@I I:l = b A Using Quartus I
= ® Verilog HDL & VHDL

December 2002, ver. 1.2

Integrated Synthesis

Application Note 238

Introduction

Verilog HDL &
VHDL Support

Altera Corporation

AN-238-1.2

The Altera® Quartus® Il software includes improved integrated synthesis
that fully supports the Verilog HDL and VHDL languages and provides
options to control the synthesis process. With this synthesis support, the
Quartus Il software provides a complete, easy-to-use, standalone solution
for system-on-a-programmable-chip (SOPC) designs.

In addition to describing Quartus 1I synthesis support, this application
note explains how you can improve Quartus II synthesis results by:

Using Quartus Il synthesis options

Using design planning practices

Using synchronous design methodologies

Following Altera-recommended guidelines for writing HDL code
Following guidelines for using architectural features of Altera
devices (instantiating and inferring Altera megafunctions)

1= The dialog boxes and settings described in this document reflect
the Quartus II software version 2.2. If you are using another
version of Quartus II software, the settings may be different.
Refer to Quartus I Help for your version for information on the
appropriate dialog boxes and settings.

The Quartus Il software’s integrated synthesis fully supports
Verilog HDL and VHDL synthesizable language features, as well as some
compiler directives.

For information on specific syntax features and language constructs, refer
to the “Quartus 1l Verilog HDL Support” and “Quartus 1l VHDL
Support” topics in Quartus II Help.

Verilog HDL

The Quartus Il Compiler’s Logic Synthesizer module supports the
Verilog-2001 standard (IEEE Std. 1364-1995) and some Verilog-2001
standard (IEEE Std. 1364-2001) constructs. You can select which standard
to use in the in the Settings dialog box (Assignments menuy). Select
Verilog HDL Input under HDL Input Settings in the Category list. The
Compiler uses Verilog-2001 by default.

AN 238: Using Quartus Il Verilog HDL & VHDL Integrated Synthesis

L= The code samples provided in this document follow the
Verilog-2001 standard.

Verilog-2001 support is a new feature in the Quartus Il software
version 2.1 and later. Supported constructs include:

Generate statements: generate and genvar

localparam constants

Preprocessor statements such as ‘elsif, ‘line, ‘ifdef,and "file
Signed declarations for all variables

Operators such as **, <<<,and >>>

Attributes using the syntax (* name = value *)

Indexed part selects using +: and -:

Combinational logic sensitivity wild card token @*

Refer to Quartus II Help for a complete listing of supported constructs.

The Quartus II software supports case-sensitive Verilog HDL code, per
the Verilog HDL standard. Before version 2.1, the Quartus II software did
not support case-sensitive module names.

VHDL

The Quartus Il Compiler’s Logic Synthesizer module supports the VHDL
1987 (IEEE Std. 1076-1987) and 1993 (IEEE Std. 1076-1993) standards. You
can select which standard to use in the in the Settings dialog box
(Assignments menu). Select VHDL Input under HDL Input Settings in
the Category list. The Compiler uses VHDL 1993 by default.

L= The code samples provided in this document follow the VHDL
1993 standard.

The Quartus Il software now supports VHDL libraries differently from
older versions of the Quartus Il or MAX+PLUS® [I software. In version 2.1
and later, standard IEEE and vendor VHDL libraries and packages can be
called from VHDL code within the Quartus Il software.

The IEEE library includes the standard VHDL packages std_logic_1164,
numeric_std, and numeric_bit. The STD library is part of the VHDL
language standard and includes packages standard (included in every
project by default) and textio. For compatibility with older designs, the
Quartus II software also supports vendor-specific packages/libraries,
including;:

B Synopsys packages such as std_logic_arith and std_logic_unsigned
in the IEEE library

Altera Corporation

AN 238: Using Quartus Il Verilog HDL & VHDL Integrated Synthesis

Synthesis
Options

Altera Corporation

B Mentor Graphics packages such as std_logic_arith in the
ARITHMETIC library
B Altera packages such as maxplus2, altera_mf_components, and

Ipm_components in the ALTERA library

For a complete listing of library and package support, refer to the “Using
Quartus II Packages” topic in Quartus II Help.

