
54 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 1 0 7 4 0 - 7 4 5 9 / 0 1 / $ 1 0 . 0 0 © 2 0 0 1 I E E E

T
his is a “virtual” roundtable discussion
between five respected experts from
the fault-tolerant computing field:
Joanne Bechta Dugan (UVA), Les Hat-
ton (Oakwood Computing), Karama
Kanoun and Jean-Claude Laprie

(LAAS-CNRS), and Mladen Vouk (NC State
University). The reason for including this
piece is to provide a mini tutorial for readers
who are unfamiliar with the field of software
fault tolerance or who might have had more
exposure to hardware fault tolerance. Eleven
questions were posed to each member of the
panel over email, and here we present their
responses.

—Jeffrey Voas

What are the basic principles of building fault-
tolerant systems?

Joanne Bechta Dugan: To design and build
a fault-tolerant system, you must understand
how the system should work, how it might
fail, and what kinds of errors can occur. Error
detection is an essential component of fault
tolerance. That is, if you know an error has
occurred, you might be able to tolerate it—by
replacing the offending component, using an
alternative means of computation, or raising
an exception. However, you want to avoid
adding unnecessary complexity to enable fault
tolerance because that complexity could result
in a less reliable system.

Les Hatton: The basic principles depend,
to a certain extent, on whether you’re de-
signing hardware or software. Classic tech-
niques such as independence work in differ-

ent ways and with differing success for
hardware as compared to software.

Karama Kanoun and Jean-Claude Laprie:
Fault tolerance is generally implemented by
error detection and subsequent system recov-
ery. Recovery consists of error handling (to
eliminate errors from the system state) and
fault handling (to prevent located faults from
being activated again). Fault handling in-
volves four steps: fault diagnosis, fault isola-
tion, system reconfiguration, and system reini-
tialization. Using sufficient redundancy might
allow recovery without explicit error detec-
tion. This form of recovery is called fault
masking. Fault tolerance can also be imple-
mented preemptively and preventively—for
example, in the so-called software rejuvena-
tion, aimed at preventing accrued error condi-
tions to lead to failure.

Mladen Vouk: A principal way of intro-
ducing fault tolerance into a system is to
provide a method to dynamically determine
if the system is behaving as it should—that
is, you introduce a self-checking or “oracle”
capability. If the method detects unexpected
and unwanted behavior, a fault-tolerant sys-
tem must provide the means to recover or
continue operation (preferably, from the
user’s perspective, in a seamless manner).

What is the difference between hardware and
software fault tolerance?

Joanne: The real question is what’s the dif-
ference between design faults (usually soft-
ware) and physical faults (usually hardware).
We can tolerate physical faults in redundant
(spare) copies of a component that are identi-
cal to the original, but we can’t generally tol-
erate design faults in this way because the er-
ror is likely to recur on the spare component
if it is identical to the original. However, the
distinction between design and physical faults
is not so easily drawn. A large class of errors

roundtable

Fault Tolerance
Jeffrey Voas

Joanne Bechta Dugan is a professor
of electrical and computer engineering
at the University of Virginia. Her re-
search interests include hardware and
software reliability engineering, fault-
tolerant computing, and mathematical
modeling using dynamic fault trees,
Markov models, Petri nets, and simula-
tion. Contact her at jbd@virginia.edu.

Les Hatton’s biography appears on
page 39.

Karama Kanoun’s biography
appears on page 33.

Jean-Claude Laprie is a research
director at CNRS, the French National
Organization for Scientific Research.
He is Director of LAAS-CNRS, where he
founded and previously directed the
research group on Fault Tolerance and
Dependable Computing. He also
founded and previously directed the
Laboratory for Dependability Engi-
neering, a joint academia–industry
laboratory. His research interests have
focused on fault tolerance, depend-
ability evaluation, and the formulation
of the basic concepts of dependability.
Contact him at laprie@laas.fr.

