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Internal Model Control. 4. PID Controller Design

Danlel E. Rivera, Manfred Morarl,* and Sigurd Skogestad

Chemical Engineering, 206-41, California Institute of Technology, Pasadena, California 91125

For a large number of single input-single output (SISO) models typically used in the process industries, the Internal
Model Control (IMC) design procedure is shown to lead to PID controllers, occasionally augmented with a first-order
lag. These PID controllers have as their only tuning parameter the closed-loop time constant or, equivalently, the
closed-loop bandwidth. On-line adjustments are therefore much simpler than for general PID controllers. As a
special case, PI- and PID-tuning rules for systems modeled by a first-order lag with dead time are derived
analytically. The superiority of these rules in terms of both closed-loop performance and robustness is demonstrated.

I. Introduction

Synthesis and tuning of control structures for SISO
systems comprises the bulk of process control problems.
In the past, hardware considerations dictated the use of
the PID controller, but through the use of computers,
controllers have now advanced to the stage where virtually
any conceivable control policy can be implemented. De-
spite these advances, the most widely used controller is
still of the PID type. Finding design methods which lead
to the optimal operation of PID controllers is therefore of
significant interest.

For controller tuning, simplicity, as well as optimality,
is important. The three modes of the ordinary PID con-
troller, k., 71, and tp, do not readily translate into the
desired performance and robustness characteristics which
the control system designer has in mind. The presence of
simple rules which relate model parameters and/or ex-
perimental data to controller parameters serves to simplify
the task of the designer.

The literature contains a number of these “tuning rules”;
possibly the best known are the Ziegler—Nichols rules
proposed in 1942. Given the wide use of the first-order
lag/dead time model for chemical processes, tuning rules
for PID control of this structure have received wide at-
tention in the literature. Most common are the rules
proposed by Cohen and Coon 1953). Smith (1972) contains
a good summary of efforts in this area.

Our intention is to present a clearer and more logical
framework for PID controller design which is simple to
understand and implement while possessing a sound fun-
damental basis. Instead of fixing a control structure and
then attempting to “extract” optimality from this controller
(as is usually the case with classical methods), our approach
will be to postulate a model, state desirable control ob-
jectives, and, from these, proceed in a straightforward
manner to obtain both the appropriate controller structure
and parameters.

The Internal Model Control (IMC) structure provides
a suitable framework for satisfying these objectives. IMC
was introduced by Garcia and Morari (1982), but a similar
concept has been used previously and independently by
a number of other researchers. Using the IMC design
procedure, controller complexity depends exclusively on
two factors: the complexity of the model and the per-
formance requirements stated by the designer. The goal
of this article is to show that for the objectives and simple
models common to chemical process control, the IMC
design procedure leads naturally to PID-type controllers,
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occasionally augmented by a first-order lag. Furthermore,
the proposed procedure provides valuable insight regarding
controller tuning effects on both performance and ro-
bustness.

I1. Performance and Robustness Measures
Probably the best indicator of performance is the sen-
sitivity function
1 e

S=1+gc=ys—d )

(The nomenclature should be apparent from Figure 1.) It
is desirable to keep the sensitivity function small over as
wide a frequency range as possible. For any proper system,
|S] will approach unity as the frequency becomes large.
Instead of the sensitivity function, the closed-loop band-
width can be used as a simple performance measure; it is
the frequency wy, at which |S] first reaches 1/2/2

1

|Sl<ﬁ Vw<a (2)
Increasing the bandwidth implies less attenuation of the
reference signal, more effective disturbance rejection, and
a faster response. For a phase margin (PM) less than or
equal to =/2 (the most common situation), the bandwidth
is less than or equal to the (gain) crossover frequency w,,
defined as the frequency at which the open-loop gain first
drops to unity

lgel >1 Vw<ao, (3)

Occasionally, we will also refer to the Integral Square
Error (ISE) and to the Integral Absolute Error (IAE) for
a specified set point or disturbance change to compare the
performance of different controllers:

J=ISE=j;°°(y—ys)2dt 4)

J'=IAE = j; by - v dt (5)

It is crucial in control system design to ensure the sta-
bility and performance of the closed-loop system in the
presence of plant/model mismatch, i.e., to guarantee ro-
bustness. We will use a superscript () to distinguish the
(known) model and its properties from the (generally un-
known) “real” plant. Plant/model mismatch can be
caused, for example, by model reduction (the representa-
tion of a high-order system by a low-order approximate
model) or by system parameters which depend on the
operating conditions. Though we do not know the real
plant g, it is often reasonable to assume it to be a member
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Figure 1. Evolution of the IMC structure.

of a family II of linear plants defined by a norm-bounded
multiplicative error e,

I = {g: len| < lu} (6)

where

o

£ @

en =

Gm»

Usually |ey| approaches a value equal to or greater than
1 for high frequencies.
We will also establish in the following that the com-
plementary sensitivity function H
. ge
T1+ gc
is a good robustness measure. The name “complementary
sensitivity” follows from the equality
AH+8=1 9
Let us assume that g, &, and ¢ have no poles in the open
right-half plane (RHP) and that the closed-loop system
with the “nominal” plant g and the controller c is stable.
Then Doyle and Stein (1981) have shown that the
closed-loop system is stable for all plants in the family II
if and only if

®

A<+ Vo (10)
b

Because [, increases with frequency and eventually exceeds
1, |H| has to drop below 1 at some frequency. Because of
(9), |S] has to be close to 1 in this frequency range. Thus,
the achievable closed-loop bandwidth is limited by the
bandwidth over which the process model is good. The
smallest uncertainty /,(w) is allowed at the frequency
where |H(jw)| has its maximum peak. As a consequence,
the M value defined by (11) (e.g.: Rosenbrock, 1974) is
a suitable robustness indicator.

M =max |H| (11)

M is convenient and widely accepted as more useful than
gain margins (GM) or phase margins (PM). Gain and
phase margins only measure robustness with respect to
model uncertainties which are independent of « and thus
tend to be overly optimistic. The following relationships
indicate how M establishes lower bound on GM and PM:

1
> —_
GM=1+ % (12)
PM = 2 sin™ (—1—) ~ L (13)
2M)] M
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For the special case of M = 1, (12) and (13) become
GM=2 (14)
PM = 60° (15)

One must note that M by itself yields only a qualitative
indication of robustness. The allowable uncertainty in
specific model parameters can be deduced from M only
when the bandwidth w, is known. Consider, for example,
an analysis of the allowable dead-time error in a closed-
loop system (the plant dead time exceeds that of the model
by the quantity 6):

g=ge* (16)
Because the dead-time error introduces a phase lag of wé

at frequency w, the system will remain stable for the
dead-time error § if

PM

We

5 < (17

When (13) is substituted, this exact condition can be re-
placed by the more conservative condition

1

< —
) wM (18)
For PM = 90°, w, = w, and (18) becomes
1
< —
b Y (19)

Equation 19 clearly illustrates the trade-off between per-
formance and robustness. Good performance (high w,) is
obtained only at the expense of robustness (small allowed
dead-time error).