The Quartus Il software does not support user-defined precompiled
libraries because standard third-party synthesis tools do not support these
precompiled libraries and these libraries do not provide significant
reduction in compilation times. In older Quartus Il versions, you declared
precompiled libraries in the VHDL Input tab of the General Settings
dialog box (Project menu).

To call a user-defined VHDL package in Quartus II version 2.1 and later,
indicate the library and package name using the LIBRARY and USE
commands. You can use any name for your library, including work;
therefore, you can use current software versions for projects developed
with older versions of Altera software that used precompiled libraries
without the need to modify any code. To compile these projects, include
the VHDL package in your Quartus II project by going to the
Add/Remove page under Files & Directories in the Settings dialog box
(Assignments menu). The package must be listed before other files that
use the package because it must be analyzed by the Quartus Il Compiler
first.

The Quartus Il software provides a number of options to guide the
synthesis process and achieve optimal results. You can use compiler
directives, attributes, and Quartus Il logic options to control synthesis.

Il = Versions of Quartus Il software earlier than 2.1 did not support
compiler directives or attributes; the software treated these
options as comments. Quartus II behavior is different if designs
compiled in earlier versions of the software included these
synthesis options. You may need to change your code now that
the software recognizes these options.

This section defines three types of synthesis options, compiler directives,
attributes, and Quartus II logic options. It also describes each of the
following options:

Translate Off & On

Read Comments as HDL
Full Case

Parallel Case

Preserve Registers

AN 238: Using Quartus Il Verilog HDL & VHDL Integrated Synthesis

Maximum Fan-Out
Optimization Technique

State Machine Processing
Preserve Hierarchical Boundary
Power-Up High

Power-Up Don't Care

Remove Duplicate Logic
Remove Duplicate Registers
Remove Redundant Logic Cells

Compiler Directives

The Quartus II software supports compiler directives, also called
pragmas. You include compiler directives in Verilog HDL or VHDL code
as comments. These directives are not Verilog HDL or VHDL commands;
however, synthesis tools use them to drive the synthesis process in a
particular manner. Other tools such as simulators ignore these directives
and treat them as comments.

You can enter compiler directives in your code using the following syntax,
where directive and value are variables and the entry within brackets is
optional.

Verilog HDL:

// synthesis <directive> { <value> }
or
/* synthesis <directive> { <value> } */

VHDL:
-- synthesis <directive> { <value>)

I = In addition to the synthesis keyword shown above, the
keywords pragma, synopsys, and exemplar are supported in
both Verilog HDL and VHDL for compatibility with other
synthesis tools.

Attributes

The Quartus Il software supports attributes, also known as pragmas or
directives. Attributes are similar to compiler directives in that they drive
the synthesis process; however, attributes always apply to a specific
design element. Some attributes are also available as Quartus II logic
options.

4 Altera Corporation

AN 238: Using Quartus Il Verilog HDL & VHDL Integrated Synthesis

Table 1. Synthesis Options as Compiler Directives, Atfributes & Logic Options

Synthesis Option

Compiler Directive Attribute Quartus Il Logic Option

Translate Off and On

translate off - -

translate_on

Read Comments as HDL

read_comments_as_HDL - -

Full Case

- full_case -

Parallel Case

- parallel_case -

Preserve Registers - preserve Preserve Registers
SYN_preserve
Maximum Fan-Qut - maxfan Maximum Fan-Out

syn_maxfan

Optimization Technique

Optimization Technique

State Machine Processing

State Machine Processing

Preserve Hierarchical
Boundary

Preserve Hierarchical Boundary

Power-Up High

Power-Up High

Power-Up Don’t Care

Power-Up Don't Care

Remove Duplicate Logic

Remove Duplicate Logic

Remove Duplicate
Registers

Remove Duplicate Registers

Remove Redundant Logic
Cells

Remove Redundant Logic Cells

= Because Verilog HDL is case-sensitive, compiler directives and
attributes are also case sensitive.

