—i.e., any pretense of physical
distances has been ignored. Figure 2 shows the real issue. Our objective now is to form clusters

that looks like Figure 2(b). What we want is compact clusters.

@ (b)

Figure 2: Two possible positions of cluster modules z and z. In (a), a cluster gap module y is in
between the cluster modules, while in (b) the cluster modules are next to each other. However,
in both cases the cluster position completely complies with = € M®?(z).

Def: (compact cluster)

A cluster C is called compact if V modules z, z € C, there exists no module y ¢ C

which lies within any portion of the deadspace between x and z.

Theorem 4 Let C be a compact cluster. Then the same cluster gap module cannot appear in

both Sg' and S; .

Proof. (by contradiction) Assume C is a compact cluster. Let y be a cluster gap module—i.e.,
y¢C—butye S andy e S;.

If y is the first or the last module in Sg' or 8, then by the definition of a cluster sequence,
we must have y € C. Therefore, we only consider the case where y is not the first or last module
in either cluster sequence.

Without loss in generality, let [be the leftmost and r the rightmost module in S&" and S; .
Then in both pairs [< y, or { € M®(y) and y < 7, or y € M (r). This means y is to the right
of | but to the left of —i.e., y is in between [and r, which contradicts the original assumption
that C is compact.

Now, let y € Sé" = y ¢ Sz . Then only one of the following cases exists:

1. y e M2(l) and y € M®(r)
2. y € M?(l) and y € M(r)

Since [< r in both Sg and Sz, [must be to the left of r. In the first case y is to the right of ,
but below r and therefore cannot be in between [and r. In the second case, y is to the left of r
but above [and again cannot be in between [and r. Hence, the compactness of C is unaffected

if y is missing from a cluster sequence. a

Corollary 3 Let {I't, T~} describe a floorplan with a compact cluster C. Then any permutation
of Tt or I~ that (i) preserves ordering < among the cluster modules, and (ii) does not put the

same cluster gap module in both Sg and Sg , will preserve the compactness of C.

Proof. By Theorem 3, any permutation that achieves (i) keeps the cluster intact. By Theorem
4, any permutation that achieves (i7) does not affect compactness of a cluster. Hence, any

permutation that achieves both (#) and (4i) keeps a compact cluster intact. a

Up to this point we have developed theorems assuming the cluster was compact. What has
not been done is establish those conditions that produce a compact cluster in the first place.

First, it 1s important to understand the interpretation of the sequence-pair notation.
o ' € M (z) = 2'is “to the left of”
o ' € Mb(z) = z'is “above” z
o ' € M®(z) = z'is “below” =z
o ' € M*(z) = z'is “to the right of” x

The main idea is to look at the cluster gap modules in 't and determine what is their
appropriate location in I'~ to ensure the cluster gap module is outside of the compact cluster.

For example, suppose we have a compact cluster C with
It =(..zyz..)

where z,z € C and y ¢ C. Assume z < z in both sequence-pairs so z is to the left of z. There

are only three possible (relative) locations of y in I'™:
.L.I- = (..zyz...) =>yeM™»z)andyec M (z) (precluded by Theorem 4)
2T =(..zzy..) =>yeM®(z)andye M"(z) (to the right of z and above z)
3.1 =(..yzz..) =>yeM®z) andyec M®"(z) (below z and to the left of 2)

Hence, there are only two legitimate locations for y relative to the cluster modules. This suggests

a very important locations principle:

There are only specific locations of cluster gap modules in {Tt T~} that are legal

and ensure a compact cluster remains intact.

This has strong implications for stochastic search algorithms. Essentially this principle says
that random permutations of sequence-pairs are likely to destroy a compact cluster. But there
is also a suggested solution: encode only “legal” locations of cluster gap modules into the search

operators. For instance, in simulated annealing a new candidate solution would be created

by randomly selecting a module and randomly inserting it somewhere else in I'~. But where
the module could be inserted depends on a set of heuristics. From the example above, this
module could not be inserted in the middle of S; if it were already in Sg’. This construction
of an “intelligent” search operator could lead to far more computationally efficient searches for
optimal floorplans where cluster integrity must be maintained because illegal floorplans would
never be produced for evaluation.

For convenience we designate four cluster modules with the compass point labels north,
south, east, or west. These four modules represent the outer limits of a compact cluster (see
Figure 3). Note that is possible for one module to be designated with more than one compass

point. Consider a set of K rectangular modules in a floorplan desribed by {['T,T~}. Let

20 ¢ [a]
e el "

k
i | L]

m

Figure 3: A floorplan with a compact cluster (the shaded modules). Module g is designated
as the “north” module, k as the “east” module, m as the “south” module and f as the “west”
module.

{aiaz2...a,} € C (a compact cluster) with r << K. There is a defined ordering < in both Sg’
and 87 . Let there be another module y ¢ C with no restrictions on its location in T't. We can

define the following heuristic rules for the location of y in S; :
Rule 1:
Rule 2:
Rule 3:

Rule 4:

Theorem 5 The above heuristic rules are necessary (but not sufficient) to produce a compact

cluster.

Proof.

