Laﬂ]ce HDL Synthesis Coding Guidelines for

255111 Semiconductor Lattice Semiconductor FPGAs

== mnmn CoOrporation

October 2005 Technical Note TN1008

Introduction

Coding style plays an important role in utilizing FPGA resources. Although many popular synthesis tools have sig-
nificantly improved optimization algorithms for FPGASs, it still is the responsibility of the user to generate meaningful
and efficient HDL code to guide their synthesis tools to achieve the best result for a specific architecture. This appli-
cation note is intended to help designers establish useful HDL coding styles for Lattice Semiconductor FPGA
devices. It includes VHDL and Verilog design guidelines for both novice and experienced users.

The application note is divided into two sections. The general coding styles for FPGAs section provides an over-
view for effective FPGA designs. The following topics are discussed in detail:

* Hierarchical Coding

* Design Partitioning

* Encoding Methodologies for State Machines

* Coding Styles for Finite State Machines (FSM)

* Using Pipelines

e Comparing IF Statements and CASE Statements
» Avoiding Non-intentional Latches

The HDL Design with Lattice Semiconductor FPGA Devices section covers specific coding techniques and exam-
ples:

Using the Lattice Semiconductor FPGA Synthesis Library
Implementation of Multiplexers

Creating Clock Dividers

Register Control Signals (CE, LSR, GSR)

Using PIC Features

Implementation of Memories

Preventing Logic Replication and Fanout

Comparing Synthesis Results and Place and Route Results

General Coding Styles for FPGA

The following recommendations for common HDL coding styles will help users generate robust and reliable FPGA
designs.

Hierarchical Coding

HDL designs can either be synthesized as a flat module or as many small hierarchical modules. Each methodology
has its advantages and disadvantages. Since designs in smaller blocks are easier to keep track of, it is preferred to
apply hierarchical structure to large and complex FPGA designs. Hierarchical coding methodology allows a group
of engineers to work on one design at the same time. It speeds up design compilation, makes changing the imple-
mentation of key blocks easier, and reduces the design period by allowing the re-use of design modules for current
and future designs. In addition, it produces designs that are easier to understand. However, if the design mapping
into the FPGA is not optimal across hierarchical boundaries, it will lead to lower device utilization and design perfor-
mance. This disadvantage can be overcome with careful design considerations when choosing the design hierar-
chy. Here are some tips for building hierarchical structures:

* The top level should only contain instantiation statements to call all major blocks

* Any I/O instantiations should be at the top level

* Any signals going into or out of the devices should be declared as input, output or bi-directional pins at the
top level

www.latticesemi.com 12-1 tn1008_02.1

HDL Synthesis Coding Guidelines
Lattice Semiconductor for Lattice Semiconductor FPGAs

* Memory blocks should be kept separate from other code

Design Partitioning

By effectively partitioning the design, a designer can reduce overall run time and improve synthesis results. Here
are some recommendations for design partitioning.

Maintain Synchronous Sub-blocks by Registering All Outputs

It is suggested to arrange the design boundary such that the outputs in each block are registered. Registering out-
puts helps the synthesis tool to consider the implementation of the combinatorial logic and registers into the same
logic block. Registering outputs also makes the application of timing constraints easier since it eliminates possible
problems with logic optimization across design boundaries. Single clock is recommended for each synchronous
block because it significantly reduces the timing consideration in the block. It leaves the adjustment of the clock
relationships of the whole design at the top level of the hierarchy. Figure 12-1 shows an example of synchronous
blocks with registered outputs.

Figure 12-1. Synchronous Blocks with Registered Outputs

= 1
-
¢S ¢S

Keep Related Logic Together in the Same Block

Keeping related logic and sharable resources in the same block allows the sharing of common combinatorial terms
and arithmetic functions within the block. It also allows the synthesis tools to optimize the entire critical path in a
single operation. Since synthesis tools can only effectively handle optimization of certain amounts of logic, optimi-
zation of critical paths pending across the boundaries may not be optimal. Figure 12-2 shows an example of merg-
ing sharable resource in the same block.

Figure 12-2. Merge Sharable Resource in the Same Block

A B C

S = S P
8 X

MUX

Separate Logic with Different Optimization Goals
Separating critical paths from non-critical paths may achieve efficient synthesis results. At the beginning of the
project, one should consider the design in terms of performance requirements and resource requirements. If there

12-2

HDL Synthesis Coding Guidelines
Lattice Semiconductor for Lattice Semiconductor FPGAs

are two portions of a block, one that needs to be optimized for area and a second that needs to be optimized for
speed, they should be separated into two blocks. By doing this, different optimization strategies for each module
can be applied without being limited by one another.

Keep Logic with the Same Relaxation Constraints in the Same Block

When a portion of the design does not require high performance, this portion can be applied with relaxed timing
constraints such as “multicycle” to achieve high utilization of device area. Relaxation constraints help to reduce
overall run time. They can also help to efficiently save resources, which can be used on critical paths. Figure 12-3
shows an example of grouping logic with the same relaxation constraint in one block.

Figure 12-3. Logic with the Same Relaxation Constraint

A B A

FF1 E_S FF2 » FF1 E_S FF2

Keep Instantiated Code in Separate Blocks

It is recommended that the RAM block in the hierarchy be left in a separate block (Figure 12-4). This allows for easy
swapping between the RAM behavioral code for simulation, and the code for technology instantiation. In addition,
this coding style facilitates the integration of the ispLEVER® IPexpress™ tool into the synthesis process.