Our study is aimed at systems of “type 1” and “type 2"
(Wiberg, 1971):

type L: lim sge = 0 (20)
s—=0

type 2: lim s?gc = 0 (21)
s—0

Type 1 and type 2 systems exhibit no offset to step and
ramp changes on (y, — d), respectively. Furthermore, the
following limits hold:

lim H(s) = 1 (22)
s—0
lim S(s) =0 (23)
s—0

II1. Internal Model Control (IMC)
II1.1. Fundamentals. The goal of control system de-
sign is fast and accurate set-point tracking

yy, Vit Vd (24)

This implies that the effect of external disturbances should
be corrected as efficiently as possible (good regulatory
behavior)

Y=y -d Vit VvVd (25)

Furthermore, the control system designer wishes to ob-
tain (24) and (25), while also being assured of insensitivity
to modeling error.

It is well-known that an open-loop (feedforward) ar-
rangement (Figure 1A) represents the optimal way to
satisfy (24). For the open-loop scheme, the stability
question is trivial (the system is stable when both the
controller and the system are stable); also the controller
is easy to design (g, = §!). The disadvantages are the
sensitivity of the performance to plant/model mismatch
and the inability to cope with unmeasured disturbances.
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With the feedback arrangement (Figure 1B), the situation
is reversed. Plant/model mismatch and unmeasured
disturbances can be dealt with effectively, but tuning is
complicated by the closed—loop stability problem.

We can now augment the open-loop and closed-loop
systems as indicated in Figure 1C and 1D without affecting
performance: In Figure 1C, d = 0, and therefore the system
is still open-loop; in Figure 1D, the two blocks g cancel each
other. Relating Figure 1C and 1D through the definitions

c
= 2
8= 17 p (26)
¢ = gi 27
1- ggc

we arrive at the general structure in Figure 1E which has
the advantages of both the open-loop and closed-loop
structures: When the model of the plant is perfect (g =
£) and there are no disturbances (d = 0), feedback is not
needed and structure E behaves identically to structure
A. Because the plant model § appears explicitly in E, this
structure is referred to as the Internal Model Control
(IMC) structure. As a simplification, we can say that the
controller in E can be designed with the ease of an open-
loop controller while retaining the benefits of a feedback
system. It is our goal to describe, in detail, such a design
procedure.

From the block diagram for the IMC structure (Figure
1E), follow the relationships

8

u=m(ys—d) (28)
88 o
y-m(ys"d)"'d—ff(yg d) +d (29)
1—§gc
e—ys—d—m(ys—d)—s(ys—d) (30)

Four properties can be shown which suggest the advan-
tages of this structure.

P1l: Dual Stability. Assume g = §. Then the system
is effectively open-loop and “closed-loop stability” is im-
plied by the stability of g and g.:

y = ggc(ys - d) +d (31)

While for the classical structure (Figure 1B) it is not at
all clear what type of controller ¢ and what parameter
choices lead to closed-loop stable systems, the IMC
structure guarantees closed-loop stability for all stable
controllers g,.

P2: Perfect Control. Assume that the controller is
equal to the model inverse (g, = 1) and that the closed-
loop system in Figure 1E is stable. Theny = y, for all ¢
> 0 and all disturbances d(t).

P3: Type-1 System. Assume that the controller
steady-state gain is equal to the inverse of the model gain

£.(0) = (0)! (32)

and that the closed-loop system in Figure 1E is stable.
Then the system is of type 1 and the control error vanishes
asymptotically for all asymptotically constant inputs y, and
d. This property implies no offset at steady state and
follows from (30) via the final value theorem.

P4: Type-2 System. Select g, to staisfy P3 and

d g -—
ds @8)ls=0 = 0 (33)

Then the system is of type 2 and the control error vanishes
asymptotically for all asymptotically ramp-shaped inputs

v, and d (Brosilow, 1983). (P4 also follows from (30) via
the final value theorem.)

P1 simply expresses the fact that in the absence of
plant/model mismatch, the stability issue is trivial, as long
as the open-loop system is stable. P2 asserts that the ideal
open-loop controller leads to perfect closed-loop perform-
ance when the IMC structure is employed. P3 and P4 state
that inherent integral action can be achieved without the
need for introducing additional tuning parameters. P2,
however, represents an idealized situation. We know in-
tuitively that P2 requires an infinite controller gain; this
is confirmed by substituting g, = §7* in (27). By setting
£.(0) = Z(0) as postulated for P3, we find ¢(0) = =, which
implies integral control action, as expected.

There are several reasons why the “perfect controller”
implied by P2 cannot be realized in practice.

1. Right-Half Plane (RHP) Zeros: If the model has
a RHP zero, the controller g, = §! has a RHP pole, and
if § = g, the closed-loop system will be unstable according
to P1.

2. Time Delay. If the model contains a time delay, the
controller g, = Z! is predictive and cannot be realized.

3. Constraints on the Manipulated Variables. If
the model is strictly proper, then the perfect controller g,
= £ is improper, which implies lim,._... {g,| = . Thus,
infinitely small high-frequency disturbances would give rise
to infinitely large excursions of the manipulative variables
which are physically unrealizable.

4. Modeling Error. If g = 3, P1 does not hold and the
closed-loop system will generally be unstable for the con-
troller g, = 7

In resolving these four issues, the ideal of perfect control
must be abandoned. The IMC design procedure handles
this in two steps; first, performance is addressed with no
regard to robustness or input constraints. Second, a filter
is introduced and designed for properness (input con-
straints) and robustness without locking at how this affects
the performance. Though there obviously does not exist
any separation principle which makes this approach
“optimal”, the design procedure is very simple and direct.
Also, there seem to be very few cases where other more
complicated and indirect procedures (e.g., LQG) give better
results. The freedom which the designer is given to choose
the filter makes it possible to take into account consid-
erations which may be difficult to pin down mathemati-
cally.

Step 1. Factor the model

§=8.8 (34)
such that 2, contains all the time delays and RHP zeros;

consequently ! is stable and does not involve predictors.
Step 2. Define the IMC controller by

g.=&7f (35)

where f, a low-pass filter, must be selected such that g, is
proper or, if “derivative” action is allowed (as in the ideal
PID controlier), such that g, has a zero excess of at most
1. By definition of the factorization in (34), g, is realizable.

Having introduced these definitions, the closed-loop
relationships (29) and (30) become

(1 + ey) H(Q1 +e,)
TR T T e, O
(36)
1-8.f 1-A
e—ys—y—m(ys—d)—m(ys"d) (37

For the special case of a perfect model (e, = 0), (36) and
(37) reduce to



y=&f,-d)+d=H(y,-d) +d (38)
e=(1-8)0,-d =S, -d (39)

Equations 38 and 39 demonstrate clearly that for the
case of no plant/model mismatch, the nominal closed-loop
transfer function H = g.f is at the designer’s discretion
except that (1) &, must contain all the delays and RHP
zeros and (2) f must be of sufficiently high order to avoid
physically unrealizable control action. Thus, the closed-
loop transfer function can be designed directly and not
ambiguously via c¢ as in the classic controller design pro-
cedure (Figure 1B).

Our treatment is not complete without indicating how
to select g, and f.

II1.2. Factorization of g. Assume g = g. For step
inputs in y, and d, selecting Z, and f such that |3, f] = 1
V « minimizes the ISE (Holt and Morari, 1984, 1985).
This implies that f must be unity and that 2, has the form
of an all-pass

—61'8 +1
5 = pfs
&+ ¢ l:I 6,‘8 +1

where 3, are all the RHP zeros and 8 is the time delay
present in Z. As a consequence of this factorization, poles
corresponding to the LHP image of the RHP zeroes have
been added to the closed-loop response.

