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Section I: Introduction to Bayesian Optimization

» What is BayesOpt and why it works?

» Relevant things to know.



Data Science pipeline/Autonomous System

Challenges and needs for automation
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Experimental Design - Uncertainty Quantification

Can we automate/simplify the process of designing complex experiments?

Emulator - Simulator - Physical system



Global optimization

Consider a ‘well behaved’ function f: X — R where X C RP is
a bounded domain.

Ty = argmin f(x).

» f is explicitly unknown and multimodal.
» Evaluations of f may be perturbed.

» Evaluations of f are expensive.



Expensive functions, who doesn’t have one?

Parameter tuning in ML algorithms.

Diagonal

» Number of layers/units per layer
» Weight penalties

» Learning rates, etc.

Figure source: http://theanalyticsstore.com/deep-learning



Expensive functions, who doesn’t have one?

Active Path Finding in Middle Level

Optimise the location of a sequence of waypoints in a map to
navigate from a location to a destination.



Expensive functions, who doesn’t have one?

Tuning websites with A /B testing

Optimize the web design to maximize sign-ups, downloads,
purchases, etc.



Expensive functions, who doesn’t have one?
[Gonzélez, Lonworth, James and Lawrence, NIPS workshops 2014, 2015]

Design of experiments: gene optimization

» Use mammalian cells to make protein products.
» Control the ability of the cell-factory to use synthetic DNA.

Optimize genes (ATTGGTUGA...) to best enable the
cell-factory to operate most efficiently.



Expensive functions, who doesn’t have one?

Many other problems:

v

Robotics, control, reinforcement learning.

v

Scheduling, planning

v

compilers, hardware, software?
Intractable likelihoods.

v



What to do?

Option 1: Use previous knowledge

To select the parameters at hand. Perhaps not very scientific
but still in use...



What to do?

Option 2: Grid search?

If f is L-Lipschitz continuous and we are in a noise-free domain
to guarantee that we propose some s, such that

f(enm) = flzmn) < e
we need to evaluate f on a D-dimensional unit hypercube:

(L/e)P evaluations!

Example: (10/0.01)° = 10e14...
... but function evaluations are very expensive!



What to do?

Option 3: Random search?

We can sample the space uniformly [Bergstra and Bengio 2012]

Grid Layout Random Layout

Unimportant parameter
Unimportant parameter

Important parameter Important parameter

Better than grid search in various senses but still expensive to
guarantee good coverage.



What to do?

Key question:

Can we do better?



Problem (the audience is encouraged to participate!)

» Find the optimum of some function f in the interval [0,1].
» f is L-Lipchitz continuous and differentiable.

» Evaluations of f are exact and we have 4 of them!



Situation

We have a few function evaluations
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Intuitive solution

One curve
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Intuitive solution

Three curves

15

0.0

02 0.4 0.6 0.8 1.0
Histogram over the minimum
0.2 0.4 0.6 0.8 1.0



Intuitive solution

Ten curves
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Intuitive solution

Hundred curves
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Intuitive solution

Many curves
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Histogram over the minimum




Intuitive solution

Infinite curves
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General idea: surrogate modelling

1. Use a surrogate model of f to carry out the optimization.

2. Define an utility function to collect new data points
satisfying some optimality criterion: optimization as
decision.

3. Study decision problems as inference using the surrogate
model: use a probabilistic model able to calibrate both,
epistemic and aleatoric uncertainty.

Uncertainty Quantification



Utility functions

The utility should represent our design goal:.

1. Active Learning and experimental design: Maximize the
differential entropy of the posterior distribution p(f|X,y)
(D-optimality in experimental design).

2. Minimize the loss in a sequence x1, ..., %,
N —Zf n) = N f(zar)

(1) does to a lot exploration whereas (2) encourages
exploitation about the minimum of f.



Bayesian Optimisation
[Mockus, 1978]

Methodology to perform global optimisation of multimodal
black-box functions.

1. Choose some prior measure over the space of possible
objectives f.

2. Combine prior and the likelihood to get a posterior
measure over the objective given some observations.

3. Use the posterior to decide where to take the next
evaluation according to some acquisition/loss function.

4. Augment the data.

Iterate between 2 and 4 until the evaluation budget is over.



Surrogate model: Gaussian process

Default Choice: Gaussian processes [Rasmunsen and Williams, 2006]

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.

Prior Posterior

» Model f(z) ~ GP(u(x), k(z,2")) is determined by the mean
Junction m(x) and covariance function k(z,xz';0).

» Posterior mean u(z;6, D) and variance o(x;6, D) can be
computed explicitly given a dataset D.