Figure 12-4. Separate RAM Block

Top

RAM | Controller [Register File

State Machine | Counter

Keep the Number FPGA Gates at 30 to 80 PFU Per Block

This range varies based on the computer configuration, time required to complete each optimization run, and the
targeted FPGA routing resources. Although a smaller block methodology allows more control, it may not produce
the most efficient design since it does not provide the synthesis tool enough logic to apply “Resource Sharing”
algorithms. On the other hand, having a large number of gates per block gives the synthesis tool too much to work
on and causes changes that affect more logic than necessary in an incremental or multi-block design flow.

State Encoding Methodologies for State Machines

There are several ways to encode a state machine, including binary encoding, gray-code encoding and one-hot
encoding. State machines with binary or gray-code encoded states have minimal numbers of flip-flops and wide
combinatorial functions, which are typically favored for CPLD architectures. However, most FPGAs have many flip-
flops and relatively narrow combinatorial function generators. Binary or gray-code encoding schemes can result in
inefficient implementation in terms of speed and density for FPGAs. On the other hand, one-hot encoded state
machine represents each state with one flip-flop. As a result, it decreases the width of combinatorial logic, which
matches well with FPGA architectures. For large and complex state machines, one-hot encoding usually is the
preferable method for FPGA architectures. For small state machines, binary encoding or gray-code encoding may
be more efficient.

There are many ways to ensure the state machine encoding scheme for a design. One can hard code the states in
the source code by specifying a numerical value for each state. This approach ensures the correct encoding of the
state machine but is more restrictive in the coding style. The enumerated coding style leaves the flexibility of state
machine encoding to the synthesis tools. Most synthesis tools allow users to define encoding styles either through

12-3

HDL Synthesis Coding Guidelines
Lattice Semiconductor for Lattice Semiconductor FPGAs

attributes in the source code or through the tool's Graphical User Interface (GUI). Each synthesis tool has its own
synthesis attributes and syntax for choosing the encoding styles. Refer to the synthesis tools documentation for
details about attributes syntax and values.

The following syntax defines an enumeration type in VHDL:

type type name is (statel name,state2 name,...... ,stateN_name)

Here is a VHDL example of enumeration states:

type STATE TYPE is (S0,S1,S2,S3,S4);
signal CURRENT_ STATE, NEXT STATE : STATE TYPE;

The following are examples of Synplify® and LeonardoSpectrum® VHDL synthesis attributes.

Synplify:
attribute syn encoding : string;
attribute syn_encoding of <signal name> : type is "value ";
-- The syn_encoding attribute has 4 values : sequential, onehot, gray and safe.

LeonardoSpectrum:

-- Declare TYPE_ENCODING_STYLE attribute

-- Not needed if the exemplar 1164 package is used

type encoding style is (BINARY, ONEHOT, GRAY, RANDOM, AUTO);
attribute TYPE_ENCODING_STYLE : encoding style;

attribute TYPE ENCODING_STYLE of <typename> : type is ONEHOT;

In Verilog, one must provide explicit state values for states. This can be done by using the bit pattern (e.g., 3'b001),
or by defining a parameter and using it as the case item. The latter method is preferable. The following is an exam-
ple using parameter for state values.

Parameter statel = 2'hl, state2 = 2'h2;

current_state = state2; // setting current state to 2'h2

The attributes in the source code override the default encoding style assigned during synthesis. Since Verilog does
not have predefined attributes for synthesis, attributes are usually attached to the appropriate objects in the source
code as comments. The attributes and their values are case sensitive and usually appear in lower case. The follow-
ing examples use attributes in Verilog source code to specify state machine encoding style.

Synplify:
Reg[2:0] state; /* synthesis syn encoding = "value" */;
// The syn encoding attribute has 4 values : sequential, onehot, gray and safe.

In LeonardoSpectrum, it is recommended to set the state machine variable to an enumeration type with enum
pragma. Once this is set in the source code, encoding schemes can be selected in the LeonardoSpectrum GUI.

LeonardoSpectrum:

Parameter /* exemplar enum <type name> */ s0 = 0, sl =1, s2 = 2, s3 = 3, S4 = 4;
Reg [2:0] /* exemplar enum <type name> */ present state, next state ;

In general, synthesis tools will select the optimal encoding style that takes into account the target device architec-
ture and size of the decode logic. One can always apply synthesis attributes to override the default encoding style
if necessary.

12-4

HDL Synthesis Coding Guidelines
Lattice Semiconductor for Lattice Semiconductor FPGAs

Coding Styles for FSM

A finite state machine (FSM) is a hardware component that advances from the current state to the next state at the
clock edge. As mentioned in the Encoding Methodologies for State Machines section, the preferable scheme for
FPGA architectures is one-hot encoding. This section discusses some common issues encountered when con-
structing state machines, such as initialization and state coverage, and special case statements in Verilog.

General State Machine Description

Generally, there are two approaches to describe a state machine. One is to use one process/block to handle both
state transitions and state outputs. The other is to separate the state transition and the state outputs into two differ-
ent process/blocks. The latter approach is more straightforward because it separates the synchronous state regis-
ters from the decoding logic used in the computation of the next state and the outputs. This will make the code
easier to read and modify, and makes the documentation more efficient. If the outputs of the state machine are
combinatorial signals, the second approach is almost always necessary because it will prevent the accidental reg-
istering of the state machine outputs.

