1 Introduction

Imagine an autonomous cyber-physical system (CPS) deployed into a remote
area. This CPS has a robot arm used to collect rock samples. The robot arm
is positioned via a sequence of unit step inputs. A proportional-integration-
derivative (PID) controller is used to produce smooth robot arm movements.
The PID controller gains K,, K7 and Ky were tuned prior to deployment. The
CPS communicates with a rear area base station over a radio link.

Now suppose a fault has occurred in the robotic arm. The exact nature of
this fault is unknown, but the PID controller gains no longer produce acceptable
arm movement. Fault recovery must be initiated to restore, as much as possible,
the previous behavior. No redundant hardware is available so the only viable
fault recovery method is to readjust the PID controller gains. Unfortunately,
the CPS does not have the computational resources to compute new gain values.
It does, however, have the capability of setting the gains to any value received
from the base station over the radio link.

A duplicate CPS is located at the base station. Under ideal circumstances
the fault could be duplicated at the base station and the new controller gains
could be determined using say Zeigler-Nichols rules. Unfortunately the exact
nature of the fault is unknown so this approach won’t work.

The base station can send the CPS candidate gain values and then direct
the CPS to apply a unit step input and report response times, steady-state
errors, and so forth. In other words, the base station works with the CPS to
get observation data needed for the Bayesian optimization.

Once Bayesian optimization has determined the updated PID controller gain
values, the CPS can reconfigure the PID controller and recommence operation.

2 CPS Research Focus

Autonomous CPSs operating in remote environments must be fault-tolerant.
Fault tolerance involves two tasks: fault detection and isolation (FDI) and fault
recovery (FR). FDI is not addressed in this project.

Several fault recovery methods exist. Replacing a fault system with redun-
dant hardware is one method but in many cases is impractical because there
is no room for the extra hardware. In these cases reconfiguration of the faulty
hardware may be the only viable option. That said, it is difficult to know ex-
actly how to reconfigure a faulty system if the type of fault is not known. In
this research effort Bayesian optimization is used to reconfigure a PID controller.

To the best of our knowledge Bayesian approaches have been used for FDI (e.g.
see [1]), but not FR, which is the focus of this research effort.

3 Background

3.1 Bayesian Optimization

This section gives a brief overview of Bayesian optimization. Further details can
be found in the book by Rasmussen and Williams [2] or in the review article by
Shahriari et. al [3].

The problem of interest is to find the global minimum (or maximum) of some
objective function f

x* = argmin f(x)
xeX

where X is the problem’s design space. In general X C R?. This is known as
a black box optimization problem whenever the analytic form of the function
f is unknown. It may be possible to estimate the gradient of f numerically
or a grid search could be used to find the minimum. But such approaches are
impractical whenever sampling f is costly. For example, suppose x is a set of
hyperparameters for a deep neural network and f(x) is a regression output.
Each x must undergo testing, which would be costly if it takes two hours to
complete.

Every sample x from X produces a real number evaluation y = f(x). That
is, f : R — R. These evaluations (sometimes called observations) are often
corrupted by noise so that the observed value is

y=Ix)+e ;e~N(0,0)

and Ely | f(x)] = f(x). A global minimizer should ideally need only a few
samples (especially whenever drawing samples from f is costly.)

Bayesian optimization is a sequential process that can solve these kind of
black box optimization problems. It creates a probabilistic model of f which
is much cheaper to evaluate. Observations from previous experiments serves as
training data for the model.

The probabilistic model used is a Gaussian process (GP). The GP is a prob-
ability distribution over functions where any finite collection of function values
is a multi-variate Gaussian. A GP is completely described by its mean function
pu(x) and covariance function k(x,x’), also called a kernel.

f(x) ~ GP(u(x), k(x,x")) (1)
More specifically, at test points x1,...,X,
f(x1) p(xa)] [kGxxa) o0 k(xa,xn)
LN | : : (2)
f(xn) p(Xn) kE(Xn,x1) -+ k(Xn,Xn)

where N(u, C) denotes a multi-variate normal distribution with mean p and
covariance matrix C. The squared exponential kernel

k(z,2') = exp (W) (3)

212

is popular. Figure 1(a) shows five sample functions with 1000 test points from a
GP with a squared exponential kernel. Other kernel functions are available. The
squared exponential kernel function tends to produce overly smooth functions
which may be unsuitable for some problems. In such cases a more appropriate
choice might be the Matérn 5/2 kernel.