For step inputs in y, and d, selecting f to be unity and

8+ as

Re (8) > 0 (40)

gr=e®[l (-Bs+1) Re(3)>0 (41
1
minimizes the IAE (Holt and Morari, 1984, 1985).
When 7 is a minimum-phase model, g, = 1.
II1.3. Filter Selection. In order to satisfy P3 (zero
offset to step inputs), we adopt the following convention
for §.(s) and f(s) = p(s)/q(s)

£+00) =p(0) =4q(0) =1 (42)
The simplest filter f satisfying (42) is of the form
1
= —— 43
f(s) @t D (43)

where r is sufficiently large to guarantee that the IMC
controller g, is proper. If g = Fand g, =1 (i.e., the model
is minimum-phase), then y/y, = H = f. The parameter
¢, which can be adjusted by the operator, determines the
speed of the response. For a minimum-phase system, the
bandwidth is proportional to 1/

wp=w,=1/eforr=1 (44)
1/e>wy>1/re > w forr>1 (45)

For nonminimum-phase systems, the achievable band-
width is inherently limited by the plant. For example,
consider the following representative factorizations with
e=0

- - L1 0.724
gr=e  w, = 3 @ =5 - 0.69w, (46)
g+ =(Bs+1)/(Bs + 1)
1 1
we = W wp = W = 0.65w, (47)
g, =-Bs + 1: w, = ® Wy L (48)

" @)

For ¢ > 0, w, and w;, decrease from the bounds established
through (46)-(48). For r = 1, exact formulas for the
bandwidth and crossover are included in Appendix A;
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these are effectively approximated by

=@/ (s + 1) w, > wp = z i - (49)

8+f = [(-Bs + 1)/(Bs + 1)][1/(es + )]
wcgwb;%l_'_e (50)

Bf = (B + D/(es + 1) w2 wp = —— 51)

B+e¢

One notices from these expressions that until 1/¢ is of an
order of magnitude comparable to 6 or 3, respectively, w,
and wy, are virtually unaffected by the presence of the filter.
Thus, making ¢ very small for nonminimum-phase systems
has little effect on the bandwidth and performance but is
very detrimental to the robustness, as we will see later. For
¢ large compared to 6 or 8 approximately, the same pro-
portionality holds as for MP systems (eq 44).

¢ is directly related to important closed-loop charac-
teristics, unlike the parameters available in the general
lead /lag network c of the classical structure (e.g., PID
controllers). The larger ¢ is the slower the response and
the smaller the actions of the manipulated variable. With
(43), the maximum peak for |f] is 1; i.e., the robustness
characteristics are good.

For r > 1, filter forms other than (43) can lead to faster
response. For example, for r = 2, the filter '

1

= ————————— 52
f €252 + 2%es + 1 52)

with damping factor { = 0.5 minimizes the ISE (Frank,
1974). However, with this filter |f|,,, = 1.15; thus, per-
formance improvement occurs at the expense of a reduced
robustness margin. In practice, choosing filters with
structures more general than (43) is usually not worthwhile.

Additional conditions on f are necessary in order to
satisfy P4 (zero offset to ramp inputs). With the adopted
conventions (42), (33) becomes

§+/(0) = ¢’(0) - p"(0) (53)
where the prime denotes differentiation with respect to
s. An example of a filter satisfying (53) is

(2¢ - 8,/(0))s + 1
(es + 1)2
where, as before, the adjustable parameter ¢ is, for mini-
mum-phase systems, the closed-loop time constant and 1/¢

is proportional to the closed-loop bandwidth. Values of
£.7(0) for representative factorizations are

(54)

d . _

d_s' (e 0)'3:0 - 0 (55)
4 g5 + 1))y = -8 (56)
ds S |8=0 -

d [ Bs+1
E(asﬂ) =28 (57)

Because in general §,/(0) < 0, one obtains
M =max |H|>1 (58)

s=0

i.e., M is strictly greater than unity for all fiiters satisfying
(563). Again, the tighter performance specification (no
offset for ramps) is paid for with decreased robustness
margins.

II1.4. Accounting for Modeling Error. Thus far, all
the discussion on filter selection has assumed a perfect
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model, in which case ¢ can be selected freely; this is not
the case in practice where plant/model mismatch exists.
It follows from (10) that for robust stability of the
closed-loop system

gA<T Vo (59)
m

Assuming for simplicity |Z,| = 1, it becomes clear that the
filter magnitude |f] must be small wherever the plant/
model mismatch e, is large. Because [, approaches or
exceeds 1 for high frequencies in all practical situations,
we find again that the allowable range for ¢ is limited by
the degree of plant/model mismatch. As stated previ-
ously, the closed-loop bandwidth can never be larger than
the bandwidth over which the process model is valid. The
models used in process control are usually good enough
to set 1/¢ at least equal to the open-loop bandwidth.

In the presence of plant/model mismatch, the structure
of f fails to automatically guarantee the shape of the re-
sponse. However, for the suggested IMC design procedure
(£,(0)f(0) =1 and f = (es + 1)™) and using the Triangle
Inequality

o< o
1= Ig+fem|

one can discern general frequency intervals for which (60)
and the ideal error function

lel =11~ &:fllys - dl =

are very similar. At low frequency (w << 1/¢), 3,f = 1 and
e = 0. For w > 1/¢, |f] is exceedingly small, {g.fe,| = 0,
and (60) and (61) become close to each other. For w = 1/¢,
the situation is uncertain. We conclude that for e suffi-
ciently large, the closed-loop response to high-frequency
or low-frequency inputs (e.g., steps) will become similar
to the response of the nominal system g.f.

In summary, the key advantage of the IMC design
procedure is that all controller parameters are related in
a unique, straightforward manner to the model parameters.
There is only one adjustable parameter ¢ which has intu-
itive appeal because it determines the speed of response
of the system. Furthermore, ¢ is approximately propor-
tional to the closed-loop bandwidth which must always be
smaller than the bandwidth over which the process model
is valid. This leads to a good initial estimate of ¢, which
can be adjusted on-line if necessary.

IV. IMC in the Context of Classical Control

For linear systems, the IMC controller g, represents an
alternate parametrization of the classic controller ¢, albeit
with very useful properties. Through the transformation

8o g

C - - = ~
1-88 f1-&
Figure 1B becomes equivalent with 1E. If there is no delay
in g, c is rational and can be implemented as a lead/lag

network. Indeed, for minimum-phase systems (g, = 1) and
a first-order filter (f = es + 1)71), ¢ becomes

&
€ S

lys = d] (60)

1Slly, - dj (61)

(62)

c = (63)

IV.1. IMC Implemented as a PID Controller (Table
I). Naturally, one would expect that for certain process
models, the lead/lag network ¢ obtained from (62) via the
IMC design procedure is a PID controller. Indeed, we find
that IMC leads to PID controllers for virtually all models
common in industrial practice (Table I). Note that Table

I includes systems with pure integrators and RHP zeros.
Occasionally, the PID controliers are augmented by a
first-order lag with time constant 7. A few remarks re-
garding Table I ar appropriate:

Remark 1. When the PID controller of the specified
form is applied to the model g, the closed-loop system is
stable for all values of ¢ > 0.

