
SUBMITTED TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTING 100

On the Incorporation of Data Envelopement
Analysis in Evolutionary Algorithms for Multiple

Objective Optimization
J.V. Lill, Garrison Greenwood and Timothy R. Anderson

Abstract— We present the …rst results of applying Data
Envelopment Analysis (DEA) to compute …tness in a mul-
tiple objective Evolutionary Algorithm (EA). Results are
presented for the multiple objective 0/1 knapsack model of
Zitzler and Thiele, and for an additional 0/1 knapsack model
that we introduce. The implications for solving Multiple
Objective Optimization problems (MOP) in a general and
‡exible manner by generating Pareto optimal solutions us-
ing DEA are discussed.

Keywords— multiple objective, Data Envelopment Analy-
sis, linear program, knapsack problem

I. Introduction

Problems in multiple objective optimization (MOP) nat-
urally arise in many …elds of science, engineering and op-
erations research. For example, MOPs in electrical and
computer engineering are ubiquitous. Computer architects
strive to build increasingly faster computers. But there
are trade-o¤s among various attributes: when processing
speed increases, so do the dollar cost and power consump-
tion. The optimal design should have maximum process-
ing speed, but at minimum cost and minimum power
consumption. Other areas with di¢cult trade-o¤s in-
clude power transmission, control system design, and wire-
less broadcast networks. Note that these attributes are
non-commensurate, that is, they are measured in di¤erent
units.

The desire to compare the relative e¢ciencies of di¤er-
ent industrial and economic activities in an unambiguous
manner led economists to develop the basic mathematics
of Pareto optimality early in the twentieth century. A
solution to a MOP is non-dominated if all of its attribute
values are at least as good as (or better than) all other
corresponding attributes of any other solution; moreover,
there is at least one attribute value that is strictly better.
Such a non-dominated solution is Pareto optimal, and the
set of all such solutions forms a surface in parameter space
called the Pareto e¢ciency frontier.

Numerically, Pareto optimality achieved its most highly
developed application in the latter twentieth century in
Data Envelopment Analysis (DEA).[1] Here the mathe-
matical technique of linear programming is used to com-
pute a numerical e¢ciency of each solution to a MOP, as

James Lill and Timothy Anderson are in the Department of En-
gineering and Technology Management, Portland State University,
Portland, Oregon. E-mail: tima@etm.pdx.edu .

Garrison Greenwood is in the Department of Electrical and Com-
puter Engineering at Portland State University, Portland, Oregon.
E-mail: greenwd@ee.pdx.edu .

well as its projection onto the e¢ciency frontier. This e¢-
ciency denotes a normalized distance from the Pareto fron-
tier, and serves as an unambiguous measure of the degree to
which one solution is dominated by the others. The use of
DEA in operations research has grown exponentially in the
past twenty years, and a repository for DEA test problems
has recently been established at PSU.[2] However DEA
does not provide any method for generating solutions to
MOPs.

The …eld of evolutionary computation uses the Dar-
winian principles of natural selection found in nature
to …nd solutions to di¢cult optimization problems;[3][4]
MOPs constitute a primary focus area.[5][6] Historically,
evolutionary computations have a rich past, being indepen-
dently developed by at least three independent research ef-
forts, which ultimately produced three distinct paradigms:
genetic algorithms, evolutionary programming and evolu-
tion strategies. All EAs share the same basic organiza-
tion: iterations of competitive selection and random vari-
ation. More speci…cally, each generation (iteration of the
EA) takes a population of individuals (solutions) and mod-
i…es the genetic material (problem parameters) to produce
new individuals. Both the parents and o¤spring are evalu-
ated, but only the most …t individuals survive over multiple
generations.

Over the last 15 years evolutionary algorithms (EAs)
have proven to be highly e¤ective in searching for good
solutions to di¢cult optimization problems in general, and
MOPs in particular. Indeed, MOP is one of the most
extensively studied areas in the evolutionary computation
…eld. Fonseca and Fleming[7], and more recently Zitzler
and Thiele[8][9][10], have provided excellent reviews of the
various approaches to solving MOPs using EAs, and we
may distinguish three broad categories: those that assign
di¤erent weights or conversion factors to the various non-
commensurate attributes in order to form a single objec-
tive function, those that switch between distinct objective
functions for the di¤erent attributes during the course of
evolution, and those that make use of the idea of Pareto
optimality to de…ne …tness. Our approach falls into this
latter category.