The following sections provide more information on each option shown
in Table 1.

Translate Off & On

The translate_off and translate_on compiler directives indicate
whether the Quartus 11 software or a third-party synthesis tool should
compile a portion of HDL code that is not relevant for synthesis. The
translate_of f directive marks the beginning of code that the synthesis
tool should ignore; the translate_on directive indicates that synthesis
should resume. A common use of these directives is to indicate a portion
of code that is intended for simulation only. The synthesis tool reads
synthesis-specific directives and processes them during synthesis;
however, third-party simulation tools read the directives as comments
and ignore them. Figures 1 and 2 show examples of these directives.

Altera Corporation

AN 238: Using Quartus Il Verilog HDL & VHDL Integrated Synthesis

Altera Corporation

Figure 1. Verilog HDL Example of Translate On & Off

// synthesis translate_off

tpd 2; // Delay for simulation

parametear

iz translate on

translate_off
.all;
translate_on

Read Comments as HDL

The read_comments_as_HDL compiler directive indicates that the
Quartus Il software should compile a portion of HDL code that is
commented out. This directive allows you to comment out portions of
HDL source code that are not relevant for simulation, while instructing
the Quartus Il software to read and synthesize that same source code.
Setting the read_comments_as_HDL directive to on marks the
beginning of commented code that the synthesis tool should read; setting
the read_comments_as_HDL directive to of £ indicates the end of the
code.

I = You can use the directive with translate_off and
translate_on to create one HDL source file that includes both
a megafunction instantiation for synthesis and a behavioral
description for simulation.

In Figures 3 and 4, the commented code enclosed by
read_comments_as_HDL is visible to the Quartus Il Compiler and is
synthesized.

s Compiler directives are case-sensitive in Verilog HDL; you must
match the case of the directive as shown in Figure 3

Figure 3. Verilog HDOL Example of Read Comments as HOL

AN 238: Using Quartus Il Verilog HDL & VHDL Integrated Synthesis

Verilog-2001 syntax also accepts the following statements in the case
header instead of the comment form as shown in Figure 6:

(* parallel_case *) casez (sel)

Preserve Registers

This attribute and logic option directs the compiler not to minimize or
remove a specified register during synthesis optimization or sequential
netlist optimization. Sequential optimizations can eliminate redundant
registers and registers with constant drivers. This option can preserve a
register so you can observe it during simulation or with the SignalTap® I
logic analyzer. Additionally, it can preserve registers if you are creating a
preliminary version of the design in which secondary signals are not
specified. The option cannot preserve registers that have no fan-out.

You can set the Preserve Registers logic option in the Quartus I user
interface or you can set the preserve attribute in your HDL code as
shown below. In this example, the my_reg register is preserved.

L= In addition to preserve, the Quartus Il software supports the
syn_preserve attribute name for compatibility with other
synthesis tools.

Verilog HDL:

reg my_reg /* synthesis preserve */;
Verilog-2001:

(* preserve *) reg my_reg:

VHDL:

signal my_reg : stdlogic;

attribute preserve : boolean;
attribute preserve of my_reg : signal is true;

1= Setting the Preserve Registers logic option in the Quartus II
software version 2.2 does not affect registers that are removed
during the analysis and elaboration stage of compilation (before
logic synthesis). To fully preserve the register throughout
compilation, use the HDL attribute instead of the logic option.

10 Altera Corporation

AN 238: Using Quartus Il Verilog HDL & VHDL Integrated Synthesis

Maximum Fan-Out

This attribute and logic option directs the compiler to control the number
of destinations fed by a node. The fan-out count of the node will not
exceed the value specified for the maximum number of fan-out. You can
apply this option to a register, pin, or a logic cell buffer. This option is
useful for reducing the load of critical signals, which can improve
performance. Additionally, you can use this option to instruct the
compiler to duplicate or replicate a register that feeds nodes in different
locations on the target device. Duplicating the register may allow the
Fitter to place these new registers closer to their destination logic,
minimizing routing delay.