Remark 2. For about one-third of the cases studied,
¢ appears only in the expression for the controller gain k..
For cases A-C, H, and J, the controller gain is inversely
proportional to ¢, thus demonstrating that on-line PID
controller adjustment is effectively achieved by simply
manipulating k,. These are minimum-phase models, for
which w, = w. = 1/¢, and the model itself imposes no
limitations on the bandwidth. For cases D, F, L, and P,
the controller gain k&, is the only parameter dependent on
¢, but because of the presence of a RHP zero, there is a
maximum gain which cannot be surpassed no matter how
small ¢ is. Cases D, F, L, and P correspond to systems
factored according to (41), in which case wy, is limited by
approximately 1/(3 + ¢) (recall eq 51); the IMC design
procedure recognizes naturally that increasing the gain
beyond a certain value leads to performance deterioration
and eventually stability.

For a significant number of the considered models, ¢
appears in all the parameters of the classic feedback
controller, e.g., K and R. 1t is not surprising then that for
such processes, trial and error tuning of PID controllers
is notoriously difficult. However, the IMC parametrization
shows how all the controller parameters may be adjusted
simultaneously in an effective manner.

Remark 3. In all cases, there is no offset for set-point
and/or disturbance step changes. If the process has an
integrator, a step disturbance entering through the inte-
grator becomes a ramp, thus requiring that there should
be no offset for ramp changes. This performance speci-
fication is met in cases I, K, N, O, R, and S by selecting
the filter f to be of the form shown in (54).

Remark 4. For systems with RHP zeros, two options
for choosing §.f are available.

Option 1. Z,f follows (40):

- -Bs+1 1 4
8=\ gs+1 )or1 (64)
(64) is optimal in the ISE sense to step changes when

¢ = 0 (Holt and Morari, 1985). For no offset to ramps, f
has to be selected in accordance with (54):

~f_(—ﬁs+1)(2(5+e)s+1) o
TP\ +1 ) (@t (69

(64) and (65) require augmenting the PID controller with
a lag term (7ps + 1). The filter constant ¢ may, in principle,
be chosen freely. However, as already pointed out in (47),
a single RHP zero factored according to (40) limits the
bandwidth to 1/8(7)'/2 Therefore, selecting ¢ « 5(7)1/2
has very little effect on the response. We recommend that
to improve robustness, ¢ > 3/2.

Option 2. 3.f follows (41)

—-Bs +1
es+ 1

For step inputs, (66) is IAE optimal when ¢ = 0 and ISE
optimal when ¢ = 8 (Holt and Morari, 1985). For no offset
to ramps,

8. = (66)

_ (=Bs + 1((B+ 2¢)s + 1)
- (es + 1)?

67)

8+



Option 2 gives a simpler controller and is favorable for
situations where ¢ > § is acceptable. It results in a PID
controller without the need for an additional lag (as shown
in cases D, F, L. N, P and R). However, noting that the
closed-loop transfer function is not strictly proper, one
must require that

lim 3,1 <1 (68)
or (59) will be violated for high frequencies (where [, =
1) and instability is bound to occur in all practical situa-
tions. This explains why e > 8 is required for D, F, L, N,
P, and R. The effect of this practical recommendation is
that the RHP zero is pushed outside the bandwidth of the
closed-loop system.

In practice, there exists no ideal PID controller as re-
quired in option 2. An additional lag is always present in
the controller to provide roll-off at high frequencies.
Option 1 suggests a “practical” PID controller with an
“optimal” roll-off element (rps + 1)L,

Remark 5. No systems with LHP zeros are listed in
Table I. As seen from (62), LHP zeros translate into lags
in the feedback controller structure when the IMC design
procedure is used. Therefore, for models with LHP zeros,
the PID controller from Table I should be augmented with
the corresponding lags.

Remark 6. Controller complexity, as stated in the In-
troduction, depends on the model and the control system
objectives. Consider the cases H (a pure integrator), A (a
first-order model) and B (a second-order noninteracting
model), for which the desired closed-loop response is that
of a first-order lag. Only a proportional controller is
necessary for H; a PI controller must be used for A, while
a PID controller is needed for B. Likewise, consider cases
P-S, where the process model is the same; as the demands
on the control system increase (as in requiring no offset
to ramp changes), so does the complexity of the controller.

Remark 7. Table I can also be used for systems with
delays by approximating the dead time with a Padé ele-
ment; the entry for the rational approximate model then
provides the controller parameters. This procedure is
illustrated with two examples.

Example 1.

1 - kle_as
8ls) = ——— (69)

Using a first-order Padé approximation

1—k + ga + ks

&(s) =
s(gs + 1)

If k; > 1, then (70) has a RHP zero, and a controller from
entries P-S can be selected. If &, < 1, the resulting LHP
zero should be removed by a simple lag, as explained in
remark 5. PID parameters can then be obtained from
entries J or K.

(70)

Example 2.
ke—ﬂs
&(s) s+ 1 (71)
A “zeroth-order” Padé approximation (e = 1) yields
. _ Kk
g(s) = 1 (72)

Entry A in Table I provides a PI controller for this
structure. The “zeroth-order” Padé approximation is
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Figure 2. Multiplicative uncertainty |e,| for the zeroth (—) and
first-order (--) Padé approximation. Zeroth-order: |ey| = |1 - e®|.
First-order: |ey| = |[1 — (8/2)s/(1 + (8/2)s)] — e™®|. [ey| for the
zeroth-order approximation is equal to |S| for H = ™.

equivalent to designing a controller with no information
on the dead time.
A firgt-order Padé approximation yields

k(—gs + 1)

(rs + 1)(%3 + 1)

Entries F and G (PID controller and PID controller with
first-order lag) are applicable to this problem. This
problem is discussed in more detail in section V.

IV.2. Effects of the Padé Approximation. Examples
1 and 2 are interesting because they indicate circumstances
under which three-term lead-lag controllers can be used
to control processes with dead time. The use of the Padé
approximation, however, introduces modeling error, which
consequently limits the achievable bandwidth w, and the
minimum value for ¢. From (59), one obtains a good guess
on the smallest value of ¢ which still maintains a stable
control system.

|es| for the zeroth- and first-order Padé approximations
are shown in Figure 2. For the first-order Padé approx-
imation, Je,| =1 at w = 3/6, and thus a sufficient condition
for stability is to choose ¢ > 6/3. For the zeroth-order
approximation, |e,| = 1 at w = 1/ and therefore ¢ > 8 is
required. Because wy, is inherently limited by 0.724/6
(recall (46)), one can expect that using the first-order Padé
approximation will yield designs very close to optimal (i.e.,
if no approximation were present). The zeroth-order ap-
proximation will be adequate, however, when small
bandwidths and low-frequency inputs are involved.

V. IMC-Based PID Control for a First-Order Lag
with Dead Time

The important role of the first-order lag/dead-time
model (71) in process control mandates a more detailed
discussion of example 2. Our attention is directed to a
further understanding of the PI and PID rules generated
by cases A and F; the advantages of the augmented PID
controller (case G) are also indicated.