The following examples describe a simple state machine in VHDL and Verilog. In the VHDL example, a sequential
process is separated from the combinatorial process. In Verilog code, two always blocks are used to describe the
state machine in a similar way.

VHDL Example for State Machine Verilog Example for State Machine
architecture lattice_fpga of dram refresh is parameter s0 = 0, sl =1, s2 = 2, s3 = 3, s4 = 4;
type state_typ is (s0, sl, s2, s3, s4);
signal present_state, next_state : state_typ; reg [2:0] present_state, next_state;
begin reg ras, cas, ready;
-- process to update the present state
registers: process (clk, reset) // always block to update the present state
begin always @ (posedge clk or posedge reset)
if (reset='l") then begin
present_state <= s0; if (reset) present_state = s0;
elsif clk'event and clk='l' then else present_state = next_state;
present_state <= next_state; end
end if;
end process registers; // always block to calculate the next state & outputs
always @ (present_state or refresh or cs)
-- process to calculate the next state & output begin
transitions: process (present_state, refresh, cs) next_state = s0;
begin ras = 1'bX; cas = 1'bX; ready = 1'bX;
ras <= '0'; cas <= '0'; ready <= '0'; case (present_state)
case present_state is s0 : if (refresh) begin
when s0 => next_state = s3;
ras <= 'l'; cas <= 'l'; ready <= '1'; ras = 1'bl; cas = 1'b0; ready = 1'b0;
if (refresh = 'l') then next_state <= s3; end
elsif (cs = 'l1') then next_state <= sl; else if (cs) begin
else next_state <= s0; next_state = sl; ras = 1'b0; cas = 1'bl; ready = 1'b0;
end if; end
when sl => else begin
ras <= '0'; cas <= 'l'; ready <= '0'; next_state = s0; ras = 1'bl; cas = 1'bl; ready = 1'bl;
next_state <= s2; end
when s2 => sl : begin
ras <= '0'; cas <= '0'; ready <= '0'; next_state = s2; ras = 1'b0; cas = 1'b0; ready = 1'b0;
if (cs = '0') then next_state <= s0; end
else next_state <= s2; s2 : if (~cs) begin
end if; next_state = s0; ras = 1'bl; cas = 1'bl; ready = 1'bl;
when s3 => end
ras <= 'l'; cas <= '0'; ready <= '0'; else begin
next_state <= s4; next_state = s2; ras = 1'b0; cas = 1"b0; ready = 1°b0;
when s4 => end
ras <= '0'; cas <= '0'; ready <= '0'; s3 : begin
next_state <= sO; next_state = s4; ras = 1'bl; cas = 1'b0; ready = 1'b0;
when others => end
ras <= "0"; cas <= "0"; ready <= "07; s4 : begin
next_state <= sO; next_state = s0; ras = 1'b0; cas = 1'b0; ready = 1'b0;
end case; end
end process transitions; endcase
end

12-5

HDL Synthesis Coding Guidelines
Lattice Semiconductor for Lattice Semiconductor FPGAs

Initialization and Default State

A state machine must be initialized to a valid state after power-up. This can be done at the device level during
power up or by including a reset operation to bring it to a known state. For all Lattice Semiconductor FPGA devices,
the Global Set/Reset (GSR) is pulsed at power-up, regardless of the function defined in the design source code. In
the above example, an asynchronous reset can be used to bring the state machine to a valid initialization state. In
the same manner, a state machine should have a default state to ensure the state machine will not go into an
invalid state if not all the possible combinations are clearly defined in the design source code. VHDL and Verilog
have different syntax for default state declaration. In VHDL, if a CASE statement is used to construct a state
machine, “When Others” should be used as the last statement before the end of the statement, If an IF-THEN-
ELSE statement is used, “Else” should be the last assignment for the state machine. In Verilog, use “default” as the
last assignment for a CASE statement, and use “Else” for the IF-THEN-ELSE statement.

When Others in VHDL Default Clause in Verilog
architecture lattice_fpga of FSM1 is // Define state labels explicitly
type state_typ is (deflt, idle, read, write); parameter deflt=2'bxx;
signal next_state : state_typ; parameter idle =2'b00;
begin parameter read =2'b01;
process(clk, rst) parameter write=2'bl0;
begin
if (rst='1l") then reg [1:0] next_state;
next_state <= idle; dout <= '0'; reg dout;
elsif (clk'event and clk='l') then
case next_state is always @(posedge clk or posedge rst)
when idle => if (rst) begin
next_state <= read; dout <= din(0); next_state <= idle;
when read => dout <= 1'b0;
next_state <= write; dout <= din(1l); end
when write => else begin
next_state <= idle; dout <= din(2); case(next_state)
when others => idle: begin
next_state <= deflt; dout <= '0'; dout <= din[0]; next_state <= read;
end case; end
end if; read: begin
end process; dout <= din[1l]; next_state <= write;
end
write: begin
dout <= din[2]; next_state <= idle;
end
default: begin
dout <= 1'b0; next_ state <= deflt;
end