We present here the …rst incorporation of DEA into EAs
to compute …tness functions for solutions to MOPs. There
are many di¤erent DEA models, and numerous distinct
EAs and possible re…nements, including crossover, muta-
tion, …tness sharing and elitism. In this brief article we
cannot hope to be exhaustive; rather, we will present the

SUBMITTED TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTING 101

most simple application, and address only a few of the prac-
tical di¢culties. It is our hope that this work will inspire
further cross-disciplinary collaborations that combine tech-
niques from di¤erent areas of engineering and operations
research to address di¢cult problems.

In the next section, we describe the two test MOPs
to be solved, and the genetic algorithm (GA) employed.
In the following section we present a brief desccription of
DEA and discuss the particular models used in the GA to
compute …tness. Numerical results re presented in the suc-
ceeding section. We conclude with a brief discussion, and
summarize the LPs that de…ne some of the more common
DEA models in an appendix.

II. Theory

A. 0/1 Multiple Objective, Single Knapsack Model

The test …rst MOP we have chosen is the 0/1 knapsack
problem of Zitzler and Thiele.[8][9] Although originally
described in terms of a number of di¤erent knapsacks each
assigning di¤erent ”values” and ”weights” to every item,
and each having di¤erent limits on the total ”weight,” it is
perhaps more easily understood in terms of a single knap-
sack. Here the di¤erent ”weights” could correspond to the
physical weight or volume, or to any extensive property
of the items; there are then several distinct capacities of
the single knapsack, given in terms of their total weight,
total volume, etc. The di¤erent values assigned to each
item could correspond to the di¤erent possible barter sys-
tems in which the items could be traded; for example, one
compass might be worth three pigs in the jungle or two
goats in the mountains. The di¤erent values must be non-
comensurate, otherwise the problem would reduce to that
of a single objective optimization.

A single subset of the total number of items is to be
is to be chosen so that all the constraints (e.g., those on
volume and on weight) are satis…ed and each value (e.g.,
pigs or goats) is maximized; these items are then put into
the single knapsack. In e¤ect, in this model, we don’t
know if we are going to the jungle or to the mountains, or
if we will visit both; however, we can only take a single
knapsack. In summary, this MOP tries to …nd a single set
of items that will be valued highly in any of the scenarios
envisioned. A single solution to the example of this MOP
having a total of M items could be represented by a bit
string having M bits, representing the presence or absence
of each item in the knapsack. We will numerically solve
examples of this multiple objective, single knapsack model,
and compare our results with those obtained by Zitzler and
Thiele in in order to verify that the correct Pareto frontier
is obtained using DEA to compute …tness.

B. 0/1 Multiple Objective, Multiple Knapsack Model

A distinct MOP can be derived by supposing that there
are separate knapsacks for each set of ”weights” and ”val-
ues,” and that a …nite number of items must be distributed
among all the knapsacks, subject to a single constraint for
each knapsack. In e¤ect, each item has a di¤erent value

and weight in each knapsack, each knapsack has a di¤erent
capacity expressed in terms of the corresponding weight,
and no item can appear in more than one knapsack in any
given solution. In this model, we have the freedom to
pack separate knapsacks for trips to the jungle or to the
mountains, but we only have a single example of each item
to pack. In summary, this MOP tries to determine mul-
tiple, mutually exclusive sets of items, each of which will
be valued highly under one of the scenarios envisioned. A
single solution to an example of this MOP having a total
of M items and K knapsacks could be represented by K
bit strings each having a total of M bits, representing the
presence or absence of a given item in a given knapsack.
The K bit strings can share no common items.

This same representation can be used to solve the mul-
tiple objective, single knapsack model if we demand that
the bit strings in each sack be identical. We will numer-
ically solve examples of this multiple objective, multiple
knapsack model below, and compare and contrast these re-
sults to those obtained with the multiple objective, single
knapsack model.

C. Evolutionary Algorithm

Because of the discrete nature of the test MOP, we have
chosen to use a simple genetic algorithm. Bit strings are
constructed as discussed above; thus each solution to the
single knapsack problem is represented by M bits and each
solutions to the multiple knapsack problem is represented
by M ¤ K bits. Initialization is accomplished by looping
over each item and inserting it in a randomly into either
the single knapsack, or into a randomly chosen knapsack.