Mladen A. Vouk is a professor of
computer science at the N.C. State Uni-
versity, Raleigh, North Carolina. His re-
search and development interests in-
clude software engineering, scientific
computing, computer-based education,
and high-speed networks. He received
his PhD from the King’s College, Univer-
sity of London, UK. He is an IEEE Fellow
and a member of the IEEE Reliability,
Communications, Computer and Educa-
tion Societies, and of the IEEE TC on
Software Engineering, ACM, ASQC, and
Sigma Xi. Contact him at vouk@csc.
ncsu.edu.

Particpants

J u l y / A u g u s t 2 0 0 1 I E E E S O F T W A R E 55

ROUNDTABLE

arise from design faults that do not re-
cur because the system’s state might
slightly differ when the computation is
retried.

Les: From a design point of view,
the basic principles of thinking about
system behavior as a whole are the
same, but again, we need to consider
what we’re designing—software or
hardware. I suspect the major differ-
ence is cost. Software fault tolerance
is usually a lot more expensive.

Karama and Jean-Claude: A widely
used approach to fault tolerance is to
perform multiple computations in
multiple channels, either sequentially
or concurrently. To tolerate hardware
physical faults, the channels might be
identical, based on the assumption
that hardware components fail inde-
pendently. Such an approach has
proven to be adequate for soft faults—
that is, software or hardware faults
whose activation is not systematically
reproducible—through rollback. Roll-
back involves returning the system
back to a saved state (a checkpoint)
that existed prior to error detection.
Tolerating solid design faults (hard-
ware or software) necessitates that the
channels implement the same function
through separate designs and imple-
mentations—that is, through design
diversity.

Mladen: Hardware fault tolerance,
for the most part, deals with random
failures that result from hardware de-
fects occurring during system opera-
tion. Software fault tolerance contends
with random (and sometimes not-so-
random) invocations of software paths
(or path and state or environment com-
binations) that usually activate soft-
ware design and implementation de-
fects. These defects can then lead to
system failures.

What key technologies make software
fault-tolerant?

Joanne: Software involves a sys-
tem’s conceptual model, which is eas-
ier than a physical model to engineer
to test for things that violate basic
concepts. To the extent that a soft-
ware system can evaluate its own per-
formance and correctness, it can be
made fault-tolerant—or at least error-

aware. What I mean is that, to the ex-
tent a software system can check its
responses before activating any physi-
cal components, a mechanism for im-
proving error detection, fault toler-
ance, and safety exists. Think of the
adage, “Measure twice, cut once.”
The software analogy might be,
“Compute twice, activate once.”

Les: I’m not sure there is a key
technology. The behavior of the sys-
tem as a whole and the hardware and
software interaction must be thought
through very carefully. Efforts to sup-
port software fault tolerance, such as
exception handling in languages, are
rather crude, and education on how
to use them is not well established in
universities.

Karama and Jean-Claude: We can
use three key technologies—design di-
versity, checkpointing, and exception
handling—for software fault toler-
ance, depending on whether the cur-
rent task should be continued or can
be lost while avoiding error propaga-
tion (ensuring error containment and
thus avoiding total system failure).
Tolerating solid software faults for
task continuity requires diversity,
while checkpointing tolerates soft
software faults for task continuity. Ex-
ception handling avoids system failure
at the expense of current task loss.

Mladen: Runtime failure detection
is often accomplished through either
an acceptance test or comparison of
results from a combination of “differ-
ent” but functionally equivalent sys-
tem alternates, components, versions,
or variants. However, other tech-
niques—ranging from mathematical
consistency checking to error coding
to data diversity—are also useful.
There are many options for effective
system recovery after a problem has
been detected. They range from com-
plete rejuvenation (for example, stop-
ping with a full data and software re-
load and then restarting) to dynamic
forward error correction to partial
state rollback and restart.

What is the relationship between
software fault tolerance and software
safety?

Joanne: Both require good error

detection, but the response to errors
is what differentiates the two ap-
proaches. Fault tolerance implies that
the software system can recover from
—or in some way tolerate—the error
and continue correct operation. Safety
implies that the system either contin-
ues correct operation or fails in a safe
manner. A safe failure is an inability to
tolerate the fault. So, we can have low
fault tolerance and high safety by
safely shutting down a system in re-
sponse to every detected error.