Full Case and Parallel Case Specification in Verilog

Verilog has additional attributes to define the default states without writing it specifically in the code. One can use
“full_case” to achieve the same performance as “default’. The following examples show the equivalent representa-
tions of the same code in Synplify. LeonardoSpectrum allows users to apply Verilog-specific options in the GUI set-
tings.

case (current state) // synthesis full case case (current_state)
2'b00 : next state <= 2'b01; 2'b00 : next state <= 2'b01;
2'b01 : next state <= 2'bll; 2'b01 : next state <= 2'bll;
2'bll : next state <= 2'b00; 2'bll : next state <= 2'b00;

default : next_state <= 2bx;

“Parallel_case” makes sure that all the statements in a case statement are mutually exclusive. It is used to inform
the synthesis tools that only one case can be true at a time. The syntax for this attribute in Synplify is as follows:

// synthesis parallel case

Using Pipelines in the Designs

Pipelining can improve design performance by restructuring a long data path with several levels of logic and break-
ing it up over multiple clock cycles. This method allows a faster clock cycle by relaxing the clock-to-output and
setup time requirements between the registers. It is usually an advantageous structure for creating faster data
paths in register-rich FPGA devices. Knowledge of each FPGA architecture helps in planning pipelines at the

12-6

HDL Synthesis Coding Guidelines

Lattice Semiconductor for Lattice Semiconductor FPGAs

beginning of the design cycle. When the pipelining technique is applied, special care must be taken for the rest of
the design to account for the additional data path latency. The following illustrates the same data path before
(Figure 12-5) and after pipelining (Figure 12-6).

Figure 12-5. Before Pipelining

FF1 Comb. Comb. Comb. FF1
Function Function Function
’* —> —> —> (
Slow Clock
Figure 12-6. After Pipelining
b
FF1 | _, Comb. FF2 Comb. FF3 Comb. FF4
Function Function Function
— — —]
Fast Clock

Before pipelining, the clock speed is determined by the clock-to-out time of the source register, the logic delay
through four levels of combinatorial logic, the associated routing delays, and the setup time of the destination regis-
ter. After pipelining is applied, the clock speed is significantly improved by reducing the delay of four logic levels to
one logic level and the associated routing delays, even though the rest of the timing requirements remain the same.
It is recommended to check the Place and Route timing report to ensure that the pipelined design gives the desired
performance.

Comparing IF statement and CASE statement

CASE and IF-THEN-ELSE statements are common for sequential logic in HDL designs. The IF-THEN-ELSE state-
ment generally generates priority-encoded logic, whereas the CASE statement implements balanced logic. An IF-
THEN-ELSE statement can contain a set of different expressions while a Case statement is evaluated against a
common controlling expression. Both statements will give the same functional implementation if the decode condi-
tions are mutually exclusive, as shown in the following VHDL codes.

-- Case Statement — mutually exclusive conditions
process (s, X, Y, 2)

begin
0l <= ‘0';
02 <= ‘0';
03 <= ‘0';

case (s) is
when “00” => 01 <= x;
when “01” => 02 <= y;
when “10” => 03 <= z;
end case;
end process;

-- If-Then-Else — mutually exclusive conditions
process (s, X, Y, 2)
begin

01 <= ‘0';

02 <= ‘0';

03 <= ‘0';

if s = “00” then 01 <= x;
“01” then 02 <= y;
“10” then 03 <= z;

end process;

12-7

HDL Synthesis Coding Guidelines
Lattice Semiconductor for Lattice Semiconductor FPGAs

However, the use of If-Then-Else construct could be a key pitfall to make the design more complex than necessary,
because extra logic are needed to build a priority tree. Consider the following examples:

--A: If-Then-Elese Statement: Complex O3 Equations --B: If-Then-Else Statement: Simplified O3 Equation
process(sl, s2, s3, X, y, 2) process (sl, s2, s3, x, y, 2)
begin begin
0l <= '0"; 0l <= '0";
02 <= '0"; 02 <= '0";
03 <= ‘0'; 03 <= ‘0';
if s1 = 1’ then if s1 = 1’ then
0l <= x; 0l <= x;
elsif s2 = ‘1’ then end if;
02 <= y; if s2 = ‘1’ then
elsif s3 = ‘1’ then 02 <= vy;
03 <= z; end if;
end if; if s3 <= ‘1’ then
end process; 03 <= z;
end if;
end process;

If the decode conditions are not mutually exclusive, IF-THEN-ELSE construct will cause the last output to be
dependent on all the control signals. The equation for O3 output in example A is:

03 <= z and (s3) and (not (sl and s2));

If the same code can be written as in example B, most of the synthesis tools will remove the priority tree and
decode the output as:

03 <= z and s3;

This reduces the logic requirement for the state machine decoder. If each output is indeed dependent of all of the
inputs, it is better to use a CASE statement since CASE statements provide equal branches for each output.

Avoiding Non-intentional Latches

Synthesis tools infer latches from incomplete conditional expressions, such as an IF-THEN-ELSE statements with-
out an Else clause. To avoid non-intentional latches, one should specify all conditions explicitly or specify a default
assignment. Otherwise, latches will be inserted into the resulting RTL code, requiring additional resources in the
device or introducing combinatorial feedback loops that create asynchronous timing problems. Non-intentional
latches can be avoided by using clocked registers or by employing any of the following coding techniques:

¢ Assigning a default value at the beginning of a process
* Assigning outputs for all input conditions
* Using else, (when others) as the final clause

Another way to avoid non-intentional latches is to check the synthesis tool outputs. Most of the synthesis tools give
warnings whenever there are latches in the design. Checking the warning list after synthesis will save a tremen-
dous amount of effort in trying to determine why a design is so large later in the Place and Route stage.

