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Abstract- Adaptation of the fitness criteria can be a very
powerful tool enhancing the feedback scheme employed
in standard evolutionary algorithms. When the prob-
lem the Evolutionary Algorithm (EA) is trying to solve is
changing over time, the fitness criteria needs to change to
adapt to the new problem. Significant performance im-
provements are possible with feedback based adaptation
schemes. This work outlines the results of an adaptation
scheme applied to the maximization of the functional test
coverage problem.

I. INTRODUCTION

Conventional automatic test equipment setup for ASICs
uses a test pattern generator (TPG) that creates input test
patterns for the device-under-test (DUT), and circuitry that
records and analyzes the DUT output responses. This anal-
ysis checks for either manufacturing correctness or functional
verification. The goal is to have coverage, which means the
test pattern set exercises the DUT in ways so that any errors
can be detected.

One test pattern is insufficient to yield 100% coverage so a
set of patterns is needed. This problem thus differs from many
optimization problems because there is no globally optimal
solution to find; instead one tries to find a set of solutions out
of the problem space. Intuitively coverage should increase as
test patterns are added to the set, but that may not always be
true because newly added patterns may merely test what is
already tested by previously added patterns. Plus large sets
can lead to unacceptable test times. Hence, the objective is to
find a minimum cardinality set that maximizes coverage—an
objective that has proven to be both tedious and difficult to
attain, which means a heuristic design approach is required.

Evolutionary algorithms (EAs) can provide a means for de-
signing these minimum cardinality test pattern sets. Two EA-
based protocols have been used: (1) a direct approach where
the EA explicitly evolves the test patterns—i.e., the EA is the
TPG, or (2) an indirect approach where an EA evolves the
TPG itself. Intel uses the latter approach in a prototype test
bench for ASICs (see Figure 1). The TPG runs on a work-
station and an externally supplied set of control parameters
tells the TPG what type of test patterns are required to con-
duct the test [1]. For instance, during some functional tests

specific registers in the DUT must be configured in particular
ways prior to running the test. These control parameters tell
the TPG what those configurations should be so that an ap-
propriate set of patterns can be constructed. In practice, a test
writer creates a set of control parameter vectors that specify a
particular test to conduct and also the expected result. Each
distinct test has a distinct vector. Since it is not uncommon to
find thousands of control parameters may be needed for ade-
quate coverage of some VLSI chips, this can be a very labor
intensive and costly process. We replaced the existing method
with an EA and the resultant event coverage was significantly
improved [1] [2].

In this previous work the goal was to find a set of individu-
als that would maximize the overall coverage obtained. (Each
individual defined a set of parameters for a microcontroller
that deterministically created a test pattern set.) An individ-
ual’s fitness was proportional to the amount of total coverage it
provided, but this could be further increased by its incremental
coverage—i.e., any new tests not covered by any other indi-
vidual in the population. Both parameters had a user-defined
threshold. The reason for using thresholds—as opposed to
using a “best” individual—is to compensate for the unknowns
in the problem and to minimize any biases the problem setup
might impose. However, we have observed that this tends to
overemphasize the sub-problem of improving individual test
coverage instead of improving total coverage. Since one can
quickly run out of the possible new cases, especially when the
algorithm used gives an initial fast coverage ramp, the prob-
lem rapidly degrades to improving individual test coverage.
The probability of hitting new cases decreases as the feedback
from areas that have already been visited dilutes the popula-
tion effectiveness.

Here we propose a new method of adaptation which still
uses the notion of thresholds but adapts these with respect
to the changes in the problem landscape. As less number of
cases remain in the total unexplored space, the threshold that
rewards new cases is relaxed (or decreased) to increase the
rewards for new exploration. Similarly, the total case thresh-
old is increased to reflect the fact that newer tests are reaching
high levels of coverage so the rewards of getting large cover-
age decreases.

The paper is organized as follows. This work extends work



previously reported in [2], but for continuity the Intel test
bench is described again in Section II. Section III describes
the coverage based validation problem. The following sec-
tion outlines the modifications made to the testbench and the
EA description. Section IV details the threshold adaptation
scheme based on EA performance. Preliminary results are
presented in Section V. Finally, Section VI describes future
research efforts.

II. Test Bench Description

The functional tests generated by this system are designed
to exercise very complex interactions of multiple design fea-
tures. For instance, a DUT may incorporate error correction
logic. An example of such a test would be to perform large
data block transfers (with high external error rates) to the DUT
to stress the error correction logic. Coverage monitors would
then be used to track the events at different microarchitecture
levels. This data reflects the effectiveness of the test patterns.

Figure 1 shows the test bench setup used by Intel. Its major
components are:

device-under-test coverage
data

DBEvolutionary
Algorithm

control

parameters

(RTL or Silicon)patterns
Generator

testTest
Pattern

event
list

Fig. 1. The test bench configuration.

