
TECHNICAL PUBLICATION

www.mentor.com

Implementing SystemVerilog for
FPGA Design

Ehab Mohsen, Technical Marketing Engineer
Design Creation and Synthesis Division

Mentor Graphics Corporation
June 2008

Adopting SystemVerilog for Design Implementing SystemVerilog for FPGA Design

PAGE 2 www.mentor.com June 2008

INTRODUCTION

Since its ratification in 2005, the SystemVerilog IEEE-
1800 standard has come a long way in terms of
adoption — though this adoption has not been even-
handed. The specification can be roughly broken into
several categories: assertions, testbench constructs,
DPI and API interface, and design enhancements. The
verification constructs were the first to get industry-
wide attention, as shown with the high profile
methodologies such as the Verification Methodology
Manual (VMM), the Advanced Verification Methodology
(AVM), and Open Verification Methodology (OVM) —
all to address the verification bottleneck.
And yet the design implementation bottleneck
deserves equal attention. One study on FPGA design
reports that RTL logic design consumes roughly half of
the design cycle time, with verification consuming the
other half. In addition, roughly 60% of projects are
delayed due to changes in the design specification. In
other words, RTL coding methods are far from perfect
and significant in schedule impact. Recent
enhancements to SystemVerilog are intended to
address these issues.
With the ability to design at higher levels of abstraction,
compactness of code, and the unification of design and
verification environments, the new SystemVerilog
extensions offer an improved method of logic imple-
mentation, relevant at nearly all RTL designers.

ADOPTING SYSTEMVERILOG FOR DESIGN

But engineers are wary of change, particularly when it
involves adopting a new design language. Changing to
a new language not only implies starting from scratch,
but convincing others in the design team to start from
scratch. Changing also means waiting for EDA tools to
provide adequate support of the language. Most
designers do not have the bandwidth, freedom, or
comfort level to take this leap.
The truth is, however, adopting SystemVerilog for
design is not a leap at all. SystemVerilog can (and
should) be thought of as an extension to the existing
Verilog standard with the same basic syntax and
backward compatibility. In addition, there are synthesis
tools available that support the synthesizable
constructs of the language. In fact, Precision®
Synthesis has long supported SystemVerilog for design
with customers already implementing designs into real
hardware. Adapting current design methods to make

use of SystemVerilog is not the risky revamp or
makeover most engineers assume it to be.
In a real sense, the risk is sticking with the same
design methodology while chip size and complexity
continue to increase. For example, average gate count
from one FPGA project to the next increase on average
25 percent. Managing this increase in complexity was
among the goals of the authors of the SystemVerilog
specification. In fact, the charter for the new standard
was to "extend Verilog IEEE 2001 to higher abstraction
levels for architectural and algorithmic design, and
advanced verification."

THE NEW CONSTRUCTS

This paper reviews a few of these constructs added to
make the language more design friendly. While the
language has a variety of extensions, the sub-set
examined here focuses on those that allow higher
levels of abstraction for RTL design. Each construct
builds on the other, with the degree of abstraction and
complexity left to the designer.

User-Defined Types

As a starting point, SystemVerilog allows the definition
of new data types based on existing types with the
typedef keyword, similar to C (example shown below).
This construct is a fundamental building block in
modeling a complex design at abstract levels while still
being accurate and synthesizable. Once it is defined,
the user-defined type can be used as with any built-in
data type, making data structures more readable:

typedef logic [1:0] opcode_t;
opcode_t [1:0] op1;

Note: The example above follows the naming convention of
ending a user-defined type with the characters "_t". This
convention is done to improve readability and maintainability,
since the user-defined type may have been defined
elsewhere in the code or in another file.

The examples in this paper use the logic data type —
a replacement to the reg data type, as the latter
misleadingly implies a register is to be inferred. In fact,
reg is a variable and may be implemented as
sequential or combinational logic, depending on its
use. The use of logic over reg is recommended to
avoid designer confusion. There are other differences
between the reg data type from Verilog-2001 and the
logic type of SystemVerilog, but they are beyond the
scope of this paper.

http://www.mentor.com

Implementing SystemVerilog for FPGA Design The New Constructs

June 2008 www.mentor.com PAGE 3

Enumerated Types

Similar to VHDL's enumeration data type, enumerated
types in SystemVerilog provide the ability to declare a
variable with a specific list of valid values:

enum {ADD, SUB, MULT} opcode

The variable opcode is given a set of potential user-
define names "ADD", "SUB", and "MULT" (also known
as labels). An example of this use is in the following
case statement (assume a, b, and c have been defined
as variables):

...
 case (opcode)
 ADD: c = a + b;
 SUB: c = a - b;
 MULT: c = a * b;
 endcase
...