HDL Design with Lattice Semiconductor FPGA Devices

The following section discusses the HDL coding techniques utilizing specific Lattice Semiconductor FPGA system
features. This kind of architecture-specific coding style will further improve resource utilization and enhance the
performance of designs.

Lattice Semiconductor FPGA Synthesis Library

The Lattice Semiconductor FPGA Synthesis Library includes a number of library elements to perform specific logic
functions. These library elements are optimized for Lattice Semiconductor FPGAs and have high performance and
utilization. The following are the classifications of the library elements in the Lattice Semiconductor FPGA Synthe-

12-8

HDL Synthesis Coding Guidelines
Lattice Semiconductor for Lattice Semiconductor FPGAs

sis Library. The definitions of these library elements can be found in the Reference Manuals section of the
ispLEVER on-line help system.

* Logic gates and LUTs

e Comparators, adders, subtractors
e Counters

* Flip-flops and latches
* Memory, 4E-specific memory (block RAM function)
¢ Multiplexors
e Multipliers

e All /O cells, including 1/O flip-flops

¢ PIC cells

* Special cells, including PLL, GSR, boundary scan, etc.
* FPSC elements

IPepxress, a parameterized module complier optimized for Lattice FPGA devices, is available for more complex
logic functions. IPexpress supports generation of library elements with a number of different options such as PLLs
and creates parameterized logic functions such as PFU and EBR memory, multipliers, adders, subtractors, and
counters. IPexpress accepts options that specify parameters for parameterized modules such as data path mod-
ules and memory modules, and produces a circuit description with Lattice Semiconductor FPGA library elements.
Output from IPexpress can be written in EDIF, VHDL, or Verilog. In order to use synthesis tools to utilize the Lattice
FPGA architectural features, it is strongly recommended to use IPexpress to generate modules for source code
instantiation. The following are examples of Lattice Semiconductor FPGA modules supported by IPexpress:

e PLL
* Memory implemented in PFU:
— Synchronous single-port RAM, synchronous dual-port RAM, synchronous ROM, synchronous FIFO

* Memory implemented with EBR:

— Quad-port Block RAM, Dual-Port Block RAM, Single-Port Block RAM, ROM, FIFO
Other EBR based Functions

— Multiplier, CAM
* PFU based functions

— Multiplier, adder, subtractor, adder/subtractor, linear feedback shifter, counter
MPI1/System Bus

IPexpress is especially efficient when generating high pin count modules as it saves time in manually cascading
small library elements from the synthesis library. Detailed information about IPexpress and its user guide can be
found in the ispLEVER help system.

12-9

HDL Synthesis Coding Guidelines
Lattice Semiconductor for Lattice Semiconductor FPGAs

Implementing Multiplexers

The flexible configurations of LUTs can realize any 4-, 5-, or 6-input logic function like 2-to-1, 3-to-1 or 4-to-1 multi-
plexers. Larger multiplexers can be efficiently created by programming multiple 4-input LUTs. Synthesis tools camn
automatically infer Lattice FPGA optimized multiplexer library elements based on the behavioral description in the
HDL source code. This provides the flexibility to the Mapper and Place and Route tools to configure the LUT mode
and connections in the most optimum fashion.

16:1 MUX

process(sel, din)
begin
if (sel="0000"
elsif (sel="0001"
elsif (sel="0010"
elsif (sel="0011"
elsif (sel="0100"

) then muxout <= din(0);
) then muxout <= din(1);
) then muxout <= din(2);
) then muxout <= din(3);
) then muxout <= din(4);
elsif (sel="0101") then muxout <= din(5);
elsif (sel="0110") then muxout <= din(6);
elsif (sel="0111") then muxout <= din(7);
elsif (sel="1000") then muxout <= din(8);
elsif (sel="1001") then muxout <= din(9);
elsif (sel="1010") then muxout <= din(10);
elsif (sel="1011") then muxout <= din(11);
elsif (sel="1100") then muxout <= din(12);
elsif (sel="1101")
elsif (sel="1110")
elsif (sel="1111")
else muxout <= '0';
end if;
end process;

then muxout <= din(13);
then muxout <= din(14);
then muxout <= din(15);

Clock Dividers

There are two ways to implement clock dividers in Lattice Semiconductor FPGA devices. The first is to cascade the
registers with asynchronous clocks. The register output feeds the clock pin of the next register (Figure 12-7). Since
the clock number in each PFU is limited to two, any clock divider with more than two bits will require multiple PFU
implementations. As a result, the asynchronous daisy chaining implementation of clock divider will be slower due to
the inter-PLC routing delays. This kind of delays is usually ambiguous and inconsistent because of the nature of
FPGA routing structures.

Figure 12-7. Daisy Chaining of Flip-flops

12-10

HDL Synthesis Coding Guidelines
Lattice Semiconductor for Lattice Semiconductor FPGAs

The following are the HDL representations of the design in Figure 12-7.