Other models are also possible: Random Forrest

[Criminisi et al, 2011]
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Other models are also possible: t-Student processes

Student-t Processes as Alternatives to Gaussian Processes

Amar Shah Andrew Gordon Wilson Zoubin Ghahramani
University of Cambridge University of Cambridge University of Cambridge
Abstract simple exact learning and inference procedures, and

impressive empirical performances [Rasmussen. 1996],
Gaussian processes as kernel machines have steadily

Ve i i -
‘We investigate the Student-t process as an grown in popularity over the last decads.

alternative to the Gaussian process as a non-

parametric prior over functions. We de- At the heart of every Gaussian process (GP) is
rive closed form expressions for the marginal a parametrized covariance kernel, which determines
likelihood and predictive distribution of a the properties of likely functions under a GP. Typ-

Student-t process. by integrating away an ically simple parametric kernels, such as the Gaus-



Exploration vs. exploitation
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Bayesian optimization explains human active search

[Borji and Itti, 2013]



Exploration vs. exploitation

Picture source: http://peakdistrictcycleways.co.uk



GP Upper (lower) Confidence Band
[Srinivas et al., 2010]
Direct balance between exploration and exploitation:

arcp(x;0,D) = —u(x;0,D) + Bio(x;6,D)

f(x)
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GP Upper (lower) Confidence Band

[Srinivas et al., 2010]

» In noiseless cases, it is a lower bound of the function to
minimize.

» This allows to computer a bound on how close we are to
the minimum.

» Optimal choices available for the 'regularization parameter’.

Theorem 1 Let & € (0,1) and B, =
2log(|D|t?n2/66).  Running GP-UCB with J, for
a sample f of a GP with mean function zero and
covariance function k(x, '), we obtain a regret bound
of O*(\/T~rlog|D|) with high probability. Precisely,
with Cy = 8/log(1 + o~ 2) we have

Pr {R-,» < /C\TBryr VT > 1} ) H |



Expected Improvement
[Jones et al., 1998]

a1(x:0,D) = / max(0, goest — ¥)p(yl: 6, D)dy
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Expected Improvement
[Jones et al., 1998]

» Perhaps the most used acquisition.
» Explicit for available for Gaussian posteriors.

» It is too greedy in some problems. It is possible to make
more explorative adding a ’explorative’ parameter

apr(x;0,D) = o(x;6,D)(y(2)(v(z))) + N(v(2); 0,1).

where (@hes) — p(x:0,D) + ¢
_ JLbest) — HIX5 U, 4
V(@) = o(x;0,D)




Maximum Probability of Improvement
[Hushner, 1964]

v(x) = 0(x;0,D) " (u(x; 0, D) = Ypest)
aypr(x;0,D) = p(f(x) < Ypest) = P(7(x))

f(x)
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Maximum Probability of Improvement
[Hushner, 1964]

» First used acquisition: very intuitive.
» Less used in practice.

» Explicit for available for Gaussian posteriors.

anmpr(x;0,D) = &(y(r))).

where ‘
7 o(x;0,D)




Information-theoretic approaches
[Hennig and Schuler, 2013; Hernédndez-Lobato et al., 2014]

aps(x;0, D) = H[p(xmin|D)] = Ep(yip,x) [H [P(min|D U {x, y})]]
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Information-theoretic approaches

Uses the distribution of the minimum

Prin(x) = ple = arg min f(z)] = / p(f) [T 017 @) — ()l

fiI-R Ger

T#x
where 6 is the Heaviside’s step function. No closed form!
Use Thomson sampling to approximate the distribution.

Generate many sample paths from the GP, optimize them to
take samples from pp,in(2).



Thomson sampling
Probability matching

argomson (x;0,D) = g(x)
g(x) is sampled form GP(u(x), k(z,2’))

15




Thompson sampling
Probability matching [Rahimi and B. Recht, 2007]

» [t is easy to generate posterior samples of a GP at a finite
set of locations.

» More difficult is to generate ‘continuous’ samples.

Possible using the Bochner’s lemma: existence of the Fourier
dual of k, s(w) which is equal to the spectral density of k

k(z,2') = vE, [e‘i‘”T(’?_Il)} = 20K, ;, [cos(wz” + b) cos(wa” + b)]

With sampling and this lemma (taking p(w) = s(w)/v and
b ~ U[0,27]) we can construct a feature based approximation
for sample paths of the GP.

m
1% i ()T, i ()T
k:(x,m/)%—E:e iw T oW T
m “
=1



The choice of utility matters
[Hoffman, Shahriari and de Freitas, 2013]

The choice of the utility may change a lot the result of the

optimisation.
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The choice of utility in practice
[Hoffman, Shahriari and de Freitas, 2013]
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The best utility depends on the problem and the level of
exploration/exploitation required.