V.1. Tuning Procedures. The IMC-based controllers
obtained by using first- and zeroth-order Padé approxi-
mations for the time delay are (cases A and F in Table I)

1+ TS)(]. + gs)

&(s) = (73)

PID c= P (74)
k(i + e)s
(1+ 7s)
PI ¢ = (75)
kes



Table I. IMC-Based PID Controller Parameters?
model yiys=&F controller kek T, ™D TR comments
k 1 lrs+ 1 T
A - - T - - -
s + 1 es + 1 kes €
k 1 (7,8 + 1)(7,s + 1) T, + 71, T,
B —_— T, T, - -
(1,5 + 1)(7,5 + 1) es + 1 kes e T, t T,
c k 1 2% + 2¢7s + 1 2T
—— 2 —— —_ —
73s% + 2¢1ts + 1 es + 1 kes € & 2¢
—Bs + 1 —6s + 1 s+ 1 T o .
D ol LA : - - (2, 3,5)
s+ 1 es+ 1 k(B + €)s B+ e
~Bs + 1 —Bs + 1 7s + 1
- # _ s+l sy 7 , _ Be (1, 4)
s + 1 (Bs + 1)(es + 1) ks(Bes + 28 + €) 28 + € 26 + ¢
—-gs + 1 —Bs + 1 s + 2trs + 1 2¢r
F k——————— R ———— 2T — - (2, 3,5)
728 + 287+ 1 es+ 1 k(B + €)s B+ e 2¢
—Bs + 1 —Bs + 1 72t + 28718 + 1 2¢r Be
G e — AL Ll 2 — (1, 4)
72s% + 2715 + 1 (Bs + 1)es + 1) k(Bes + 28 + €)s 28 + € 2t 26 + €
k i 1 1
H F— — _— — — - -
s es + 1 ke €
k
1 ~ 2 + 1 2es + 1 E 9 _ - (6)
s (es + 1) ke’s €
k 1 s+ 1 1
J —_— - - T - -
s(rs + 1) es + 1 ke €
k 2es + 1 (rs + 1)(2es + 1) 2e + 71 2eT
K —— —_— e 2 + 7T - (6)
s(rs + 1) (es + 1)* ke’s e? 2 + 1
. e 1 —ps + 1 1 1 - _ - (2, 3, 5)
s es+ 1 k(B + €) B+ e
—Bs + 1 —8s - 1
M b s + 1 1 _ _ Be (1, 4)
5 (Bs + 1)(es + 1) k(Bes + 28 + €) 28 + € 28 + e
—ps + 1 (—Bs + 1)}((B + 2¢)s + 1) B+ 2)+1 B+ 2e 0 (5, 6)
o 4 - - s
N LN (es + 1) ks(B + ¢ )? B+ ey bt 2e

:1-74
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(4, 6)

ge?
282 + 4fe + €?

2(8 + €)

208 + €)
28% + 48¢ + €2

28+ e)s + 1
ks(Be’s + € + 48e + 287)

(Bs + 1)es + 1)

(—Bs + 1)(2(8 + €)s + 1)

—Bs + 1

{2, 3,5)

s+ 1
k(B + €)

—Bs + 1
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B+ e

es+ 1

s(rs + 1)
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w
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.
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W
Q
Nt
=
-
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+
HVJ
+1&
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Fl+
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<
S
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A
+
2w
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<

(5, 6) l

7(B + 2¢)
B+ 2¢+ 71

B+ 2¢+ 7

B+ 2+ 7
(B+e)

(rs + 1)((B + 2¢)s + 1)
ks(8 + €)*

(es + 1)?

(—Bs + 1)((B + 2¢)s + 1)

—~fBs + 1
s(rs + 1)

ge’ (4, 6)

282 + 4Be + €

27( + €)
2B+ e)+ 7T

26+ e)+ 7

2B+ €)+ 7T
28% + 4Be + €*

(7s + IX2(B + €)s + 1)
ks(Be’s + € + 4Be + 28%)

Bs + 1)}es + 1)

[kc/(Tps + 1)1(1 + [1/(71s)] + Tps).

(—Bs + 1)(2(8 + e)s + 1)

—Bs + 1
s(rs + 1)

Practical

ISE optimal.for step set-point changes

1.

Comments:
ffset for ramp set-point/disturbance changes.

; for most cases ¢ is equivalent to the closed-loop time constant and 1/e is

ISE optimal for step set-point changes when ¢ = g. 4. Filter/factorization option 1 (64).

e is the only adjustable parameter
In all cases, there exists no offset for step set-point/disturbance changes.

c
IAE optimal for step set-point changes whene = 0. 3.

-ecommendation ¢ > 8/2. 5. Filter/factorization option 2 (66). Practical recommendation ¢ > 3. 6. No o

@ Controller form:
ipproximately the closed-loop bandwidth.

when e = 0. 2.
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Table II. IMC-Based PID Parameters for g(s) = ke™®/(rs
+ 1) and Practical Recommendations for /4

recom-
mended
e/8 (>
0.17/8
controller kk, Ty ™ always)
PID Qr+0)/Q2e+8 r+ (0/2) 9/27r+8) >0.8
PI 6/r =01 1.54 >1.7
improved (27 + 6)/2¢ T+ (6/2) >1.7
PI
2 v
T
| i
i |
1.54 fl |
N
{A PN
71
Pl

f
8.5 ’ ,

EE' Z' 4 ”SVY'BVYYVXB 12
t/60

Figure 3. IMC-PID tuning rule. Effect of ¢/8 on the closed-loop

response to a unit step set-point change. g(s) = ke®/(rs + 1). (—)

/8 = 0.8; (---) ¢/8 = 0.4; () ¢/0 = 2.5.

Option 2 (eq 66) was chosen for the filter for the first-order
Padé approximation in order to get a PID controller
without an additional lag term. These controllers are
represented compactly in Table II. The closed-loop
transfer functions for system (71) with these controllers
indicate a number of advantages:

e—es
PID y= - (v, -d) +d (76)
€
(5 + 5)08
____.1— + e—@s
1+ 508
e—os
PI (ys-d) +d (1)

y= —e—
(5)03 + e

The closed-loop response is independent of the system
time constant 7. (The process lag (1 + s) is cancelled by
the controller.) The time is scaled by . The shape of the
response depends on ¢/8 only.

In other words, specifying one value of ¢/6 for any
first-order lag with the dead-time model results in an
identical response when the time is caled by 8, regardless
of k, 8, and 7. For instance, if the dead time in system I
is twice as long as the dead time in system II, then for a
specific ¢/6, the response characteristics will be identical
except that it will take the response of system I exactly
twice as long to reach the same point as system II. The
choice of the “best” ratio ¢/8 must be based on performance
and robustness considerations.

For the PID controller, Figure 3 demonstrates the de-
pendence of the step response on ¢/8. ¢/6 = 0.4 is fairly
close to the value where instability occurs (¢/6 = 0.145),
and the large overshoot and poorly damped oscillations are
therefore not surprising. Note that ¢/8 = 0.5 is the lower
value recommended in Table I for models with a RHP zero
factored according to (66). For ¢/8 = 0.8, the response
looks very good: the rise time is about 1.56 and the settling
time is 4.56; the overshoot is about 10%, and the decay
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Figure 4. IMC-PID tuning rule (74). Effect of ¢/6 on M and ISE
(J) for step changes. g(s) = ke™®/(rs + 1).
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Figure 5. IMC-PI tuning rule (75). Effect of ¢/8 on M and ISE (J)
for step changes. g(s) = ke™®/(rs + 1).

ratio is quite good. For ¢/6 = 2.5, the response becomes
highly overdamped and almost identical with that of a
first-order system with time constant ¢ and delay 6.