TPG:
This software uses input control parameters to create a
set of test patterns for the DUT. The TPG is also respon-
sible for generation of all interface signals needed to in-
put these test patterns. It is implemented in C/C++ and
runs on a workstation.

DUT:
The DUT receives input test patterns and outputs the cor-
responding responses. In the current configuration the
DUT exists only as an RTL description—i.e., a VHDL
source file. However, the actual silicon device may be
substituted without changing the test bench. (See Sec-
tion 5 of [2].)

Coverage Data:
The subsystem collects the DUT responses and deter-
mines which functional tests were evaluated by the cur-
rent input test pattern. Essentially coverage is a metric
for how well a design has been exercised. This sub-
system performs the analysis function. We note that

obtaining coverage and detecting errors is somewhat
orthogonal—i.e., coverage is a goal only if there are no
failing patterns.

Database (DB):
The database is a collection of all past test coverage. It
takes two inputs: the set of all tests covered by the cur-
rent test pattern set, and the list of all events (functional
tests) that must be covered before the DUT is considered
validated. The first input is provided by the coverage
data subsystem while the second input is provided by a
validation engineer.
The database takes the input from the coverage data sub-
system and constructs the intersection with the set of all
functional tests covered so far. Any uncovered tests that
are not in the intersection are deemed the incremental
coverage set. The database computes two numbers: the
percent of all tests covered by the current test pattern set
only, and the total percent of tests now covered between
all past test patterns and the current test pattern set. These
two percentages are the phenotype provided to the EA.
However, although the database is updated with the phe-
notype values, these updates may later be removed if the
EA indicates the genotype did not survive the selection
process (see Section 3 of [2]).

EA:
The EA is responsible for evolving the set of control pa-
rameters needed by the TPG to create the test patterns.
(Specific details on the EA can be found in Section 3 of
[2]). This software runs on a workstation.

Note that the interconnection between the EA and the
database is bi-directional. The database furnishes the pheno-
type information based on all past test patterns plus the cur-
rent test pattern. However, the EA may decide not to keep the
genotype that ultimately produced the current test pattern set.
In that case the database would need to purge the current test
pattern set so that the total coverage percent value accurately
reflects the coverage provided by the genotypes present in the
population.

The TPG and EA may or may not run on the same work-
station. If they do not run on the same workstation, the ex-
change of information—i.e., control parameter set and pheno-
type values—is accomplished via message-passing.

It should be emphasized that the legality of test sequences is
a very important factor for obtaining valid user-defined event
coverage. Thus this system yields itself well to user defined
and predefined coverage methods. While the indirect method
gives much more flexibility and degrees of freedom to the EA
it also might increase the problem difficulty since the control
is moving to a higher level. TPG design and the control pa-
rameters need to be carefully considered while deploying such
a system. The main assumption we make is that the events tar-
geted are not only controllable through the TPG, but they are



also observable through event coverage monitors.

III. COVERAGE

The need for user-defined coverage thresholds—and the
benefit derived by their self-adaptation—requires a firm un-
derstanding of the difficulties involved in achieving coverage.
This section describes those difficulties.

The goal of ASIC validation is to verify the output and the
states of a certain design behave in a certain desired way given
the input to the device under test. The verification result is cor-
rect if the device performs within the specifications for all pos-
sible (legal or allowable) input and state combinations. Natu-
rally it is not feasible to dynamically test all of these combi-
nations for large ASICs. Coverage is a test progress indicator
reflecting the percentage of the total space verified with the
process given above. The goal of testing therefore turns into
maximizing the amount of space verified or covered. The art
of validation is in specifying a subset of the total coverage
space that is representative of the various intricacies of the de-
vice under test. In most cases coverage is restricted to static
program-based coverage events such as code coverage metrics
(statement, branch,etc.). In other cases functional, typically
user-defined coverage is used [3]. These are sets of events that
are deemed important by the validator to trigger for effective
verification of the DUT and can be static or temporal.

Given the uncertainties involved in the coverage monitor
definition process, whether defined automatically (code met-
rics) or by a user, it may not be possible to get full (100%) cov-
erage of the defined events during the testing of an ASIC. Es-
pecially if the coverage event space includes temporal descrip-
tions, the reachability of all the events are not well-defined.
Most of the time these events are described at lower levels of
the design blocks and may not be fully controllable from the
periphery of the device under test. The problem arises from
the fact that there is not always a clear mapping from the ex-
ternals to the internals of the design especially for highly com-
plex ASICs. There is no clear way for a designer to identify
whether a defined temporal coverage event is reachable given
the external protocol. The boundary conditions of the avail-
able control which essentially is the protocol legality rules
may not allow for the described functional coverage events
to be reached. Although from a subblock-only perspective the
described events are clearly reachable.