We use only the following mutation operators in repro-
duction: complementation of a speci…ed maximum num-
ber mmax of bits; swapping two segments of consisting of
a speci…ed maximum length mmax of the bit string of an
individual with probability Pswap; attempting to insert a
speci…ed maximum number n of items into the randomly
chosen knapsacks of an individual with probability Pinsert.
If neither the swap nor insertion operations are performed
on a given individual, then a uniform variate on [1;mmax]
is chosen, and this number of bits is complemented; the
knapsacks for the complemented bits are chosen at ran-
dom. If complementation results in addition of an item
to the knapsack, then the other knapsacks are checked to
insure that the item does not appear twice; if the item is
found in a second knapsack, it is removed from this second
knapsack.

We also employ the ”greedy” repair mechanism of Zit-
zler and Thiele:[8][9][10] If a particular knapsack is over
its capacity, we remove items from it in increasing order of
the ratio of their value to their weight, as evaluated in that
particular knapsack. When solving the multiple objective,
multiple knapsack model, we must include a check to in-
sure that no items are repeated in di¤erent knapsacks in the
same individual; this check is not required with the muta-
tion operators just described, but is necessary if other forms
of reproduction (e.g., crossover) are employed. When solv-
ing the multiple objective, single knapsack model, we only

SUBMITTED TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTING 102

perform mutations within a single sack, whose bit string
is then replicated exactly in all the other sacks. If an
item must be removed from one sack to satisfy capacity
constraints, then this same item must be removed from all
sacks.

DEA demands that we identify all the parameters in the
LP as being either ”inputs” or ”outputs.” These are de-
…ned so that increasing the value of an input decreases the
…tness of a solution, while increasing the value of an output
increases the …tness of a solution. At …rst glance, the obvi-
ous associations would be to de…ne the weights of the items
as inputs and their values as outputs; however, we will see
later that this view must be modi…ed. We have also found
it necessary to identify all the clones in the population and
remove the ”extra” copies prior to evaluating the DEA e¢-
ciencies. Otherwise, numerical instabilities in the routine
used to solve the linear program can result. We could
identify clones by bit-wise comparisons of their genomes,
but we have found it faster to compute phenotypic dis-
tances, including both the weights (xnk) and values (ynk)
of individual n evaluated in knapsack k:

dn0n =

vuut
KX

k=0

h
(xn0k ¡ xn0k)2 + (ynk ¡ yn0k)2

i
(1)

Finally, we have adopted a (¸ + ¹) strategy with deci-
mation to perform selection. In addition, we follow Zitzler
and Thiele and maintain an elite population of " Pareto op-
timal individuals; these e¢cient solutions can contribute to
the mating pool. Other possibilities will be considered in
a more lengthy publication. An outline of the algorithm
is as follows:
1. Initialize the parent population of ¹ individuals.
2. Loop over the ¸ parents and the " elite individuals.
(a) Choose one parent and one elite solution at random.
(b) Mutate each parent and elite individual to form new

children.
i. Choose either the swap or insertion operations at ran-

dom.
ii. Generate a uniform variate u; if u · Pswap (or, if u ·

Pinsert), perform the swap (or insertion) operation.
iii. If neither swap nor insertion is performed, then gen-

erate a uniform variate 1 · u · mmax. Choose u bits in
knapsacks at random, and complement each bit.
iv. If iii resulted in an item being added to a knapsack,

loop over the remaining knapsacks and check if the same
item appears in a second knapsack; if so, delete the item
from the second knapsack.
(c) Repair each child.
i. Verify that the total weight of each knapsack is less than

or equal to its total capacity. If a knapsack is over capacity,
remove items from the knapsack in order of increasing ratio
of value to weight.
ii. Verify that no item appears in more than one knapsack

in the same individual. If a given items appears in k
knapsacks, choose k ¡ 1 of these knapsacks at random and
remove the item from each.
(d) If ¸ children have been produced, break.

3. Identify the clones in the population, and remove the
extra copies.
(a) Compute the phenotypic distances between the solu-

tions according to 1 and identify the clones in the popula-
tion.
(b) Eliminate all but one copy of each clone.

4. Compute the DEA e¢ciencies for the combined
(¸ + ¹ + ") population.
5. Update the elite population.
(a) Remove items that are no longer Pareto optimal, and

introduce new e¢cient individuals.
(b) If the number of e¢cient individuals exceeds ", reduce

the elite population size to " by clustering.[8][9][10]
6. Decimate the ine¢cient individuals to form the parent
population for the next generation.
7. If the maximum number of generations has been
reached, stop; if not, return to step 2.