The scaled form of the closed-loop transfer functions
(76) and (77) allows convenient design plots to be made
(Figures 4 and 5). The performance measure oJ, the in-
tegral square error to a step disturbance/set-point change,
and the robustness measure M have been plotted as a
function of ¢/6. In Figures 4 and 5, J is normalized by J,
the error corresponding to the optimum response y/y, =
e%, In theory, a Smith predictor with infinite gain (k, =
=) accomplishes this response.

For PID control (Figure 4), J/J,,, reaches a minimum
of 1.092 for ¢/6 = 0.68. At this point, M = 1.3. For
practical purposes, a better compromise between per-
formance and robustness is attained for ¢/6 = 0.8; here,
the ISE is almost minimum but M has dropped to 1. For
PI control (Figure 5), ¢/6 = 1.4 results in the minimum
J/Jqp value 1.55. M for this setting is approximately 1.3.
M =1 first occurs at ¢/6 = 2, where J/J,; = 1.7.

Figure 4 aiso confirms that the first-order Padé ap-
proximation leads to relatively little performance deteri-
oration. For ¢/6 = 0.8, the result is a PID controller that
performs with only 10% greater ISE than the optimal
Smith predictor, while retaining favorable robustness
characteristics. Compared to the PI controller, however,
the Smith predictor provides significant performance im-
provement; one must realize that the PI rule originates
from a reduced model with no dependence on the process
dead time. An alternate rule is described in section V.3
which takes into account this deficiency.

Figures 4 and 5 have been obtained under the assump-
tion of no plant uncertainty; only the model error induced
by the Padé approximation is considered. Significant plant
uncertainty within the bandwidth of the controller will
require the designer to select a larger value of . This
consideration is of particular concern when ¢/6 << 1. Be-

i
/
/
/
/
1.8 .
/
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Figure 6. PID controllers for g(s) = e /(rs + 1). Performance (top)
and robustness (bottom) properties of the Cohen—~Coon, open-loop
Ziegler—Nichols, and closed-loop Ziegler—Nichols tuning rules.

cause for the process industries the closed-loop bandwidth
can rarely exceed 10 times the open-loop bandwidth (10/7),
a practical requirement is to always select ¢ > 7/10. For
the IMC-PID parameters, this inequality is dominant for
8/7 < 1/7; for the PI parameters, it will become important
for8/r <1/14.

V.2. Comparisons with Other Methods. Next we
compare the IMC-PID parameters with the classic Zie-
gler-Nichols and Cohen—-Coon tuning rules (Figure 6).
The first notable difference between these rules and those
from IMC is that J and M depend strongly on 6/7, while
for the IMC rules the performance and robustness mea-
sures are independent of this ratio. The Cohen—Coon rules
give reasonable performance (J/J,, < 1.3) for 0.6 < 8/7
< 4.5. In this range, M varies between 2.7 and 1.0; i.e.,
robustness is quite poor, especially for small ratios of §/r.
The performance obtained with the closed-loop Ziegler-
Nichols parameters is good for the range 0.2 < 8/7 < 3.5,
but again the robustness is poor except for §/r = 0.3.
Indeed, for 6/ > 4, the closed-loop system is unstable with
the ¢ — [ Ziegler-Nichols parameters. In terms of per-
formance, the open-loop Ziegler—Nichols parameters are
only useful in the range 0.2 < 8/r < 1.4. The advantages
of the IMC tuning rules are further demonstrated through
simulations (Figures 7-9).

It should be emphasized, however, that by themselves,
the higher M values for the Ziegler-Nichols and Cohen-
Coon settings do not imply that these control systems can
tolerate less plant/model mismatch than IMC before be-
coming unstable. As was explained in section II, model
error tolerance depends on both M and the closed-loop
bandwidth wy,. Thus, only for a particular bandwidth/
performance specification is IMC more robust than Zie-
gler—Nichols and Cohen—Coon. Comparing Ziegler—Nichols
and Cohen-Coon with a small bandwidth/poor perform-
ance and IMC with a larger bandwidth/better performance
can demonstrate a larger robustness of the former despite
larger M values.
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Figure 7. PID tuning rules for process e®/(rs + 1). Closed-loop
responses to a unit step set-point change for § = 0.1, 1, and 10. (—)
IMC (¢/6 = 0.8); (---) closed-loop Zielger-Nichols (unstable for 6 =
10); (++) Cohen—Coon.
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Figure 8. IMC-PID controller with exponential filter (Table I, entry
G). Effect of ¢/ on M and the ISE (J) for step changes. g(s) =
ke /(s + 1).

In Figure 7, the presence of pure derivative action (which
is physically unrealizable) leads to a somewhat jerky re-
sponse and to even more violent moves in the manipulated
variable. If the proper IMC controller implied by entry
G is used, the consequences are an increase in the ISE and
a slower speed of response (Figure 8); the response, how-
ever, is smooth and looks more attractive (Figure 9). Here
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2

1

o

o
Figure 9. IMC-PID controllers. Closed-loop responses to a unit
step set-point change. g(s) = ke®/(rs + 1). (—) IMC-PID with
exponential filter (Table I, entry G), ¢/6 = 0.45. (-) IMC-PID (Table
I, entry F), ¢/6 = 0.8.

¢/8 = 0.45 was chosen to obtain good robustness charac-
teristics (M = 1).

V.3. Development of an Improved PI Rule. The
IMC-PI rule (from entry A, Table I), despite its com-
pactness and simplicity (as evidenced by Table II and
Figure 5), has at best 55% greater performance cost than
the optimal Smith predictor and is not overall superior to
the Z-N and C-C expressions. This is a consequence of
the zeroth-order Padé approximation and can be remedied
by incorporating the dead time in the internal model
through other means.

The IMC design procedure prescribes that first a process
model g should be established which closely approximates
the real process; the controller structure and parameters
follow directly from Z. As a second step, the filter pa-
rameters are adjusted to compensate for the plant/model
mismatch. In the context of the present example, it is clear
that a zeroth-order Padé approximation is inadequate. If,
in order to obtain a PI controller, a first-order lag is used
to approximate a first-order lag with dead time, it appears
reasonable to increase the model’s lag over that of the
process in order to account for the presence of the delay.
Thus, we postulate the model

- k

g s + 1 (78)
where A depends on the process time delay. A must be
chosen such that “best” approximates the first-order
lag/delay process. Rivera (1984) has established

A=1+40506/7) (79)

as suitable.
The PI rules obtained by using (79) appear in Table II
Comparing the “improved” PI controller

1+ (++6/2)s
- kes

with the PID controller (74) and the Pl-controller (75)
based on the zeroth-order Padé approximation, the fol-
lowing becomes clear: For small time delays (/8 > 1) the
improved PI rule and the original one are the same. For
very large time delays (v/8 << 1) the term (1 + 75) in (74)
will be outside the closed-loop bandwidth, and the im-
proved PI controller and PID controller are equivalent
when the following relationship is used:

€ €
(0)P1 - (5)PID 05 (81)

Thus, for very large time delays, the PID controller ap-
proaches the PI controller with some gain correction ac-
cording to (81); i.e., derivative action becomes ineffective.

c (80
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Figure 10. Improved IMC-PI tuning rule. Lower bound on per-
formance and robustness for all 8/7. g(s) = ke™®/(rs + 1). (—)
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Figure 11. PI tuning rules for g(s) = ke’*/(rs + 1). Performance
and robustness properties for the improved IMC-PI tuning rule (¢/6
= 1.7), the closed-loop Ziegler-Nichols rule, and the Cohen—-Coon
rule. (—) J/Jops; () M.