Another reason for the limited reachability is the interac-
tions between various design subblocks. A subblock may
never drive a certain set of inputs to a given design block re-
gardless of the fact that the block may accept that input. These
situations are encountered frequently when reuse of design
blocks is practiced.

Under some circumstances the coverage space description
might be bloated. Given the simulation speed of a given de-
sign it may not be possible to reach all events in a reasonable

time, such as testing correct behavior of a 64 bit floating point
unit. Feedback based techniques might still do a better job
here than other simulation based approaches like directed or
random testing; however, it is best that these blocks be verified
by formal methods.

Coverage is a simulation completeness indicator best used
for control or datapath logic and should not be used to detect
the effectiveness of simulation based methods for coverage
sets derived from combinations of all possible input and inter-
nal states.

It is also likely that the coverage event descriptions them-
selves are specified erroneously which is common whenever
human factor is involved. As a matter of fact it is typical for a
designer to specify a cross product of two sets and not exclude
illegal or impossible combinations from the resultant set.

Given all these ambiguities it is not likely that a collec-
tion of coverage events which is specified as the target set for
a coverage-driven simulation-based test system be complete.
The maximum possible coverage (as a percent of total set) is
unknown. This poses yet another problem for specifying the
feedback algorithm—i.e., coverage thresholds—for the EA-
based test generation system.

IV. EA DYNAMICS AND THE ADAPTATION
SCHEME

The EA is used to generate the control parameters that drive
the TPG. Every distinct control parameter set (a test) gener-
ates a distinct set of test vectors to drive an RTL description
of the device under test. If we consider each individual con-
trol parameter to be a gene, then the genome is an encoding
of an entire control parameter set. The genome size depends
on the exact number of control variables needed by the TPG.
(In practice, the number of control variables is specified by
the validation engineer.) The objective is to generate a set of
tests—i.e., a collection of control vectors—that maximizes the
functional test coverage. The EA is implemented as follows:

1. Let �t be the number of parents in generation t. Ran-
domly generate an initial population �0 genotypes. Ini-
tialize the incremental and total coverage thresholds
(CI ; CT ).

2. Randomly select two parents and create a single off-
spring using stochastic reproduction operators. Repeat
this process until kt offspring have been created. Send
all offspring to TPG to create test patterns.

3. Receive phenotype values from database. If phenotype
values exceed total coverage and/or incremental cover-
age thresholds, add the corresponding genotype to the
population and increment �t. Otherwise, discard that
genotype and leave �t unchanged. Inform database of
the decision. Repeat this process for all kt offspring.

4. Modify the thresholds based on final state of the
database and the population at item 3.



5. Let t = t+ 1. If termination criteria not met, go to step
2. Otherwise, exit.

Each genotype contains M specific control parameters
stored as 32-bit integers, where M depends on the DUT. Dur-
ing generation t, �t parents generate a set of kt offspring. The
initial population has �0 = 2 randomly generated parents, but
�t grows as t increases. (This aspect will be explained in more
detail shortly.) Offspring are created from a randomly chosen
pair of parents using uniform crossover and each bit is mu-
tated with a 5% probability. This rather high mutation proba-
bility was chosen because the initial population is so small—
any smaller probability would make mutation ineffective. The
probability is gradually reduced as the search progresses be-
cause the population size grows.

The control parameter vector derived from the decoded off-
spring is then input to the TPG. The test run data is collected
and analyzed for coverage, thereby determining the useful-
ness of the test sequences generated by the TPG. The extent
of the test sequence coverage is the basis for assigning a fit-
ness value.

The phenotype consists of two parameters: the total test
coverage (C i

T ) and the incremental test coverage (C i
I ) pro-

duced from genotype i. C i
T indicates what percent of the to-

tal tests are covered by genotype i; C i
I indicates the number

of new tests not covered by any other genotype in the cur-
rent population. There is a user-defined threshold for both
parameters. Genotypes with a phenotype that exceeds these
thresholds are considered highly fit. In fact, these are the only
genotypes that are allowed to survive.

Each generation kt = 20 offspring are created independent
of the population size (�t). Fit genotypes are selected deter-
ministically for survival, which means the population grows
by �t+1 = �t + fit(kt) where fit(kt) is the number of geno-
types exceeding the CT and CI thresholds. In order to make
sure that the EA has accurate information about the remain-
ing solution space, it is important to maintain a consistent
database state that reflects only the overall coverage of geno-
types currently in the population. Therefore the phenotypes
of non-surviving genotypes are deleted from the database.