It is not obvious any of the functions in Figure 1(a) could accurately model
some unknown objective function. Fortunately, GPs have a nice property: they
are closed under Bayesian conditions. Let D = [(x1,¥1),- ., (Xn, yn)] be a data
set where x; is the i-th training point and y; = f(x;) the observed value. Closed
under Bayesian conditions means if f ~ GP, then f | D ~ GP. However, this
does require incorporating D into both the mean and covariance functions.

Let X and X, denote the set of training points and testing points, respec-
tively, with Y and Y, the corresponding observation sets. The joint distribution
of training observations and test point outputs is

m - <°’ [?&’f}) fi{(())({k’,))(?*))]) (4)

K (X, X,) represents a covariance matrix between the training sample points and
the test sample points. The other covariance submatrices are defined similarly.
Note that all functions are defined with u(-) = 0 for convenience.

Equation (2) represents a prior distribution because it does not contain any
information about D. Each function in Figure 1(a) is f ~ GP(0, k(z,z’)). The
posterior distribution should filter out all functions that are not consistent with
observed data. In other words, any function that does not associate all of the
(xi,y;) pairs in D should be rejected. We can get a correct posterior distribution
by redefining the mean and covariance functions. That is,

f(@) | D~ GP (m(x), k(x)) (5)

with
m(x) = K(X., X)K(X,X) 'Y

k(x) = k(z,2") — K(X., X)K(X, X)) 'K(X, X.) (6)

The mean function m(x) is used to make predictions whereas the variance
function k(x) measures the confidence of the prediction. Figure 1 shows both the
prior and the posterior distribution of functions. The blue regions indicate our
belief or uncertainty about where the unknown objective function might exist.
In the prior distribution the blue area is large because there is no information
available. Conversely, the posterior distribution has much smaller uncertainty
because some data is available.

1

2 -

=

500 1000
index

(a) Samples from the prior distribution.

100 4

075 A

050 4

025 4

000

Fix)

—0.25 1

—0.50 1

-0.75

=1.00

=

500 1000
index

(b) Samples from the posterior distribution.
Figure 1: Shaded region depicts our belief of where the unknown objective

function may lie. It reflects our level of uncertainty. Black dots in (b) represent
observations. The solid line is the mean function.

objective fn (f(-))

observation (x)

V¥ acquisition max

acquisition function o(x)

t=3

new observation (x,)

posterior mean (u(-))

posterior uncertainty
(1(-) o)) v

T T~

Figure 2: Using an acquisition function to choose observation points of an un-
known objective function f. This figure appeared in [3].

The more data acquired, the more accurate the probability proxy model.
However, taking observations of f is costly so the number of observations should
be limited. This restriction causes an inevitable conflict between exploration and
exploitation in the search. This tradeoff is handled by an acquisition function
a(x) which helps guide the search. Several different acquisition functions have
been proposed such as probability of improvement [4], expected improvement [5]
and upper confidence bound [6]. For example, aycp(x) = m(x) + ko(x) is the
upper confidence bound acquisition function where x > 0 is user-selected to
balance exploitation and exploration. But regardless of which one is selected, the
basic idea is the same: at each iteration of the Bayesian optimization algorithm
a global optimizer finds X = argmax, ., (x). X is then the next location of an
observation. This process is shown in Figure 7.

A global optimizer is needed to find the maximum of a(-). This gives rise
to a question: if a global optimizer is available, why not just use it find the
minimum of f(-)? The answer is each observation of f is costly and it will take
many samples to find the minimum. On the other hand, it is relatively cheap
to find the maximum of «f(-).