So far, no rules have been given on how to select ¢ for
the improved IMC-PI controller. To provide an idea of
the performance and robustness properties, Figure 10 was
constructed. This plot indicates the maximum values of
J/J o and M (over the entire 8/ 7 range) as a function of
¢/8. From Figures 4, 5, and 10, one finds that¢/8 = 1.7
provides a reasonable compromise between performance
and robustness (J/J,,, = 1.58, M = 1.15). Note that this
is slightly higher than ¢/6 = 1.3 which is suggested from
(81) based on the PID rule ({¢/6)pp = 0.8). Figure 11
demonstrates that with this choice, one obtains perform-
ance and robustness properties equal or superior to those
of the Ziegler-Nichols and Cohen-Coon PI rules. Simu-
lation results (Figure 12) confirm this.

Not only do the improved IMC-PI parameters lead to
better performance and robustness than the traditional
methods, the IMC design procedure also makes the search
for the appropriate parameters simpler. In the IMC con-
text, the PI controller is reparametrized with the param-
eters A and . While in general it is necessary to search
over k. and 7; simultaneously, IMC allows to search first
for A to obtain a good model fit and then for ¢ to obtain
good performance and robustness.

V4. Robustness to Dead-Time Errors. The following
criterion which is sufficient for stability in the face of
dead-time error was derived in section II:

1
8 < ol (82)

For the IMC-PID controller and ¢/6 = 0.8 (M = 1), the
following crossover frequency approximation holds (see
Appendix B)

1

We

+ € (83)
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Figure 12. PI tuning rules for g(s) = ¢?®/(rs + 1). Closed-loop
responses to a unit step set-point change for § = 0.1, 1, and 10. (—)
IMC-improved (¢/8 = 1.7); (---) closed-loop Ziegler~Nichols; (-)
Cohen-Coon.

Likewise, for the improved PI controller (¢/6 = = 1.7, M
varies with 7, as shown in Figure 11), one can approximate
w, as

I

We

[l

€ (84)

(83) and (84) lead to convenient expressions for the al-
lowable dead-time error in terms of the design parameters
6, 0, and M

9

PID §<e+t 2 (85)

€

< —

) ” (86)

Table III confirms that (85) and (86) provide extremely
accurate predictions for the allowable dead-time error.
Furthermore, it shows that the suggested PI and PID
settings provide dead-time error robustness in excess of
100%.

V.5. Tuning Based on Crossover Information. The
classic Ziegler-Nichols identification procedure (1942) and
ite modern counterpart by Astrom and co-workers (1983)
do not provide a parametric model directly but only the

improved PI



Table III. Allowable Dead-Time Error /6 for IMC-Based
PID and PI Parameters®

allowable dead-time error

dead-time 5/6
controller range approx bound exact bound
PID ¢/6 = 0.8 0<f/7<= 1.30 1.36
improved PI; 8/r=0.1 1.54 1.55
e/0 =17 8/r =08 1.48 1.46
6/ =1.0 1.50 1.52
8/ =100 1.70 1.97

%The exact bound is obtained from (17) while the approximate
bounds are obtained from (85) and (86) for the PID and improved
PI rules, respectively.

ultimate gain K, and the ultimate period P,. P, is related
to the phase crossover frequency w, by

p =2 87)

Wy
K, is the inverse of the process gain at w,
Ku = lg(%)rl (88)

Generally, a good estimate of the process time delay 6 is
also available from step tests. As Shinskey (1979) argues,
it is reasonable to model processes with

20 < P, < 46 (89)
as a first-order lag with dead time as denoted by (71). If

6 is known, k and 7 can be estimated from K, and P,
through the formulas

o [-)]

= (90)

4 2%
2\ 1/2
1 27T
=—{1+

With the aid of (90) and (91), the PI and PID tuning
rules from Table II can be applied when K, P, and 4 are
available, and a model of the form (71) is assumed.

VI. Summary

IMC-derived PID controller parameters are listed in
Table I for most models commonly used in process control.
In some cases, the IMC design procedure leads naturally
to the need for a first-order lag to augment the PID con-
troller structure. The single adjustable parameter ¢ is
directly related to the speed of response, with 1/¢ ap-
proximately equal to the bandwidth of the closed-loop
system. When the PID controller with the specified
structure is applied to the model, the closed-loop system
is stable for all ¢ > 0. In practice, 1/¢ should be chosen
to be smaller than the bandwidth over which the process
model is valid. A good generally conservative initial guess
is to set ¢ equal to the dominant time constant of the
open-loop system.

If the model includes LHP zeros, these zeros should be
cancelled first by an appropriate lag and then the entries
from Table I can be used. If the system includes dead
time, Padé approximations may be used to simplify the
model; the result is a simple, lead-lag type controller. The
zeroth-order approximation requires ¢ > 6, for the first-
order approximation ¢ > 6/3.

When a first-order Padé approximation is used for a
first-order lag with dead time, the IMC design technique
yields the PID parameters listed in Table II. The ISE to
a step change is minimal for ¢/6 = 0.68. A better trade-off
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between performance and robustness is reached for ¢/6 =
0.8. For small dead times (§/7 < 1), robustness consid-
erations (unmodeled dynamics) will dictate a larger e.

By approximating a first-order lag with the dead-time
model by a first-order lag without dead time, the IMC
procedure leads to the “improved” PI parameters in Table
II. For a choice of ¢/6 = 1.7, the lower bound on per-
formance, over the entire 6/r range, is J/J ,, = 1.58 and
M = 1.15.

Furthermore, simple expressions for the allowable
dead-time error é are available in terms of the parameter
¢. For the IMC-PID rule, this expression is

5<(e+g) (85)

and for the improved PI rule
€
< -
) 7 (86)

VII. Conclusions

We have shown that for most of the models used to
describe the dynamics of chemical process systems, the
PID controller is the natural choice. In the absence of
nonlinearities, constraints, or multivariate interactions, it
is infeasible to improve the performance with more com-
plex controllers unless higher order, more accurate process
models are available.

Furthermore, by substituting Padé approximations,
these PID rules have been extended to models with dead
time. For the particular case of a first-order lag with
dead-time process, the improvement of the ISE for a step
set point/disturbance by the Smith predictor over a PID
controller is at most 10% regardless of /7. For small
values of 8/, this 10% improvement is generally not at-
tainable because of model uncertainties. For large values
of 8/7, some improvement is possible if the process model
is valid over a large enough bandwidth.