D. DEA Models and Pareto E¢ciency

DEA is a set of protocols for using linear programming to
compute Pareto e¢ciencies for a population of individuals
that can be characterized as possessing two types of para-
meters, ”inputs” and ”outputs.” In typical applications
from operations research, each individual could represent
a factory, an operating unit of a corporation, or an indus-
trial process. The ”inputs” are distinguished from the
”outputs’ by the sense in which an individual’s e¢ciency is
a¤ected by an increase in the variable: if an arbitrary in-
crease in a variable x decreases the individual’s e¢ciency,
then x is an ”input;” conversely, if an arbitrary increase
in a variable y increases the individual’s e¢ciency, then y
is an ”output.” DEA begins with a fractional de…nition
of e¢ciency of individual i as being the ratio of weighted
sums of inputs to outputs:

´n =

PJ
j=1 ynjunjPI
i=1 xnivni

(2)

where we assume there are J outputs and I inputs. The
task is now to determine sets of weight for the for the in-
puts fvnig and outputs funjg of solution n; note that each
individual has a distinct set of weight for its inputs and
outputs. The basic idea is to assign to each individual n
a set of weights that maximizes its e¢ciency ´n. There
are several protocols for doing so, and these give rise to
di¤erent DEA models. However, they all share the feature
that the fractional program - i.e., the problem of maximiz-
ing the ratio in 2 subject to some speci…ed constraints -
becomes a linear program.

For example,?? we can maximize the e¢ciency ´i by min-
imizing the weighted sum of inputs:

min

"
IX

i=1

xnivni

#
(3)

subject to the constraints that weighted outputs for indi-
vidual i sum to unity

SUBMITTED TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTING 103

JX

j=1

ynjunj = 1 ¢ ¢ ¢ 1 · n · N (4)

and that the weight for the inputs and outputs be non-
negative:

unj; vni ¸ 0 (5)

Finding the extremum of 3 subject to the constraints 4
and 5 constitute a linear program, the solution of which lies
at the heart of DEA. Before proceeding, it is customary to
transform this linear program (LP) into its dual form. The
dual of linear program is obtained essentially by substitut-
ing maximizations for minimizations, changing constraints
into variables, and vice versa.[12] In the present case, the
dual of the linear program de…ned by 3, 4 and 5 becomes:
[1]

max [´n] (6)

subject to the constraints:

´n0 yn0j ¡
NX

n=1

¹n0nynj · 0 ¢ ¢ ¢ 1 · j · J (7)

xn0i ¡
NX

n=1

¹n0nxni ¸ 0 ¢ ¢ ¢ 1 · i · I (8)

in addition to the non-negative constraints.5 In the par-
lance of DEA, 3, 4 and 5 represent the LP in the multiplier
form, while 6, 7 and 8 represent the LP in the envelopment
form. This particular DEA model is called the Charnes-
Cooper-Rhodes (CCR) model - in particular, the output-
oriented CCR model, or CCRO.

This name may at …rst appear incongruous - after all,
in the multiplier form of the CCRO model we determine
the weight for the outputs by a normalization constraint
and the weight for the inputs by a minimization condition.
However, the nomenclature becomes more clear when we
consider that solution of the LP proceeds by …rst introduc-
ing the slack variables s+

ni and s¡
ni:

´n0 yn0j ¡
NX

n=1

¹n0nynj = ¡s+
n0j ¢ ¢ ¢ 1 · j · J (9)

xn0i ¡
NX

n=1

¹n0nxni = s¡
n0i ¢ ¢ ¢ 1 · i · I (10)

A solution n0 is Pareto optimal if and only if [1]

´n0 = 1 (11)

and
s+

n0j = 0 ¢ ¢ ¢ 1 · j · J (12)

s¡
n0i = 0 ¢ ¢ ¢ 1 · i · I (13)

The collection of such solutions forms the Pareto frontier.
It is clear from 9 that the envelopment form of the output-
oriented CCR model that the e¢ciency ´n0 measures the

departure of an ine¢cient solution from the Pareto fron-
tier only in those dimensions de…ned by the outputs. For
ine¢cient solutions, the CCRO e¢ciency lies in the range
1 < ´n < 1.