Mlustration of BO
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Mlustration of BO

= = True objective
Current best

f(x)
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Mlustration of BO

= = True objective
Current best

f(x)
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Mlustration of BO

= = True objective
Current best

f(x)
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Mlustration of BO

= = True objective

Current best

f(x)
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Mlustration of BO

= = True objective

Current best

f(x)
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Bayesian Optimization

As a 'mapping’ between two problems
BO is an strategy to transform the problem
Ty = argmin f(xz
M g Py f(z)
solvable!

into a series of problems:

Tp+1 = arg max a(x; Dy, My,)
TEX

where now:

» «a(z) is inexpensive to evaluate.
» The gradients of a(x) are typically available.
» Still need to find xp41.



BO vs other methods

[Osborne et al, 2009]

Bayesian optimization works better in practice!

GPGO 1-Step

[GPGO 2-Step

EGO RBF DIRECT|Non-Periodic PeriodiclNon—Periodic
Br 0.943 0.960  0.958 0.980 — —
C6  |0.962 0.962 0.940 0.890 — 0.967
G-P |0.783 0.815 0.989 0.804 — 0.989
H3 0970 0.867 0.868 0.980 — —
H6 |0.837 0.701 0.689 0.999 — —
Sh5 [0.218 0.092  0.090 0.485 — —
Sh7 |0.159 0.102 0.099 0.650 — —
Sh10|0.135 0.100  0.100 0.591 — —
GK2 |0.571 0.567 0.538 0.643 — —
GK3 |0.519 0.207 0.368 0.532 — —
Shu (0.492 0.383  0.396 0.437 0.348 0.348
G2 10979 1.000 0.981 1.000 1.000 —
35 [1.000 0.998  0.908 0.925 0.957 —
A2 [0.347 0.703  0.675 0.606 0.612 0.781
A5 [0.192 0.381  0.295 0.089 0.161 —
R 0.652 0.647  0.776 0.675 0.933 —
mean|(0.610 0.593  0.604 0.705 — —




Recap

» Bayesian optimization is a way of encoding our beliefs
about a property of a function (the minimum)

» Two key elements: the model and the acquisition function.

» Many choices in both cases, especially in terms of the
acquisition function used.

» The key is to find a good balance between exploration and
exploitation.



Main issues

» What to do with the hyper-parameters of the model?
» How to select points to initialize the model?

» How to optimize the acquisition function?



BO independent of the parameters of the GP.
[Snoek et al. 2012]

Integrate out across parameter values or location outputs.

(@) Posterior samples under varying hyperparameters (@) Posterior samples after three data

'OVANER SN

(b) Expected improvement under three fantasies

(b) Expected improvement under varying hyperparameters

(C) Integrated expected improvement (C) Expected improvement across fantasies



How to initialise the model?

v

One point in the centre of the domain.

v

Uniformly selected random locations.

v

Latin design.

v

Halton sequences.

v

Determinantal point processes.

The idea is always to start at some locations trying to minimise
the initial model uncertainty.



Latin design

n x n array filled with n different symbols, each occurring
exactly once in each row and exactly once in each column.
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pyDOE

Python framework for standard experimental design

Design of Experiments for Python

yDOE /

pyDoE: The experimental design package for python

‘The pypoE package is designed to help the scientist, engineer, statistician, etc., to construct appropriate experimental designs.

Al available designs can be accessed after  simple import statement:

>>> trom pypox import *

Capabilities

‘The package currently includes functions for creating designs for any number of factors:

o Factorial Designs
1. General Full-Factorial (gx11£act)
2. 2-Level Full-Factorial (££2n)
3. 2-Level Fractional-Factorial (eracsact)
4. Plackert-Burman (pbdesign)
o Response-Surface Desians
1. Box-Behnken (sbdesign)
2. centra

. omposite (codesign)
« Randomized Desians
1. Latin-Hypercube (1hs)

Factorial Designs
Response Surface Designs
Randomized Designs

‘pypoe: The experimental

equirements
= Installation and download
= Important note
= Automatic install or
upgra
= Manual download and
install
= Source code
» Contact
» Credits
= License
u References

| qucksearcn ______|



Latin design

Window honors Ronald Fisher. Fisher’s student, A. W. F.
Edwards, designed this window for Caius College, Cambridge.

i
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Halton sequences
[Halton, 1964]

» Used to generate points in (0,1) x (0,1)
» Sequence that is constructed according to a deterministic
method that uses a prime number as its base.