-- VHDL Example of Daisy Chaining FF //Verilog Example of Daisy Chaining FF
-- 1lst FF to divide Clock in half always @(posedge CLK or posedge RST)
CLK_DIV1: process(CLK, RST) begin
begin if (RST)
if (RST='1l") then clkl = 1'b0;
clkl <= '0'; else
elsif (CLK'event and CLK='l') then clkl = !clkl;
clkl <= not clkl; end
end if;
end process CLK_DIV1; always @(posedge clkl or posedge RST)
begin
-- 2nd FF to divide clock in half if (RST)
CLK_DIV2: process(clkl, RST) clk2 = 1'b0;
begin else
if (RST='1l') then clk2 = lclk2;
clk2 <= '0'; end
elsif (clkl'event and clkl='1l') then
clk2 <= not clk2;
end if;
end process CLK_DIV2;

The preferable way is to fully employ the PLC's natural “Ripple-mode”. A single PFU can support up to 8-bit ripple
functions with fast carry logic. Figure 12-8 is an example of 4-bit counter in PLC “Ripple Mode”. In Lattice Semicon-
ductor FPGA architectures, an internal generated clock can get on the clock spine for small skew clock distribution,
further enhancing the performance of the clock divider.

Figure 12-8. Use PLC “Ripple Mode”

I 1
I 1 D
I
| . A bvevz
! |
I 1
' !
I 3
I . !
: LUT in ' / » DIVBY4
; Ripple Mode i
! 4-Bit 4
I
: Counter ! » DIVBY8
! |
! i
i I_ ! ,
1
! i -/ » DIVBY16
! i
! i
1
Here are the HDL representations of the design in Figure 12-8.
-- VHDL : “RippleMode” Clock Divider //Verilog : “RippleMode” Clock Divider
o éi&ays @ (posedge CLK or posedge RST)
COUNT4: process(CLK, RST) begin
begin if (RST)
if (RST='1l"') then cnt = 4'b0;
cnt <= (others=>'0"); else
elsif (CLK'event and CLK='l') then cnt = cnt + 1'bl;
cnt <= cnt + 1; end
end if;
end process COUNT4; assign DIVBY4 = cnt[l];
assign DIVBY16 = cnt[3];

DIVBY4 <= cnt(1l);
DIVBY16 <= cnt(3);

12-11

HDL Synthesis Coding Guidelines
Lattice Semiconductor for Lattice Semiconductor FPGAs

Register Control Signals

The general-purpose latches/FFs in the PFU are used in a variety of configurations depending on device family.
For example, the Lattice EC, ECP, SC and XP family of devices clock, clock enable and LSR control can be applied
to the registers on a slice basis. Each slice contains two LUT4 lookup tables feeding two registers (programmed
asto be in FF or Latch mode), and some associated logic that allows the LUTs to be combined to perform functions
such as LUT5, LUT6, LUT7 and LUTS8. There is control logic to perform set/reset functions (prgorammable as syn-
chronous/asynchronous), clock select, chip-select and wider RAM/ROM functions. The ORCA Series 4 family of
devices clock, clock enable and LSR control can be applied to the registers on a nibble-wide basis. When writing
design codes in HDL, keep the architecture in mind to avoid wasting resources in the device. Here are several
points for consideration:

e |f the register number is not a multiple of 2 or 4 (dependent on device family), try to code the registers in a
way that all registers share the same clock, and in a way that all registers share the same control signals.

* Lattice Semiconductor FPGA devices have multiple dedicated Clock Enable signals per PFU. Try to code
the asynchronous clocks as clock enables, so that PFU clock signals can be released to use global low-
skew clocks.

* Try to code the registers with Local synchronous Set/Reset and Global asynchronous Set/Reset

For more detailed architecture information, refer to the Lattice Semiconductor FPGA data sheets.

Clock Enable

Figure 12-9 shows an example of gated clocking. Gating clock is not encouraged in digital designs because it may
cause timing issues such as unexpected clock skews. The structure of the PFU makes the gating clock even more
undesirable since it will use up all the clock resources in one PFU and sometimes waste the FF/ Latches resources
in the PFU. By using the clock enable in the PFU, the same functionality can be achieved without worrying about
timing issues as only one signal is controlling the clock. Since only one clock is used in the PFU, all related logic
can be implemented in one block to achieve better performance. Figure 12-10 shows the design with clock enable
signal being used.

Figure 12-9. Asynchronous: Gated Clocking

din D Q qout
clk —— N\
gate J

Figure 12-10. Synchronous: Clock Enabling

LA\|
din— g D Q gout
clken S
clk ——

The VHDL and Verilog coding for Clock Enable are as shown in Figure 12-10.

-- VHDL example for Clock Enable // Verilog example for Clock Enable
éiéckiEnable: process(clk) always @(posedge clk)
begin qgout <= clken ? din : gout;

if (clk'event or clk='l') then
if (clken='l") then
gout <= dinj;
end if;
end if;
end process Clock_Enable;

12-12

HDL Synthesis Coding Guidelines
Lattice Semiconductor for Lattice Semiconductor FPGAs

The following are guidelines for coding the Clock Enable in Lattice Semiconductor FPGAs:

* Clock Enable is only supported by FFs, not latches.