The code shown above is readable and intuitive. One
might argue that the same can be achieved in Verilog
with use of the `define macro or parameter constants
to define a set of names with specific values:

'define ADD 2'b00
'define SUB 2'b01
'define MULT 2'b10
...

reg [1:0] opcode;
...
 case (opcode)
 'ADD: c = a + b;
 'SUB: c = a - b;
 'MULT: c = a * b;
 endcase

In the Verilog example above, the variables are defined
as 2-bit vectors; therefore, they can legally be assigned
the value 2'b11 — a value not accounted for in the
above code — forcing designers to be aware of this
potential error. So in addition to being more concise,
enumerated types not only define a list of user-defined
labels for a variable but also limit the variable to the set
of valid values specified. By offering stronger type
checking in the language compiler, the code accurately
captures designer intent.
Enumerated types can be used with the typedef
keyword to create user-defined types with a set of valid
values. This technique is useful when needing to make
declarations in many places:

typedef enum {ADD, SUB, MULT} opcode_t;
opcode_t op1, op2;

Figure 1 shows how using strong typing can catch
potential errors.

Figure 1: Strong Typing Using Enum Data-Type

http://www.mentor.com

The New Constructs Implementing SystemVerilog for FPGA Design

PAGE 4 www.mentor.com June 2008

Structures

SystemVerilog offers structures as the next level of
abstraction. Structures are a means of aggregating
variables or data fields under a common name, usually
those conceptually related in some way. With the
struct keyword, users can intuitively describe data
structures and mask lower-level complexity as needed.
Common applications for this include instruction
registers, network packets, and bus packets.

struct {
logic [1:0] opcode;
int a, b;
logic [23:0] addr;
} instruction;

This construct is similar to C and VHDL's record
construct. In Verilog, the members of a structure have
to be defined as separate variables and managed
individually, forcing the engineer to track how all the
pieces fit together. By aggregating elements, data
structures can be represented in the HDL as they are
understood conceptually.
In the example above, instruction is the structure that
aggregates the data elements opcode, a, b, and addr.
Any element of the structure can be accessed and
manipulated individually, for example:

instruction.opcode = 2'b00

An entire struct can be a user-defined type to be re-
used throughout in the code — effectively creating
higher-level building blocks for design implementation.

typedef struct {
 opcode_t opcode;
 int a, b ;
 logic [23:0] addr;
} instruction_t;

instruction_t instr1, instr2;

Structures can also be passed through tasks, functions,
and module ports, allowing abstraction to be
maintained through data flow:

assign instr1 = instr2;

In the example above, the user-defined type opcode_t
is a member of the user defined type instruction_t —
an example of how multiple layers of abstraction can
be created in the RTL. Implementing such multiple
levels of abstraction in the design does not significantly
impact performance or area during synthesis. Structs
are ultimately the bits and bytes described in their
original user definitions, and the synthesis tool will
implement them as such. There is no loss of specificity
when compared to a Verilog or VHDL description.
Figure 2 and Figure 3 show a simple ALU
implemented in both Verilog and SystemVerilog using
structures. This simple example demonstrates that the
RTL descriptions are equivalent.

Figure 2: Simple ALU implemented in Verilog

http://www.mentor.com

Implementing SystemVerilog for FPGA Design The New Constructs

June 2008 www.mentor.com PAGE 5

Unions

Unions enhance structs or any data model by allowing
multiple definitions for a single storage element. Each
definition has to have the same storage space (e.g.,
vector length, memory size), but different data types
can be used. In the following example [Ref 6], the
same storage space is defined as the struct data with
three members (source_address,
destination_address, and data) and in another
definition as a two-dimensional array bytes. Both of
these definitions represent a 64-bit storage space
identified as the union data_reg. Elements of the union
are assigned values depending on the definition used
(data or bytes).

union packed{
struct packed {
bit [15:0] source_address;
bit [15:0] destination_address;
bit [31:0] data;
} data;

bit [7:0][7:0] bytes;

} data_reg;

data_reg.data = data_in; //assumes
data_in is a 32-bit vector

dest_low_byte = data_reg.bytes[4];

The example above briefly introduces the concept of
packed structures and unions. Packed arrays refer to
all elements being represented as contiguous bits, i.e.,
as a single vector.

Interfaces

While user-defined types, structures, and unions allow
for abstract data modeling, they do not provide a
complete mechanism for the abstraction of data flow.
The interface construct solves this problem by encap-
sulating port connectivity and functionality related to
module-to-module communication. More than just the
high-level modeling of data structures, interfaces raise
the level of communication protocols within a design,
reducing the size of code and improving readability and
maintainability.
Figure 4 shows a system-on-chip (SoC) design [Ref 7]
with processor (CPU), UART, and parallel input/output
(PIO) interface, all communicating through a bus
interface following the wishbone specification.