Figure source: Wikipedia



Halton sequences
[Halton, 1964]

Better coverage than random.

Halton Random

Figure source: Wikipedia



Determinantal point processes
Kulesza and Taskar, [2012]

We say that X is a ‘determinantal point process’ on A with
kernel K if it is a simple point process on A with a joint
intensity or ‘correlation function’ given by

pn(T1, .., 2p) = det(K (i, 7)1<i j<n)

» Probability measures over subsets.

» Possible to characterise the samples in terms of quality and
diversity.



Determinantal point processes
Kulesza and Taskar, [2012]
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Determinantal point processes
Kulesza and Taskar, [2012]




Methods to optimise the acquisition function

This may not be easy.

» Gradient descent methods: Conjugate gradient, BFGS, etc.
» Lipschitz based heuristics: DIRECT.
» Evolutionary algorithms: CMA.

Some of these methods can also be used to directly optimize f



Gradient descent
[Avriel,2013], but many others

Algorithm 2: Gradient Descent

input : f:R™ — R a differentiable function

x( an initial solution

output: x*, a local minimum of the cost function f.
1 begin
2 k+0;
3 while sTOP-CRIT and (k < kmaz) do
4 xEHD)  xF) — oDV f(x) ;

with a® = arg min f(x(k) —aVf(x):
acRy

k—k+1;
7 return x*)
8 end

We need to know the gradients. This is the case for most
acquisitions but not for all of them (PES for instance).



Gradient descent

May fall in local minima if the function is multimodal: multiple
initializations.



‘DIviding RECTangles’, DIRECT

[Perttunen at al. 1993]

Algorithm DIRECT(’'myfcn’,bounds,opts)

1:  Normalize the domain to be the unit hyper-cube with center ¢,
2: Find f(c1), fnin = f(c1),i=0,m=1

3: Evaluate f(ci1 £ de; , 1 <i <n, and divide hyper-cube

4: while i < mazits and m < mazevals do

5 Identify the set S of all pot. optimal rectangles/cubes

6: foral je S

T: Identify the longest side(s) of rectangle j

8: Evaluate myfen at centers of new rectangles, and divide j into smaller rectangles
9: Update fiin, zatmin, and m
10: end for
11: i=1+1

12: end while

Minimal hypothesis about the acquisition



‘DIviding RECTangles’, DIRECT

[Perttunen at al. 1993]
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Finds good solution in general and doesn’t need gradient. Not
generalizable to non-squared domains.



Covariance Matrix Adaptation, CMA

[Hansen and Ostermeier, 2001].

» Sample for a Gaussian with some mean p and covariance
matrix 3.

» Select the best points and use them to update p and 3.

» Sample form the new Gaussian.

Generation 1 Generation 2 Generation 3

Generation 4 Generation 5 Generation 6




Took a while to start using these ideas in ML

Although in the stats community have been there for a while

» BO depends on its own parameters.

» Lack of software to apply these methods as a black
optimization boxes.

» Reduced scalability in dimensions and number of
evaluations (this is still a problem).

Practical Bayesian Optimization of Machine Learning
Algorithms. Snoek, Larochelle and Adams. NIPS 2012
(Spearmint)



Increasing popular field

(-7 © ) @ https://www.google.co.uk/searchzclient=ubuntu&channel=Fs&qg="bayesial v C‘H

B Most Visited v @ Getting Started @ Como instalar archiv... [} SeriesCoco - Descar...

GO gle "bayesian optimization"

Web Imagenes Videos Noticias Shopping Mas ~ Herramient:

Aproximadamente 44 600 resultados (0,39 segundos)

Bayesian optimization - Wikipedia, the free encyclopedia
https://en wikipedia.org/wiki/Bayesian_optimization ¥ Traducir esta pagina
They all trade-off exploration and exploitation so as to minimize the number of function
queries. As such, Bayesian optimization is well suited for functions that ..

History - Strategy - Examples - Solution methods

PoAl Practical Bayesian Optimization of Machine Learning ...
papers.nips.cc/../4522-practical-bayesian-optimizati... ¥ Traducir esta pagina

» Hot topic in Machine Learning.

» The BO workshop at NIPS is well stablished and it is a
mini-conference itself.



Bayesian optimization now

It has become increasingly popular since it allows to configure
algorithms without human intervention.

BO takes to human out of the loop!



BO in industry: Twitter

We have joined forces
with Twitter!

‘We have created a technology to make machine learning better and faster for companies,
automatically. Twitter is the platform for open communication on the internet and we believe
that Whetlab’s technology can have a great impact by accelerating Twitter’s internal machine

learning efforts.




BO in industry:
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Questions?
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