One reason for working with the dual problem is numer-
ical e¢ciency. Typically, the time required by the various
tableau algorithms employed to solve an LP scales with the
number of constraints, and N >> I +J. Note that a com-
plete evaluation of all the e¢ciencies ´n requires solution
of N envelopment LPs each having I +J constraints and N
variables (¹n0n) or solution of N multiplier LPs each hav-
ing N constraints and I + J variables (vni and unj). In
the following section, we will use the envelopment CCRO
model - and a slight variation of it - to compute …tness
functions for our GA to solve the 0/1 multiple knapsack
problem.

III. Numerical Results

In applying DEA to the 0/1 knapsack problem, the ob-
vious choice of variables is to assign the total weights of
the knapsacks as inputs and the total values of the knap-
sacks as outputs. Increasing the weight of a knapsack will
decrease 2 while increasing its value will increase 2.

ynj = value of knapsack j in solution n (14)

xni = weight of knapsack i in solutions n (15)

In the present problem with two knapsacks and 100 items,
we have I = J = 2. Traditional …tness functions are
de…ned so that large values describe individuals that are
more …t than those whose …tness functions have a smaller
value. Thus we de…ne the …tness of individual n as

fn = 1=´n (16)

We have implemented the simple tableau algorithm
(SIMPLX) given in Numerical Recipes in C.[11] Slight
modi…cations were necessary in order to make the code
run reliably with the tableaux generated by the GA during
the course of evolution. These minor changes are brie‡y
described in the appendix.

Use of this …tness function in combination with the e¢-
ciencies calculated by the CCRO model yields the data dis-
played as …lled circles in Figure 1. This graph summarizes
the e¢cient solutions obtained after 10 separate evolutions
having 100 parents, 200 children and 25 in the elite popu-
lation. The results are dysgenic; that is, solutions become
worse as evolution proceeds. It is not di¢cult to under-
stand why this has occurred. A further problem is that
solutions inside the apparent Pareto frontier are assigned
to the elite population.

With the e¢ciency de…ned as in 2, the GA seeks to …nd
the solution having the largest ration of value to weight;
but the solution having the largest such ratio can not have
a high total weight since, since inclusion of items having less
than the maximum ratio will decrease the overall e¢ciency
of the individual. The fact that we see solutions inside the
apparent Pareto frontier in the two-dimensional space of

SUBMITTED TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTING 104

the outputs is that we are really viewing in Figure 1 is
a projection of the four-dimensional Pareto surface in the
space of inputs and outputs onto the two-dimensional space
of the outputs only.

Clearly, we must employ a di¤erent de…nition of …tness or
a di¤erent DEA model. Fortunately, a standard approach
to such problems exists. We retain the basic structure of
the CCRO model but de…ne all the inputs to be unity.
This output-only, or CCROO model, is de…ned by:

ynj = value of knapsack j in solution n (17)

xni = 1 (18)

Using 16 but with the CCROO model yields the open cir-
cles in Figure 1. The solutions are no longer dysgenic,
and the Pareto frontier now appears as a line in the two-
dimensional space of outputs - as it should. Convergence
is rapid.

IV. Discussion

In conclusion, we have demonstrated that appropriate
DEA models can be used to compute …tness functions in
a multiple objective EA. There is an enormous DEA lit-
erature in operations research, where various DEA models
have been applied to a wide variety of problems. There is
a correspondingly large numerical literature that provides
many alternatives for solving the LPs that arise. DEA
provides a ‡exible and numerically-proven method for com-
puting Pareto e¢ciency in a manner that is independent
of the units used to measure the di¤erent attributes, and
is thus well-suited to computing solutions to MOPs.

V. Appendix: Common DEA Models and
Numerical Details

Because this is the …rst application of Data Envelopment
Analysis to Evolutionary Algorithms, we have included
here a summary of some the more common DEA models.
We merely display the primal and dual LPs that de…ne each
model, and o¤er a few comments on each. Broadly speak-
ing, we may distinguish three categories of DEA models:
the Charnes-Cooper-Rhodes (CCR) models, characterized
by a constant return to scales; the Banker-Charnes-Cooper
(BCC) models, characterized by a variable return to scales;
and various additive models. These latter models assume
some relationship between the variables that allows them
to be added, i.e., the variables are commensurate; we will
not consider additive models here.