In summary, Bayesian optimization creates a probabilistic model—i.e., a
GP—of an unknown objective function f. The initial distribution of functions
(the prior) has high uncertainty about the true f behavior. Taking observa-
tions of f updates the prior, producing a more accurate posterior distribution
in function space. The posterior mean function m(x) approximates f and is
cheaper to evaluate. An acquisition function strikes a balance between explo-
ration and exploitation to choose good observation points. After finding x*, the
global optimum of the mean function, f(x*) can then be evaluated. Bayesian
optimization lowers the cost of evaluating an objective function by instead op-
timizing a cheaper proxy function.

Algorithm 1 shows the steps in a Bayesian optimization. The algorithm
assumes you are trying to find the minimum of an objective function f(x).
Only line 8 must be changed if the maximum of f is required.

Algorithm 1 Bayesian Optimization

1: INIT: Data Dy = {Xo,yo}
2: fort=1,2,... do

3 Update GP using D;_;

4 Find x; = arg max, a(x)
5: Evaluate y; = f(x¢)
6
7
8

Dy =Dy1 U{(xt,9t) }
: end for
: return x* = arg min, y(x)

3.2 Evolutionary Algorithms

A global optimizer is needed to find the maximum of the acquisition function
a(x). This function is multimodal so gradient techniques (e.g., hill-climbing) are
likely to fail. Evolutionary algorithms (EAs) are stochastic search techniques.
Although they are not guaranteed to find the global optima, they are quite
effective at locating near optimal points even on high dimensional, multimodal
functions [7].

There are different varieties of EAs (e.g., genetic algorithms, evolution strate-
gies, etc.) but all of them generally follow the steps shown in Figure 3. Indi-
viduals (solutions) are collected into a population which evolves over time. The
initial population is randomly generated. Thereafter, each generation (itera-
tion) individuals in the current population are evaluated for fitness (solution
quality). Highly fit parents are selected for reproduction (random variation) to
generate offspring (new candidate solutions). In some EAs the offspring replace
the parents whereas in other EAs parents and offspring compete for survival.
Survivors become the parents in the next generation. This evolutionary process
of reproduction, fitness evaluation and survival continues until a termination
criteria is met, typically after a fixed number of generations have evolved. The
best fit solution in the final population is the optimal solution.

We will use an evolution strategy to find the global maxima of «(x).

3.3 PID Control

The proportional-integral-derivative (PID) controller is simple, versatile and in
wide-spread use. Referring to the block diagram in Figure 4, the controller
output v(t) is the input to the plant. In the time domain

v(t) = Kpe(t) + K[/@(T)d’i’ + Kddil—(tt)

where e(t) = r(t) — y(¢) is an error signal. The controller transfer function is

_ Kd52+Kps—|—KI
S

C(s)

Figure 5 shows a typical linear system output response to a unit step input.
The purpose of the PID controller is to make a plant’s step response meet
specific design criteria such as a maximum settling time or steady-state error.
The plant behavior is set by adjusting the PID controller gains K, K7, and K.
The table below shows how these gains effect a plant’s step response.

The derivative term reduces transient overshoots and is effective for plants
with large dead-time. Nevertheless, it can amplify high frequency sensor noise.
It is therefore not uncommon to just use a PI controller—i.e., K5 = 0.

It is not an easy task to determine the controller gains. Manual tuning can be
done although such trial-and-error techniques can be tedious. More often tuning
heuristics such as the Zeigler-Nichols rules or the Rivera et. al [8] methods are
used. Some automatic tuning tools are also now available.

initialise
population

Evaluate all individuals
in the current population

Termination
criterion
satisfied?

optimal
solution

Choose best individuals to
generate the next
population

Create next population

Figure 3: A basic evolutionary algorithm.

controller plant

C(s) —> G(s)

Figure 4: A closed loop system with a PID controller.

gain rise overshoot settling steady-state
time time error

K, 4 0 small change 4

K A T T \

Ky small change 1 J no change

Max. Overshoot

Steady-State error

SN ~

\/ _/
Rise Time

Peak Time

P Settling Time

Figure 5: Unit step response

4 Evaluation/Experimentation Plan

The research will be split into two phases: a proof of concept phase and a
validation phase.