* Nibble wide FFs and slices inside a PLC share the same Clock Enable

* All flip-flops in the Lattice Semiconductor FPGA library have a positive clock enable signal

* In the ORCA Series 4 architecture, the Clock Enable signal has the higher priority over synchronous
set/reset by default. However, it can be programmed to have the priority of synchronous LSR over the prior-
ity of Clock Enable. This can be achieved by instantiating the library element in the source code. For exam-
ple, the library element FD1P3IX is a flip-flop that allows synchronous Clear to override Clock Enable.
Users can also specify the priority of generic coding by setting the priority of the control signals differently.
The following examples demonstrate coding methodologies to help the synthesis tools to set the higher pri-
ority of Clock Enable or synchronous LSR.

-- VHDL Example of CE over Sync. LSR // Verilog Example of CE over Sync. LSR
COUNT8: process(CLK, GRST) always @(posedge CLK or posedge GRST)
begin begin
if (GRST = '1') then if (GRST)
cnt <= (others => '0'); cnt = 4'b0;
elsif (CLK'event and CLK='l') then else
-- CE Over LSR: Clock Enable has higher priority if (CKEN)
if (CKEN = '1') then cnt = cnt + 1'bl;
cnt <= cnt + 1; else if (LRST)
elsif (LRST = 'l1') then cnt = 4'b0;
cnt <= (others =>'0"); end...
end if;
end if;

end oprocess COUNT8:

-- VHDL Example of Sync. LSR Over CE // Verilog Example of Sync. LSR Over CE
COUNT8: process(CLK, GRST) always @(posedge CLK or posedge GRST)
begin begin
if (GRST = '1') then if (GRST)
cnt <= (others => '0'); cnt = 4'b0;
elsif (CLK'event and CLK='l') then else if (LRST)
-- LSR over CE: Sync. Set/Reset has higher priority cnt = 4'b0;
if (LRST = '1') then else if (CKEN)
cnt <= (others => '0'); cnt = cnt + 1'bl;
elsif (CKEN = 'l1') then end
cnt <= cnt + 1;
end if;
SET / Reset

There are two types of set/reset functions in Lattice Semiconductor FPGAs: Global (GSR) and Local (LSR). The
GSR signal is asynchronous and is used to initialize all registers during configuration. It can be activated either by
an external dedicated pin or from internal logic after configuration. The local SET/Reset signal may be synchronous
or asynchronous. GSR is pulsed at power up to either set or reset the registers depending on the configuration of
the device. Since the GSR signal has dedicated routing resources that connect to the set and reset pin of the flip-
flops, it saves general-purpose routing and buffering resources and improves overall performance. If asynchronous
reset is used in the design, it is recommended to use the GSR for this function, if possible. The reset signal can be
forced to be GSR by the instantiation library element. Synthesis tools will automatically infer GSR if all registers in

12-13

HDL Synthesis Coding Guidelines
Lattice Semiconductor for Lattice Semiconductor FPGAs

the design are asynchronously set or reset by the same wire. The following examples show the correct syntax for
instantiating GSR in the VHDL and Verilog codes.

-- VHDL Example of GSR Instantiation // Verilog Example of GSR Instantiation
library ieee;
use ieee.std logic_1164.all; .
use ieee.std_logic_unsigned.all; module gsr_test(clk, rst, cntout);
entity gsr_test is input clk, rst;
port (rst, clk: in std_logic; output[1:0] cntout;
cntout : out std_logic_vector(1l downto 0));
end gsr_test; reg[l:0] cnt;
architecture behave of gsr_test is GSR ul (.GSR(rst));
signal cnt : std logic_vector(l downto 0);
begin always @(posedge clk or negedge rst)
begin
ul: GSR port map (gsr=>rst); if (!rst)
cnt = 2'b0;
process(clk, rst) else
begin cnt = cnt + 1;
if rst = '1' then end
cnt <= "00"; X
elsif rising_edge (clk) then assign cntout = cnt;
cnt <= cnt + 1;
end if; endmodule
end process;
cntout <= cnt;
end behave;

Use PIC Features

Using I/O Registers/Latches in PIC

Moving registers or latches into Input/Output cells (PIC) may reduce the number of PLCs used and decrease rout-
ing congestion. In addition, it reduces setup time requirements for incoming data and clock-to-output delay for out-
put data, as shown in Figure 12-11. Most synthesis tools will infer input registers or output registers in PIC if
possible. Users can set synthesis attributes in the specific tools to turn off the auto-infer capability. Users can also
instantiate library elements to control the implementation of PIC resource usage.

Figure 12-11. Moving FF into PIC Input Register

o
[9)
4
®
@)
o
[9)

Before Using Input Register After Using Input Register

Figure 12-12. Moving FF into PIC Output Register

o
c
=
2
®
O
[s)

Before Using Output Register After Using Output Register

12-14

HDL Synthesis Coding Guidelines

Lattice Semiconductor for Lattice Semiconductor FPGAs

Inferring Bi-directional I/O

Users can either structurally instantiate the bi-directional 1/O library elements, or behaviorally describe the 1/O
paths to infer bi-directional buffers. The following VHDL and Verilog examples show how to infer bi-directional /O
buffers.