The EA terminates after an acceptable coverage level is
reached or a prescribed number of offspring have been pro-
cessed. In the former case, a power set of �t is formed and
the minimum cardinality subset with maximal coverage is re-
tained as a test suite; all other genotypes are discarded. In the
latter case all genotypes are kept to be used as regression suite
for future operations.

Given the basic algorithm described above (see [2] for more
details), a feedback scheme has been developed using heuris-
tic observations and adaptive gain scheduling. Both the incre-
mental and the total thresholds are adapted at the same time.
The evaluation is done at every generation.

Ctotal new = CDB � CT0e
(���PSZ�CTB=CDB)

Cinc new = CI0e
(���PSZ�CTB=CDB) + 1

CDB : cardinality of the total target space of coverage events
CTB : cardinality of the space already covered by tests
CDB � CT0 : initial total coverage threshold
CI0 + 1 : initial incremental coverage threshold
PSZ : current population size
� : fixed positive sizing constant
� : fixed positive sizing constant

Total threshold imposes a selection pressure on the EA that
improves the overall performance of an individual. Naturally
increasing the threshold as total coverage and the population
size increases puts pressure on the EA on the overall to im-
prove the performance, not only by finding better individuals
but also by trying to keep the total population low. The adap-
tation form also strives to achieve this by penalizing the pop-
ulation size as well as the total coverage measured. On the
other hand the problem difficulty for finding new coverage is
directly proportional to the incremental coverage. As a matter
of fact, if this value is set high there may not be an individ-
ual in the search space that might satisfy the requirements.
Especially there is not much point in setting the threshold
value higher than the total available coverage remaining (dif-
ference between the maximum attainable value and the cur-
rent database value). This keeps an artificially high mark for
the EA to target than what is really necessary to solve the
problem.

We have chosen a scheme which rewards the EA for find-
ing new solutions by adapting the incremental coverage. It
can be viewed that the policies outlined here for both cover-
age platforms are contradictory. While the algorithm is being
“penalized” for population size and coverage improvements
in the total threshold adaptation, it is being rewarded for the
same factors in the incremental threshold case. However, con-
sidering the dynamics of the problem, this is exactly what is
intended.

There are really multiple objectives in this problem. If the
objective was to reach a single test with the maximum possible
coverage, redefining the problem as a functional optimization
problem, there would be no need for a thresholding scheme.
In fact, elitist selection would be able to demonstrate suitable
results and global convergence [4]. However, due to the nature
of the solution set a thresholding scheme is deemed appropri-
ate. The best individual in this sense may not be able to hit
all available coverage. As a matter of fact, in the case where
the available coverage has reduced to a few events, the only
individual solving the problem might be an individual that is
not fit with respect to the original fitness definition. This is the
reason fitness (thus the thresholds) need to vary with the EA
progress.



V. RESULTS

The trial runs were conducted on two sample coverage
problems. One of these problems is maximizing coverage on
a control logic block consisting of a complex state machine
and its various interactions. There are total of 745 cases mon-
itored for coverage on this block. The second monitor targets
various cases around the datapath of the component under test
and is composed of 256 total cases. The controllability of
these cases have been assessed as relatively low due to the
difficulty in reaching high coverage numbers using conven-
tional methods. The performance results given here of the EA
are of typical runs averaged over both problems. The follow-
ing figures demonstrate a dramatic improvement in the num-
ber of offspring evaluated and the resultant population size.
Adaptive thresholds (solid lines) allowed 100% coverage to
be reached in 50 generations and 1000 offspring evaluations
with a final population size of 43 individuals. In contrast fixed
thresholds (dashed lines) stagnated at a maximum (average)
coverage level of 95.4% reached in 42 generations and 840
offspring evaluations with a population size of 112. The fixed
thresholding scheme had not been able to improve the max-
imum coverage when the experiment was stopped at 12000
offspring evaluations, 600 generations and population size of
133. Just as a comparison, in the case of these monitors clas-
sical random testing methods have been able to reach about
78% maximum coverage with roughly about 12000 test runs.
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Fig. 2. Coverage provided by entire population versus number of
generations.

VI. CONCLUSION

It should be noted that the adaptation scheme provided here
is very rudimentary and cannot be considered a full control
law that would apply to all coverage problems unilaterally. It
was intended as a demonstration of the concept of adapting the
fitness rule to help the EA performance on changing surfaces.
The effectiveness can be improved for general coverage prob-
lems if a feedback based control law is derived based on the
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Fig. 3. Population size vs. coverage during the same run depicted in
Figure 2.

dynamics of the search process. After these initial results pos-
sible future directions include derivation of this control law.
Note that the adaptation scheme used can also be considered
a feedback control law but so far in its current form requires
significant amount of tuning based on the specific coverage
space defined.

Nevertheless, improving the coverage collection and ramp
process on ASIC validation remains to be a big challenge and
a topic for continuing research.
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