This option is available for all devices supported in the Quartus Il
software except for MAX®, FLEX®, ACEX®, and Mercury™ devices.

You can set the Maximum Fanout logic option in the Quartus Il user
interface, or you can set the maxfan attribute in your HDL code as shown
below. In this example, the compiler duplicates the c1k_gen register so
its fan-out is not greater than 50.

L= In addition to maxfan, the Quartus II software supports the
syn_maxfan attribute name for compatibility with other
synthesis tools.

Verilog HDL:

reg clk_gen /* synthesis maxfan 50 */;

Verilog-2001:

{* maxfan = 50 *) reg clk_gen;

VHDL:

signal clk_gen : stdlogic;

attribute maxfan : integer ;
attribute maxfan of clk_gen : integer is 50;

Altera Corporation 1

AN 238: Using Quartus Il Verilog HDL & VHDL Integrated Synthesis

12

Optimization Technique

This logic option specifies the overall goal for logic optimization, i.e.,
whether to attempt to achieve maximum speed performance or minimum
area usage during compilation. Table 2 lists the settings for this option,
which you can only apply to a design entity.

Table 2. Optimization Technique Seftings

Setting Description

Area The Compiler makes the design as small as possible to minimize
resource usage.

Speed | The Compiler chooses a design implementation that has the fastest

The default setting varies by target device family, and is generally
optimized to get the best area/speed trade-off. Results are design and
device-dependent and can vary depending on which design or device
family you use.

State Machine Processing
This logic option specifies the processing style used to compile a state

machine. Table 3 lists the settings for this option, which you can apply to
a state machine name or to a design entity containing a state machine.

Table 3. State Machine Processing Settings

Setting Description

Auto (Default) |Allows the Compiler to choose the best encoding for the state
machine.

Minimal Bits | Uses the least number of bits to encode the state machine.

One-Hot Encodes the state machine in the one-hot style.

User-Encoded | Encodes the state machine in the manner specified by the user.

L= The Compiler in the Quartus II software versions 2.1 and 2.2

does not report Verilog HDL state machines. The software
correctly reads and implements state machine logic during
synthesis, however, the Compiler does not report state
information and you cannot change the encoding using Quartus
II logic options.

Altera Corporation

AN 238: Using Quartus Il Verilog HDL & VHDL Integrated Synthesis

14

B [f this option is turned on for an output or bidirectional pin, it is
transferred automatically to the register that feeds the pin if the
following conditions are present:

— Thereis no intervening logic, other than inversion, between the
register and the pin.
— The register does not fan out to any other logic.

Power-Up Don’t Care

This logic option causes registers to power up with a “don’t care” logic
level (x), or the logic level most appropriate for the design. You might use
this option to allow the Compiler to change the power-up level of a
register to minimize your design’s area usage.

For example, a register may have its D input tied to vCC. If you turned this
option off, the register powers up low even though it goes high at the first
clock signal. If you turned this option on, the Compiler sets the power-up
value of the register to high and, therefore, can eliminate the register and
connect the output of the register to VCC. If the Compiler makes this type
of optimization, it issues you a message indicating it is doing so.

This project-wide option does not apply to registers that have the Power-
Up High logic option set (either on or off).

L= Versions of the Quartus Il software earlier than version 2.1 did
notinclude this option. If you compile an older design that relies
on registers to power-up to a specific level, the Compiler may
synthesize the design differently. Turn off the Power-Up Don’t
Care option if you want your design to use the power-up
behavior of older versions of Quartus Il software.

Remove Duplicate Logic

If you turn on this option, the Compiler removes logic if it is identical to
other logic in the design. If two functions generate the same logic, the
Compiler removes the second one and the first one fans out to the second
one’s destinations. Additionally, if the deleted logic function has different
logic option assignments, the Compiler ignores them. This option is
turned on by default.