Although we show that PID-type controllers are ade-
quate for most common process models, we find that the
classical feedback structure is inadequate for a clear un-
derstanding of control system design. IMC formed the
basis of all the rules in Tables I and II. If one were to use
IMC directly and not insist on the traditional PID pa-
rameters, no rules and no involved tables would be needed.
The IMC design procedure is generally applicable re-
gardless of the system involved. No special provisions are
required to deal with very single type of system. The
complexity of the rules in Tables I and II demonstrates
that the PID parameters k¢, 71, and 7p are the conse-
quences of a long hardware tradition rather than because
they represent the most practical tuning tools. The un-
fortunate parametrization of the PID controller might also
explain why some modern control methods (possessing
structures that fall under that of IMC) have claimed im-
provements in control quality over PID for simple systems
where a properly tuned PID controller would have yielded
an equally good result. The results presented here also
clearly point out the limitations of PID controllers. The
practical occurrences of systems where no nonlinearities,
constraints, or multivariate interactions are present are
very rare. In all other situations, the PID controller must
be “patched up” with antireset windup, dead-time com-
pensators, and decouplers, while the IMC technique allows
a unified treatment of all cases.

Finally, we must acknowledge (Lau and Balhoff, 1984)
that the discrete form of IMC (Garcia and Morari, 1982),
because of the increased number of tuning parameters and
the added flexibility allowed by the discrete representation
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in formulating control objectives, can lead to performance
and robustness improvements not possible with the PID
parameters suggested here.
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Appendix

A. Analytical forms for w, and w, can be found for the
following:

Option 1.

-Bs +1 1

T B+l (s+ 1) (64)

&.f

The sensitivity operator is

v
26 + e)s((2ﬁ+ é)s + 1)

S=1-8f= (Bs + 1)(es + 1) (A1)

which yields

Wp

(—(78% + BBe + %) + [(78% + 8B¢ + )2 + 4(Be)?]/2)1/2
21/265

(A.2)
Using the asymptote approximation for the amplitude
of (A.1), one obtains

1

“b= 98+

To obtain the crossover frequency, we have cg
g -Bs + 1
=—-= (A.3)
-2

€8s + (e + 28)s
from which one obtains

cg

w., =

‘ (—(e% + 48¢ + 382 + [(&2 + 4B¢ + 369 + 4(B¢)2]V/H1/2
21/256

(A.4)

Again, using the asymptote approximation for the am-
plitude of (A.3), one obtains the simpler expression

N 1
Y= 08 + ¢
Option 2.
. -3s +1 66
g+f = s+ 1 (66)
The sensitivity operator is
(e + B)s
T (s + 1) (A-5)
which leads to
wy = 1 (A.6)

[2(e + B)% ~ €]1/2

or, from the asymptote amplitude approximation to (A.5),

U
@b = e+ 8
For the crossover frequency, the expressions are
-Bs + 1
cg = <+ B (A7)
from which one obtains
w, L (A.8)

R

and from the asymptote amplitude ratio

- 1
Qe = e+ g
Option 3.
. e—&s
&+f = es+1

For this case, it is not possible to write the bandwidth
or crossover expressions in explicit form. One can obtain
an approximate expression by representing the dead time
as a Padé approximation

and then proceeding according to option 1. The resulting
expressions are

1
f+ ¢
B. Crossover Approximation for PI and PID Rules.

The expression for cg arising from the use of the IMC-PID
rule to a first-order lag with the dead-time process is

[
(1+§s)e“’S
g= ——F——
C (&)
s te)s

One can solve explicitly for the crossover frequency to
obtain

Wy = we =

(B.1)

1

[G-9-0T

For ¢/6 > 0.8, it is reasonable to neglect the latter (1/2)?
term and thus approximate w, as

1 1

e 1\lv2 []
{3 ] o
For the IMC-improved PI rule, cg is

()

8= es(1 + 71s) (B.3)

(B.2)

we =

W, =

As 8 — 0, it is clear that the crossover frequency reaches
the value

w, — 1 (B.4)

€
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which implies

e

o~ =

(B.5)

W

Assuming, however, that 7 = 0 (the worst case), we see
that (B.5) is still a good approximation. Consider that for
7 = 0, the crossover frequency is determined explicitly by

1

AY 1\2 712
"[(5) ) (2) ]
For ¢/8 > 1.7, (¢/6)* » (1/2)* and therefore

1

€

We =

113

We
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A dried mixture of raw and activated sewage sludge was pyrolyzed in a bench-scale fluidized-bed reactor at
residence times of less than 1 s over the temperature range 400-700 °C. Organic liquid yields of up to 52%
maf were obtained at the optimum temperature of 450 °C and 0.55-s residence time. Shorter reaction times gave
slightly higher liquid yields. The effects of reaction atmosphere, char accumulation, and deashing on liquid yields
were also investigated. A test in a larger unit at a feed rate of 2 kg/h duplicated the bench-scale result. From
elemental analyses, the char appears to be aromatic in character, while the liquid tar product has a H/C atomic
ratio of about 1.77. A certain amount of water-soluble alcohols, ketones, etc., appear to be present also.

Treatment of municipal and industrial wastewaters
generates significant quantities of sludge, particularly if
biological processes are used. The cost of disposal of these
sludges, whether treated or untreated, has increased greatly
in recent years, and it has been estimated that the disposal
cost is now 50% of the total wastewater treatment cost.
Some recently used disposal methods may become more
restricted in future years, for example, landfill, water, or
ocean disposal and agricultural use. In 1980, sludge dis-
posal costs were estimated to be $208/ton in Canada,
$182/ton in the United States, and $162/ton in the Eu-
ropean Economic Community (Bridle, 1982). There is an
urgent need for alternate solutions to the sludge disposal
problem, and one of these may be the conversion of sludge
to a liquid fuel. Sludge combustion has been practiced for
a long time in a variety of processes but is normally a net
consumer of fuel and often encounters severe problems
with ash clinkering or slagging and with air pollution.

The possibility of converting municipal waste to a useful
fuel oil was demonstrated several years ago by the de-
velopment of the Occidental pyrolysis process, which used
a hot circulating flow of ash or char to rapidly decompose
organic material (Prober and Bauer, 1977). More recently,
German work has demonstrated that a synthetic crude oil
could be produced from sewage sludge by heating at 300

0196-4305/86/1125-0265$01.50/0

°C for 3 h under an inert atmosphere (Bayer and Kutub-
budin, 1982). Workers at Battelle Northwest Laboratories
have developed a similar process in which sludge is heated
with sodium carbonate for 1 h under an argon atmosphere
(as quoted in “Chemical Engineering”, 1981). The German
process is claimed to be a net producer of energy if the
sludge is dewatered.

Bridle et al. (1983a, 1983b) in Canada have recently
produced a good quality oil from a dried mixture of raw
and waste activated sludge using a retort type of reactor
at atmospheric pressure. Yields of up to 28% (dry basis)
were obtained at 425 °C. A high proportion of aliphatic
hydrocarbon was found in the pyrolytic oil produced.

Another possible pyrolysis process which has been used
successfully with various biomass materials, and with coal,
for the production of liquids is the short residence time
fluidized bed. The use of a fluidized bed of sand permits
very high heating rates of the solid and the rapid removal
of vapors formed by thermal decomposition of the feed.
This process has been called flash pyrolysis and has been
applied at atmospheric pressure to a wide variety of
biomass materials by Scott and Piskorz (1981, 1982a) with
good yields of liquid products. The application of this
process to dried sewage sludge will be described in the
following sections.
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