4.1 Proof of Concept Phase

The plant of a CPS will be simulated by a 3rd-order, type 0 transfer function
G(s) with a PID controller. (This system is depicted in Figure 4.) Faults in
this system will be simulated by adding additional (possibly complex-conjugate)
poles and/or zeros to G(s). It is assumed the number and location of these
poles/zeros are unknown so the PID controller gains cannot be found using
conventional tuning methods. Several different scenarios will be investigated.

There is always some underlying objective function that relates PID gain
values to step response behavior. For example, the steady-state error 6 to a
step input is a function of the integration gain K;—i.e., 8 = f(K;). This
function is unknown because the exact nature of the fault is unknown. Bayesian
optimization can create a probabilistic model of f(K;) and the proxy function
minimized to find a new K gain that minimizes the steady-state error in the
faulty system. The other PID controller gain values can be optimized in a
similar manner.

All simulation will be performed using MATLAB and SIMULINK. The GP
and EA programming will be done in Python.

4.2 Validation Phase

A ball & beam system will be used to validate our proposed fault recovery
method. A ball is placed on a beam as shown in Figure 6. The ball rolls to the

left or right depending on the beam angle c. A servo motor rotates through an
angle # which moves a lever arm up or down thus changing «. The objective
is to get the ball to stop at some desired position along the beam length L.
Sensors determine the ball position on the beam.

Funding is requested to purchase a commercial quality ball & beam system.
A suitable candidate system is manufactured by Acrome and is shown in Figure
7. An internal PID controller drives the servo motor. The PID controller gains
will be set for a slightly under-damped step response. Data will be obtained
by applying a unit step input and then recording the response (settling time,
steady-state error, etc.) A faulty system will be created by attaching small
weights at the end of the beam where the lever arm is attached. Bayesian
optimization determines the new PID controller gains and the new behavior is
compared against the design specifications.

It is not expected that the new gains will completely restore the original
behavior. Therefore the specifications will be slightly relaxed. Fault recovery
is achieved if the system meets the relaxed specifications. For example, the
original specification may require zero steady-state error (for a unit step input).
Fault recovery will be achieved if the faulty system has a steady-state error of
say at most +2%. Similar relaxed specifications will be formulated for rise time
and settling time.

Beam

Lever Arm

Figure 6: A ball and beam system

5 Project Management Plan

The PI intends to employ one upper-division, undergraduate student in this re-
search project. (No graduate research assistant is required.) The undergraduate
research assistant has the following tasks:

e Construct models using MATLAB+SIMULINK. Both fault-free and faulty
system models will be required.

10

Figure 7: Acrome Ball & Beam [9]

Determine PID controller gains for the fault-free system

Collect data from the models as needed for the Bayesian Optimization

Become familiar with the ball & beam system hardware and software.

Conduct testing during the validation phase

Assist in writing a peer-reviewed paper describing this research project

6 Broader Impacts

A full description of this research project plus all MATLAB and Python source
code will be uploaded to GitHub, making it available to the general public.

The results of this research will be documented in a peer-reviewed conference
paper. The IEEE Computational Intelligence Society annually runs the Sympo-
sium Series in Computational Intelligence. Either the control and automation
symposium or the evolvable systems symposium would be suitable. Funding is
requested for the PI and the student to attend the conference. Although not
mandatory, the student will be encouraged (and coached) to orally present the
paper at the conference.

The PI believes in the full participation of women, persons with disabilities
and underrepresented minorities in STEM research. Selection priority for the
undergraduate research assistant will go to an upper-division electrical or com-
puter engineering student from a historically underrepresented group. This stu-
dent must have appropriate programming language skills (MATLAB/simulink)
and a strong control systems background. All engineering students at Portland
State University learn MATLAB and use it in several courses. The control sys-
tems background requirement is met by completing ECE 317 (Signals & Systems
III) or equivalent with a grade of B or better.

11

The PI annually teaches a graduate level course ECE 584 Foundations of
Cyber-physical Systems. One topic in that class is the design of fault-tolerant
embedded systems. The results of this research project will be incorporated
into those lectures.

12

