Representing Real Numbers with Binary Strings

Suppose you are using ℓ -bit binary strings to represent a real number $x \in [x_{\min}, x_{\max}]$. This can be done with precision $O(2^{-\ell})$.

Let $\triangle x = \frac{x_{\max} - x_{\min}}{2^{\ell}}$. Now consider an arbitrary binary string $\mathcal{B} \in \{0, 1\}^{\ell}$. Its real number equivalent is

$$x = x_{\min} + \mathcal{B}_I \cdot \triangle x$$

where \mathcal{B}_I is the integer equivalent of \mathcal{B} .

Example:

Let $x \in [-5, 5]$ be a number represented by a binary string of length $\ell = 8$. Consider the string

$$\mathcal{B} = \{b_7 \, b_6 \, \dots b_0\} = 10010011.$$

This string represents the real number x, which can be computed as follows:

1.
$$\mathcal{B}_I = \sum_{k=0}^{7} b_i \cdot 2^k = 147$$

2.
$$\triangle x = \frac{5 - (-5)}{2^8} \approx 0.039$$

3.
$$x = -5 + \mathcal{B}_I \cdot \triangle x = -5 + (147)(0.039) = 0.733$$