Les: It’s certainly not a simple re-
lationship. Software fault tolerance is
related to reliability, and a system
can certainly be reliable and unsafe
or unreliable and safe as well as the
more usual combinations. Safety is
intimately associated with the sys-
tem’s capacity to do harm. Fault tol-
erance is a very different property.

Karama and Jean-Claude: Fault
tolerance is—together with fault pre-
vention, fault removal, and fault fore-
casting—a means for ensuring that the
system function is implemented so
that the dependability attributes,
which include safety and availability,
satisfy the users’ expectations and re-
quirements. Safety involves the notion
of controlled failures: if the system
fails, the failure should have no cata-
strophic consequence—that is, the
system should be fail-safe. Controlling
failures always include some forms of
fault tolerance—from error detection
and halting to complete system recov-
ery after component failure. The sys-
tem function and environment dictate,
through the requirements in terms of
service continuity, the extent of fault
tolerance required.

Mladen: You can have a safe sys-
tem that has little fault tolerance in it.
When the system specifications prop-
erly and adequately define safety, then
a well-designed fault-tolerant system
will also be safe. However, you can
also have a system that is highly fault-
tolerant but that can fail in an unsafe
way. Hence, fault tolerance and safety
are not synonymous. Safety is con-
cerned with failures (of any nature)
that can harm the user; fault tolerance
is primarily concerned with runtime
prevention of failures in any shape or

56 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 1

ROUNDTABLE

form (including prevention of safety-
critical failures). A fault-tolerant and
safe system will minimize overall fail-
ures and ensure that when a failure
occurs, it is a safe failure.

What are the four most seminal
papers or books on this topic?

Joanne: Important references on
my desk include Michael Lyu’s Soft-
ware Fault Tolerance (John Wiley,
1995), Nancy Leveson’s Safeware:
System Safety and Computers—es-
pecially for the case studies in the
appendix (Addison-Wesley, 1995),
Debra Herrmann’s Software Safety
and Reliability (IEEE Press, 2000),
and Henry Petroski’s To Engineer is
Human: The Role of Failure in Suc-
cessful Design (Vintage Books,
1992).

Les: The literature is pretty packed,
although some of Nancy Leveson’s
contributions are right up there. Be-
yond that, I usually read books on fail-
ure tolerance and safety in conven-
tional engineering.

Karama and Jean-Claude: B. Ran-
dell, “System Structure for Software
Fault Tolerance,” IEEE Trans. Soft-
ware Eng., vol. SE-1, no. 10, 1975, pp.
1220–1232. A. Avizienis and L. Chen,
“On the implementation of N-version
Programming for Software Fault Toler-
ance During Execution,” Proc. IEEE
COMPSAC 77, 1977, pp. 149–155.
Software Fault Tolerance, M.R. Lyu,
ed., John Willey, 1995. J.C. Laprie et
al., “Definition and Analysis of Hard-
ware- and Software-Fault-Tolerant Ar-
chitectures,” Computer, vol. 23, no. 7,
July 1990, pp. 39–51.

Mladen: I agree that M. Lyu’s Soft-
ware Fault-Tolerance and B. Randell’s
“System Structure for Software Fault-
Tolerance” are important. Also, A.
Avizienis, “The N-Version Approach
to Fault-Tolerant Software,” IEEE
Trans. Software Eng., vol. SE-11, no.
12, 1085, pp. 1491–1501, and J.C.
Laprie et al., “Definition and Analysis
of Hardware- and Software-Fault-Tol-
erant Architectures,” Computer, vol.
23, no. 7, July 1990, pp. 39–51.
(Reprinted in Fault-Tolerant Software
Systems: Techniques and Applica-
tions, Hoang Pham, ed., IEEE Com-

puter Soc. Press, 1992, pp. 5–17.)

Much research has been done in this
area, but it seems little has made it
into practice. Is this true?

Joanne: I think it’s a psychological
issue. In general, I don’t think that soft-
ware engineers are trained to consider
failures as well as other engineers. Soft-
ware designers like to think about neat
ways to make a system work—they
aren’t trained to think about errors and
failures. Remember that most software
faults are design faults, traceable to hu-
man error. If I have a finite amount of
resources to expend on a project, it’s
hard to make a case for fault tolerance
(which usually implies redundancy)
rather than just spending more time to
get the one version right.