When turned on, this option also removes all duplicate registers, like the
Remove Duplicate Registers option. If you do not want the Compiler to
remove certain registers when this option is turned on, turn off the
Remove Duplicate Registers option for those registers. See Table 5 for
additional details.

Altera Corporation

AN 238: Using Quartus Il Verilog HDL & VHDL Integrated Synthesis

Architecture-
Specific Coding
Style
Guidelines

Altera Corporation

B For Verilog HDL, use the parallel_case attribute with case
statements for one-hot functionality. Use 1 f and else_if
statements for all intentional priority encoders.

B Separate the state machine logic from all arithmetic functions and
data paths, including assigning output values.

= The Compiler in the Quartus II software versions 2.1 and 2.2
does not report Verilog HDL state machines. The software
correctly reads and implements state machine logic during
synthesis, however, the Compiler does not report state
information and you cannot change the encoding using Quartus
II logic options.

This section discusses coding style guidelines to ensure optimal synthesis
results when using architectural features of Altera devices. The section
also provides code examples for inferring Altera megafunctions from
HDL code in the Quartus Il software.

Altera Megafunctions

Altera provides parameterizable megafunctions that are optimized for
Altera device architectures. Megafunctions include the library of
parameterized modules (L’M), device-specific embedded megafunctions
such as phase-locked loops (PLLs), Stratix DSP blocks, LVDS drivers,
intellectual property (IP) available as Altera MegaCore® functions, and [P
available from Altera Megafunction Partners Program (AMPP*M)
partners.

Using megafunctions instead of coding your own logic can save valuable
design time. Additionally, these functions can offer more efficient logic
synthesis and device implementation. It is easy to scale megafunctions to
different sizes by simply setting parameters.

You must use megafunctions to access some Altera device-specific
features, such as memory, DSP blocks, LVDS drivers, PLLs, and DDIO
circuitry. You can use megafunctions by instantiating them in your HDL
code or inferring them from generic HDL code.

Instantiating Altera Megafunctions in HDL Code

You can instantiate Altera megafunctions in your HDL design by:
B Using the MegaWizard® Plug-In Manager to parameterize the

function and create a wrapper file.
B [nstantiating the function using the port and parameter definition.

29

AN 238: Using Quartus Il Verilog HDL & VHDL Integrated Synthesis

Using the MegaWizard Plug-In Manager

Altera recommends that you use the Quartus Il MegaWizard Plug-In
Manager to instantiate megafunctions. The wizard provides a graphical
interface for customizing and parameterizing megafunctions, and ensures
that you set all megafunction parameters properly. When you finish
setting parameters, the wizard generates a VHDL or Verilog HDL
wrapper file that instantiates the megafunction with the correct
parameters (it also creates a Component Declaration file for VHDL). You
can then instantiate the wrapper file in your HDL code.

Iz Altera strongly recommends that you use the wizard for
complex megafunctions such as PLLs and LVDS drivers.

Table 7 lists the files the MegaWizard Plug-In Manager generates and
describes each file.

Table 7. MegaWizard Plug-In Manager Generated Files

File

Description

<output file>.bsf

Symbol for the megafunction used in the Quartus Il schematic editor.

<output file=.cmp

Component Declaration File.

<output file=.inc

Include File for the module in the megafunction wrapper file.

<output file=tdf (1)

Megafunction wrapper file for instantiation in an AHDL design.

<output file>.vhd (2)

Megafunction wrapper file for instantiation in a VHDL design.

<output file=.v (3)

Megafunction wrapper file for instantiation in a Verilog HDL design.

<output file>_bb.v (3)

Hollow-body declaration of the module in the megafunction wrapper file used in
Verilog HDL designs to specify port directions when using third-party synthesis tools.

<output file=_inst.tdf (1)

Sample AHDL instantiation of the subdesign in the megafunction wrapper file.