Figure 3: Simple ALU implemented with SystemVerilog Structures

http://www.mentor.com

The New Constructs Implementing SystemVerilog for FPGA Design

PAGE 6 www.mentor.com June 2008

An interface is defined similarly to a module but with
the interface keyword (Figure 5). The set of signals to
be bundled in the interface are declared without input
or output direction. Since each block in the SoC sees a
port differently (as input, output, or bi-directional), the
subset of signals and port directions for each design
block is defined in modports — each modport having a
unique name. Interfaces support parameters,
constants, tasks, functions, procedural blocks, program
blocks, assertions, as well as any user-defined type.
When declaring a module in the design, an instance of
the interface is used as a single module port, using the
name of the interface as the port type. Signal details
are masked with this single port declaration, as is all
functionality embedded in the interface. In the UART
module (Figure 5), individual signals are referenced
within the module as needed.

One benefit of using interfaces is the bundling of wires
in one location, thereby masking inter-connectivity,
reducing lines of code, and improving readability. The
more significant benefit is being able to localize
communication logic between design blocks. The
protocol details do not need to be duplicated in multiple
modules. As a result, when the inevitable change of the
interface specification is made, modification are
minimized. These changes may include the addition or
omission of a signal, a correction to a protocol error, or
an entire revamp of the bus specification itself.
If logic is actually described in the interface (which is
actually the case for this design, though not shown
above), the interface appears as an actual logic block
in Precision Synthesis (Figure 6), allowing cross-
probing between schematic and HDL or traversing the
hierarchy as with any other design module.

Figure 4: SoC Design from OpenCores.org

Figure 5: Example of the Interface Construct

http://www.mentor.com

Implementing SystemVerilog for FPGA Design Conclusion

June 2008 www.mentor.com PAGE 7

CONCLUSION

The constructs covered here are enough to justify a fair
and close look at SystemVerilog for design, but the
enhancements do not stop here. The standard
provides a wide range of other extensions including
improvements to tasks, functions, loops, procedural
blocks, and the addition of new operators, jump
statements, and packages.
SystemVerilog is more of an evolution than revolution in
RTL design and does not require a major paradigm shift
or complete abandonment of existing RTL design
methodologies. It is common for companies to look at the
constructs one-by-one and deploy them incrementally as
a more conservative approach. Even with this method,
designers can realize the standard's benefits.

REFERENCES

1. EE Times Electronic Design Automation
Branding Study, FPGA Design

2. SystemVerilog enhancements for all chip
designers, Stuart Sutherland, EE Times,
2/26/2004

3. DAC 2003 Accellera SystemVerilog Workshop

4. SystemVerilog for Design: A Guide to Using
SystemVerilog for Hardware Design and Mod-
eling, Stuart Sutherland, Kluwer, Academic
Publishers, Boston, MA, 2004, 0-4020-7530-8.

5. IEEE Std. 1800-2005 IEEE Standard for Sys-
temVerilog — Unified Hardware Design, Speci-
fication, and Verification Language, IEEE, 3
Park Avenue, NY, 2005.

6. Getting Ready for SystemVerilog at DAC
[2004]. Presentation, Stuart Sutherland, Suth-
erland HDL, Inc.

7. OPENCORES Project, opencores.org

Figure 6: Interface HDL and Schematic in Precision System

http://www.mentor.com

Corporate Headquarters
Mentor Graphics Corporation
8005 SW Boeckman Road
Wilsonville, OR 97070-7777
Phone: 503.685.7000
Fax: 503.685.1204
Sales and Product Information
Phone: 800.547.3000

Silicon Valley
Mentor Graphics Corporation
1001 Ridder Park Drive
San Jose, California 95131 USA
Phone: 408.436.1500
Fax: 408.436.1501
North American Support Center
Phone: 800.547.4303

Europe
Mentor Graphics
Deutschland GmbH
Arnulfstrasse 201
80634 Munich
Germany
Phone: +49.89.57096.0
Fax: +49.89.57096.400

Pacific Rim
Mentor Graphics (Taiwan)
Room 1001, 10F
International Trade Building
No. 333, Section 1, Keelung Road
Taipei, Taiwan, ROC
Phone: 886.2.87252000
Fax: 886.2.27576027

Japan
Mentor Graphics Japan Co., Ltd.
Gotenyama Hills
7-35, Kita-Shinagawa 4-chome
Shinagawa-Ku, Tokyo 140
Japan
Phone: 81.3.5488.3033
Fax: 81.3.5488.3021

PAGE 8 www.mentor.com June 2008

Copyright ©2008 Mentor Graphics Corporation. This document contains information that is proprietary to Mentor Graphics Corporation and may be duplicated in whole or in part by the original
recipient for internal business purposed only, provided that this entire notice appears in all copies. In accepting this document, the recipient agrees to make every reasonable effort to prevent the
unauthorized use of this information. Mentor Graphics and Precision are registered trademarks of Mentor Graphics Corporation. All other trademarks are the property of their respective owners.

Printed on Recycled Paper

05-08-BB 5262: 080529

Implementing SystemVerilog for FPGA Design References

http://www.mentor.com