Les: Yes, I agree that little has made
it into practice. Most industries are in
too much of a rush to do it properly—
if at all—with reduced time-to-market
so prevalent, and software engineers
are not normally trained to do it well.
There is also a widespread and wholly
mistaken belief that software is either
right or wrong, and testing proves that
it is “right.”

Karama and Jean-Claude: This
could be true for design diversity, as it
has been used mainly for safety-critical
systems only. Exception handling is
used in most systems: telecommunica-
tions, commercial servers, and so forth.

Mladen: I think we’ve made a lot
of progress—we now know how to
make systems that are quite fault-
tolerant. Most of the time, it is not an
issue of technology (although many
research issues exist) but an issue of
cost and schedules. Economic and
business models dictate cost-effective
and timely solutions. Available fault-
tolerant technology, depending on
the level of confidence you desire,
might offer unacceptably costly or
time-consuming solutions. However,
most of our daily critical reliability
expectations are being met by fault-
tolerant systems—for example, 911
services and aircraft flight systems—
so it is possible to strike a successful
balance between economic and tech-
nical models.

How can a company deciding whether
to add fault tolerance to a system
determine whether the return on
investment is sufficient for the addi-
tional costs?

Joanne: I think it all hinges on the
cost of failure. The more expensive
the failure (in terms of actual cost,
reputation, human life, environmen-
tal issues, and other less tangible
measures), the more it’s worth the ef-
fort to prevent it.

Les: This is very difficult. Determin-
ing the cost of software failure in actu-
arial terms given the basically chaotic
nature of such failure is just about im-
possible at the current level of knowl-
edge—the variance on the estimates is
usually ridiculous. ROI must include a
knowledge of risk. Risk is when you
are not sure what will happen but you
know the odds. Uncertainty is when
you don’t know either. We generally
have uncertainty. On the other hand, I
am inclined to believe that the cost of
failure in consumer embedded systems
is so high that all such systems should
incorporate fault-tolerant techniques.

Karama and Jean-Claude: It is
misleading to consider the ROI as the
only criterion for deciding whether
to add fault tolerance. For some ap-
plication domains, the cost of a sys-
tem outage is a driver that is more
important than the additional devel-
opment cost due to fault tolerance.
Indeed, the cost of system outage is
usually the determining factor, be-
cause it includes all sources of loss of
profit and income to the company.

Mladen: There are several fault-
tolerance cost models we can use to
answer this question. The first step is
to create a risk-based operational
profile for the system and decide
which system elements need protec-
tion. Risk analysis will yield the
problem occurrence to cost-to-bene-
fit results, which we can then use to
make appropriate decisions.

What key standards, government
agencies, or standards bodies require
fault-tolerant systems?

Joanne: I’d be surprised if there
are any standards that require fault
tolerance (at least for design faults)

J u l y / A u g u s t 2 0 0 1 I E E E S O F T W A R E 57

ROUNDTABLE

per se. I would expect that correct
operation is required, which might
imply fault tolerance as an internal
means to achieve correct operation.

Les: Quite a few standards have
something to say about this—for ex-
ample, IEC 61508. However, IEC
61508 also has a lot to say about a lot
of other things. I do not find the prolif-
eration of complex standards particu-
larly helpful, although they are usually
well meaning. There is too much opin-
ion and not enough experimentation.

Karama and Jean-Claude: Several
standards for safety-critical applica-
tions recommend fault tolerance—for
hardware as well as for software. For
example, the IEC 61508 standard
(which is generic and application sec-
tor independent) recommends among
other techniques: “failure assertion
programming, safety bag technique,
diverse programming, backward and
forward recovery.” Also, the Defense
standard (MOD 00-55), the avionics
standard (DO-178B), and the stan-
dard for space projects (ECSS-Q-40-
A) list design diversity as possible
means for improving safety.