In general, we will assume that there are I inputs, J
outputs and N solutions; the LPs summarized below solve
for the e¢ciency of solution n0. Denote the input variables
as fXmkg and the output variables as fYmkg, and assume:

Xmk ¸ 0; Ymk ¸ 0 (19)

The following table summarizes the LPs that de…ne the
common DEA models. We largely adher to the stan-
dard notation,[1] however minor departures have been in-
troduced for greater clarity in the present context. The

Multiplier Form:

objective: max
hPJ

j=1 un0jYn0j

i

constraints: 1 =
PI

i=1 vn0iXn0i

constraints: sn =
PI

i=1 vniXni ¡ PJ
j=1 unjYnj

variables: unj ¸ 0; vni ¸ 0; sn ¸ 0
Envelopment Form: Phase 1
objective: 0 · min [µn0] = µ¤

n0 · 1

constraints: s¡
n0i = µn0Xn0i ¡ PN

n=1 ¸n0nXni

constraints: ¡s+
n0j = Yn0j ¡ PN

n=1 ¸n0nYnj

variables: ¸n0n ¸ 0; s+
nj ¸ 0; s¡

ni ¸ 0
Envelopment Form: Phase 2

objective: max
hPI

i=1 s¡
n0i +

PJ
j=1 s+

n0j

i

TABLE I

Input-Oriented CCR Model

Multiplier Form:

objective: min
hPI

i=1 pn0iXn0i

i

constraints: 1 =
PJ

j=1 qn0jYn0j

constraints: tn =
PI

i=1 pnkXnk ¡ PJ
j=1 qnkYnk

variables: qnj ¸ 0; pni ¸ 0; tn ¸ 0
Envelopment Form: Phase 1
objective: 1 · max [´n0] = ´¤

n0 · 1
constraints: t¡n0i = Xn0i ¡ PN

n=1 ¹n0nXni

constraints: ¡t+n0j = ´n0 Yn0j ¡ PN
n=1 ¹n0nYnj

variables: ¹n0n ¸ 0; t+nj ¸ 0; t¡
ni ¸ 0

Envelopment Form: Phase 2

objective: max
hPI

i=1 t¡n0i +
PJ

j=1 t+n0j

i

TABLE II

Output-Oriented CCR Model

envelopment forms listed below constitute the …rst phase
of a two-phase solution. The second phase involves maxi-
mization of the slacks and (or and) after substitution

There are many books[12][13] and web resources[14] that
describe the numerical solution of linear programs and their
application to various problems in economics and opera-
tions research. Typical applications of DEA in operations
research involve solving few, large, sparse LPs. Much of
the e¤ort in numerically solving LPs that arise in such
problems is devoted to performing pivoting in large sparse
arrays. By contrast, the present analysis involves solution
of many, small, dense LPs. We have therefore implemented
the simple tableau algorithm with no sparse matrix tech-
nology given in Numerical Recipes in C.[11]

However, numerical instabilities would occasionally arise
during evolution, generating solutions that violated various
constraints to a signi…cant degree. In addition to translat-
ing the code to double precision, we therefore wrote a driver
for SIMPLX that would monitor the number of pivots ex-
ecuted within SIMPLX as well as the quality of the results
it returned. If a speci…ed number of pivots (e.g., 250) was

SUBMITTED TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTING 105

Multiplier Form:

objective: max
hPJ

j=1 un0jYn0j ¡ wn0

i

constraints: 1 =
PI

i=1 vn0iXn0i

constraints: sn =
PI

i=1 vniXni ¡ PJ
j=1 unjYnj + wn

variables: unj ¸ 0; vni ¸ 0; sn ¸ 0
Envelopment Form: Phase 1
objective: 0 · min [µn0] = µ¤

n0 · 1

constraints: 0 · s¡
n0i = µn0 Xn0i ¡ PN

n=1 ¸n0nXni

constraints: 0 ¸ ¡s+
n0j = Yn0j ¡ PN

n=1 ¸n0nYnj

constraints: 1 =
PN

n=1 ¸n0n

variables: ¸n0n ¸ 0; s+
nj ¸ 0; s¡

ni ¸ 0
Envelopment Form: Phase 2

objective: max
hPI

i=1 s¡
n0i +

PJ
j=1 s+

n0j

i

TABLE III

Input-Oriented BCC Model

Multiplier Form:

objective: min
hPI

i=1 pn0iXn0i ¡ rn0

i

constraint: 1 =
PJ

j=1 qn0jYn0j

constraint: tn =
PI

i=1 pnkXnk ¡ PJ
j=1 qnkYnk ¡ rn0

variables: qnj ¸ 0; pni ¸ 0; tn ¸ 0
Envelopment Form: Phase 1
objective: 1 · max [´n0] = ´¤

n0 · 1
constraints: t¡n0i = Xn0i ¡ PN

n=1 ¹n0nXni

constraints: ¡t+n0j = ´n0 Yn0j ¡ PN
n=1 ¹n0nYnj

constraints: 1 =
PN

n=1 ¹n0n

variables: ¹n0n ¸ 0; t+nj ¸ 0; t¡ni ¸ 0
Envelopment Form: Phase 2

objective: max
hPI

i=1 t¡
n0i +

PJ
j=1 t+n0j

i

TABLE IV
Output-Oriented BCC Model

exceeded, of if the results returned by SIMPLX violated the
imposed constraints by some speci…ed numerical tolerance
(e.g., 10¡6), then the driver would randomly re-order the
columns of the tableau and attempt solution by SIMPLX
once again. This re-ordering could be repeated a speci…ed
number (e.g., 250) of times. This strategy would be in-
appropriate for solution of a few large, sparse systems, but
it improves numerical stability with relatively little addi-
tional computational cost when solving many small, dense
systems, only a few of which require re-ordering. Care
must be take to retain the map connecting the original and
re-ordered columns so that the variables and slacks may be
identi…ed correctly after the LP has been solved.

After these modi…cations, the only numerical trouble en-
countered has been occasional cycling; that is, the speci…ed
number of re-orderings can occasionally be reached with no
convergence having taken place. The most e¤ect counter
to this has been to identify and eliminate the clones in the
population prior to computing DEA …tness. The subject

of cycling is somewhat controversial in the DEA literature,
and examples of genuine cycling are rare. We obviously do
not exhaust all the possibile re-orderings of the columns;
this would require solution of order 100! LPs for the current
problem.

Acknowledgments

We wish to acknowledge …nancial support from Portland
State University, and to express our gratitude to Dr. Eckart
Zitzler of the Institut TIK in Zurich for providing us with
additional data.

References
[1] William W. Cooper, Lawrence M. Seiford and Kaoru Tone, Data

Envelopment Analysis, Kluwer (2000).
[2] Timothy R. Anderson and Keith B. Hollingsworth, An Introduc-

tion to Data Envelopment Analysis in Technologh Management,
Proceedings of PICMET ’97.

[3] Thomas Bäck, Evolutionary Algorithms in Theory and Practice,
Oxford (1996).

[4] David B. Fogel, Evolutionary Computation, IEEE Press (1996).
[5] Yahya Rahmat-Samii and Eric Michielssen, Electromagnetic Op-

timization by Genetic Algorithms. Wiley (1999).
[6] G. Greenwood, Xiabo Hu and Joseph G. D’Ambrosio, Fitness

Functions for Multiple Objective Optimization Problems: Com-
bining Preferences with Pareto Rankings, Foundations of Genetic
Algorithms 4, Morgan Kaufmann (1996).

[7] Carlos M. Fonseca and Peter J. Fleming, Fitness Functions
for Multiple objective Optimization Problems: Combining Pref-
erences with Pareto Rankings, Evolutionary Computation 3(1)1-
16, Morga-kaufmann (1997).

[8] Eckart Zitzler and Lothar Thiele, SPEA2: Improving the Strength
Pareto Evolutionary Algorithm, IEEE Transactions on Evolu-
tionary Computing 3(4) 257-274 (1999).

[9] Eckart Zitzler, Marco Laumanns and Lothar Thiele, Multiobjec-
tive Evolutionary Algorithms: A comparitive Case Study and the
Strength Pareto Approach, TIK Report 103 (2001).

[10] Eckart Zitzler, Multiobjective Evolutionary Algorithms for Mul-
tiobjective Optimization: Methods and Applications, TIK
SCHRIFTENREIHE Nr. 30 (1999).

[11] William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery, Numerical Recipes in C, Cambridge (1996).

[12] Vašek Chvátal, Linear Programming, W. H. Freeman (1980).
[13] Robert J. Vanderbei, Linear Programming: Foundations and

Extensions, Kluwer (1997).
[14] http://www-unix.mcs.anl.gov/otc/Guide/faq/linear-

programming-faq.html