<output file>_inst.vhd (2)

Sample VHDL instantiation of the entity in the megafunction wrapper file.

<output file>_inst.v (3)

Sample Verilog HDL instantiation of the module in the megafunction wrapper file.

Notes to Table 7:
(1)
(2)
(3)

30

The wizard only generates this file if you select AHDL output files.
The wizard only generates this file if you select VHDL output files.
The wizard only generates this file if you select Verilog HDL output files.

For more information about how to use the MegaWizard Plug-In
Manager, refer to Quartus II Help.

Altera Corporation

AN 238: Using Quartus Il Verilog HDL & VHDL Integrated Synthesis

Altera Corporation

Using the Port & Parameter Definition

You can instantiate the megafunction directly in your Verilog HDL or
VHDL code by calling the function like any other module or component.
In VHDL, you also need to use a Component Declaration. Refer to
Quartus II Help (or your IP documentation) for a list of the
megafunctions’s ports and parameters. Help also provides a sample
VHDL Component Declaration.

Inferring Megafunctions from HDL Code

The Quartus II Logic Synthesizer automatically recognizes certain types
of HDL code and infers the appropriate megafunction. That is, the
software uses the Altera megafunction code when compiling your design
even though you did not specifically instantiate the megafunction. The
software uses inference because the megafunctions are optimized for
Altera devices, so the area and /or performance may be better than generic
HDL code. Additionally, you must use megafunctions to access certain
architecture-specific features—such as RAM, DSP blocks, and shift
registers—that generally provide improved performance compared to
basic logic elements.

The following sections describe the types of logic that the Quartus II Logic
Synthesizer recognizes and maps to megafunctions. The software only
infers these specific functions that are described by HDL code. The
software cannot infer other megafunctions, such as PLLs and LVDS
drivers, from HDL code because these functions cannot be fully or
efficiently described in HDL. In some cases, the Quartus I software has an
option that you can use to disable inference.

Counters

The Quartus II Logic Synthesizer looks for any set of registers that feeds
itself through a plus-one adder, a minus-one adder, or both, and converts
the registers and logic to an 1pm_counter megafunction. If the design
also has logic implementing counter signals, the software can recognize
them as well. Specifically, the Quartus Il software recognizes the
following signals:

Asynchronous clear
Asynchronous set (only to all ones)
Asynchronous load

Count enable

Synchronous clear

Synchronous set (only to all ones)
Synchronous load

31

AN 238: Using Quartus Il Verilog HDL & VHDL Integrated Synthesis

32

B Clock enable
B Up/down

Figures 13 and 14 show simple Verilog HDL and VHDL counter examples
with different control signals.

Figure 13. Verilog HOL Counter with Count Enable & Asynchronous Clear

module counter

input elk;
input

end
endmodule

Altera Corporation

AN 238: Using Quartus Il Verilog HDL & VHDL Integrated Synthesis

Altera Corporation

Multipliers

The Quartus Il Logic Synthesizer finds multipliers and converts them to
1pm_mul t megafunctions. For devices with DSP blocks, the software may
implement the 1pm_mult function in a DSP block instead of LEs,
depending on device utilization. The Quartus II Fitter may also place
input and output registers in DSP blocks (i.e., perform register packing) to
improve performance and LE utilization.

For more information on the DSP’ block and which functions it can
implement, refer to the appropriate Altera device family data sheet and
the DSP Solutions Center on the Altera web site at http://www.altera.com.

Figures 17 through 20 show Verilog HDL and VHDL examples for
unsigned and signed multipliers that the Quartus Il Compiler infers as an
1pm_mult. Each example fits into one DSP block 9-bit element (using no
LEs for registers when register packing occurs).

= The signed declaration in Verilog HDL is a feature of the
Verilog-2001 standard.

Figure 17. Verilog HDL Unsigned Multiplier

module unsigned_mult (out, a, b);

output [1
input [°
input [

assign out a * b;

endmodule

35