Mladen: Usually, the requirement is
not so much for fault tolerance (by it-
self) as it is for high availability, relia-
bility, and safety. Hence, IEEE, FAA,
FCC, DOE, and other standards and
regulations appropriate for reliable
computer-based systems apply. We can
achieve high availability, reliability, and
safety in different ways. They involve a
proper reliable and safe design, proper
safeguards, and proper implementa-
tion. Fault tolerance is just one of the
techniques that assures that a system’s
quality of service (in a broader sense)
meets user needs (such as high safety).

How do you demonstrate that fault
tolerance is achieved?

Joanne: This is a difficult question
to answer. If we can precisely de-
scribe the classes of faults we must
tolerate, then a collection of tech-
niques to demonstrate fault tolerance
(including simulation, modeling, test-
ing, fault injection, formal analysis,
and so forth) can be used to build a
credible case for fault tolerance.

Les: I honestly don’t know. Demon-

strating that something has been
achieved in classic terms means com-
paring the behavior with and without
the additional tolerance-inducing tech-
niques. We don’t do experiments like
this in software engineering, and our
prediction systems are often very
crude. There are some things you can
do, but comparing software technolo-
gies in general is about as easy as com-
paring supermarkets.

Karama and Jean-Claude: As for
any system, analysis and testing are
mandatory. However, fault injection
constitutes a very efficient technique
for testing fault-tolerance mechanisms:
well-selected sets of faults are injected
in the system and the reaction of fault-
tolerance mechanisms is observed.
They can thus be improved. The main
problem remains the representative-
ness of the injected faults. For design
diversity, the implementation of the
specifications by different teams has
proven to be efficient for detecting
specifications faults. Back-to-back
testing has also proven to be efficient
in detecting some difficult faults that
no other method can detect.

Mladen: You know you’ve achieved
fault tolerance through a combination
of good requirements specifications,
realistic quantitative availability, relia-
bility and safety parameters, thorough
design analysis, formal methods, and
actual testing.

What well-known projects contain
fault-tolerant software?

Les: Certainly some avionics sys-
tems and some automobile systems,
but the techniques are not usually
widely publicized so I’m not sure that
many would be well known. Ariane
5 is a good, well-documented exam-
ple of a system with hardware toler-
ance but no software tolerance.

Karama and Jean-Claude: Airbus
A-320 and successors use design di-
versity for software fault tolerance in
the flight control system. Boeing B-
777 uses hardware diversity and
compiler diversity. The Elektra Aus-
trian railway signaling system uses
design diversity for hardware and
software fault tolerance. Tandem
ServerNet and predecessors (Non-

Stop) tolerate soft software faults
through checkpointing.

Mladen: Well-known projects in-
clude the French train systems, Boe-
ing and Airbus fly-by-wire aircraft,
military fly-by-wire, and NASA space
shuttles. Several proceedings and
books, sponsored by IFIP WG 10.4
and the IEEE CS Technical Commit-
tee on Fault Tolerant Computing, de-
scribe older fault-tolerance projects
(see www.dependability.org).

Is much progress being made into
fault-tolerant software?

Les: I don’t think there is much new
in the theory. Endless and largely point-
less technological turnover in software
engineering just makes it harder to do
the right things in practice. With a new
operating system environment emerg-
ing about every two years on average,
a different programming language
emerging about every three years, and
a new paradigm about every five years,
it’s a wonder we get anywhere at all.

Karama and Jean-Claude: To the
best of our knowledge, the main con-
cepts and means for software fault
tolerance have been defined for a few
years. However, some refinements of
these concepts are still being done
and implemented in practice, mainly
for distributed systems such as fault-
tolerant communication protocols.

Mladen: The basic ideas of how to
provide fault tolerance have been
known for decades. Specifics on how
to do that cost effectively in modern
systems with current and future tech-
nologies (wireless, personal devices,
nanodevices, and so forth) require
considerable research as well as inge-
nious engineering solutions. For exam-
ple, our current expectations for 911
services require telephone switch avail-
abilities that are in the range of 5 to 6
nines (0.999999). These expectations
are likely to start extending to more
mundane things such as personal com-
puting and networking applications,
car automation (such as GIS locators),
and, perhaps, space tourism. Almost
none of these would measure up to-
day, and many will require new fault-
tolerance approaches that are far from
standard textbook solutions.