-- Inferring Bi-directional I/O in VHDL

library ieee;
use ieee.std_logic_1164.all;

entity bidir infer is
port(A, B : inout std_logic;
dir : in std_logic);
end bidir_infer;

// Inferring Bi-directional I/0 in Verilog

module bidir_infer (A, B, DIR);

inout A, B;
input DIR;
assign B = (DIR) ? A : 1'bz;
assign A = (~DIR) ? B : 1'bz;

endmodule

architecture lattice_fpga of bidir infer is
begin

B <= A when (dir='l') else 'Z';

A <= B when (dir='0') else 'Z';
end lattice_fpga

Specifying I/O Types and Locations

Users can either assign I/O types and unique I/O locations in the Preference Editor or specify them as attributes in
the VHDL or Verilog source code. The following examples show how to add attributes in the Synplify and Leonar-
doSpectrum synthesis tool sets. For a complete list of supported attributes, refer to the HDL Attributes section of
the ispLEVER on-line help system.

-- VHDL example of specifying 1/O type and location attributes for Synplify & Leonardo

entity cnt is
port(clk: in std_logic;
res: out std_logic);
attribute LEVELMODE: string:
attribute LEVELMODE of clk : signal is “SSTL2”;
attribute LOC of clk : signal is “V27;
attribute LEVELMODE of res : signal is “SSTL2”;
attribute LOC of res : signal is “V3”;
end entity cnt;

-- Verilog example of specifying 1/O type and location attributes for Synplify & Leonardo

module cnt(clk,res);

input clk /* synthesis LEVELMODE="SSTL2” LOC="V2"*/;
output res /* synthesis LEVELMODE="SSTL2” LOC="V3” */,

/I exemplar begin
/I exemplar attribute clk LEVELMODE SSTL2
/I exemplar attribute clk LOC V2
/l exemplar attribute res LEVELMODE SSTL2
/I exemplar attribute res LOC V3

/I exemplar end

endmodule

12-15

HDL Synthesis Coding Guidelines
Lattice Semiconductor for Lattice Semiconductor FPGAs

Implementation of Memories

Although an RTL description of RAM is portable and the coding is straightforward, it is not recommended because
the structure of RAM blocks in every architecture is unique. Synthesis tools are not optimized to handle RAM imple-
mentation and thus generate inefficient netlists for device fitting. For Lattice Semiconductor FPGA devices, RAM
blocks should be generated through IPexpress as shown in the following screen shot.

& IPexpress =10] x|
Fle Took Heb
Gk &wl®
Mare | Version |
E-Z4 Module To generate the module or [P, enter the information in the

E-_] Architecture_Modules enabled fields (such as Project Path, File Mame, etc) and click

on the Customize button. A dialog will open to allow
customization of the selected maodule or IP

#-_] Arithmetic_Modules
E-29 DSP_Modules

ik MAC 20
i MULT 20 e _
{3 MULTADDSUB 20
ok MULTADDSUBSUM 20 Macro Type: [Module Version: [20
224 Memory_Modules
4 Distributed_RAKM

md_DPRAM 20 Madule Name; [RAM_DP_TRUE
ed_ROM 20

stributed_SPRAM 20 :

~-Ir RAM_Based_Shift_Regisier 20 Project Path: |r:\c'ocumer:ls and settingsymy documentsids _]
=3 EBR_Components

~{nd FIFO 20

~f& FIF0_DC 20 File Name: |

34 RAM_DP 20

~ 3 BAM_DO 20 Design Entry: |Schemaziq‘\’erilog HOL ;I

-4 ROM 20

AP
#-__] Communications
-] Connectivity
=T PatNeme: [LFECF20E-3FE72C

®-_] Processors, Controllers and Penpherals

Device Family: |Lejli::eE('.‘P—DSP

[RAM_DP_TRUE sett

Customize | kp‘.em“/
Installed IFsModules |

o [@] % RaM_DP_TRUE | E¥ RAM_DP_TRUE]

When implementing large memories in the design, it is recommended to construct the memory from the Enhanced
Block RAM (EBR) components found in every Lattice Semiconductor FPGA device. When implementing small
memories in the design, it is recommended to construct the memory from the resources in the PFU. The memory
utilizing resources in the PFU can also be generated by ispLEVER Module/IP Manager.

Lattice Semiconductor FPGAs support many different memory types including synchronous dual-port RAM, syn-
chronous single-port RAM, synchronous FIFO and synchronous ROM. For more information on supported mem-
ory types per FPGA architecture, please consult the Lattice Semiconductor FPGA data sheets.

Preventing Logic Replication and Limited Fanout

Lattice Semiconductor FPGA device architectures are designed to handle high signal fanouts. When users make
use of clock resources, there will be no hindrance on fanout problems. However, synthesis tools tend to replicate
logic to reduce fanout during logic synthesis. For example, if the code implies Clock Enable and is synthesized with
speed constraints, the synthesis tool may replicate the Clock Enable logic. This kind of logic replication occupies
more resources in the devices and makes performance checking more difficult. It is recommended to control the
logic replication in synthesis process by using attributes for high fanout limit.

12-16

HDL Synthesis Coding Guidelines
Lattice Semiconductor for Lattice Semiconductor FPGAs

In the Synplicity® project GUI, under the Implementation Options => Devices tab, users can set the Fanout Guide
value to 1000 instead of using the default value of 100. This will guide the tool to allow high fanout signals without
replicating the logic. In the LeonardoSpectrum tool project GUI, under Technology => Advanced Settings, users
can set the Max Fanout to be any number instead of the default value “0”.

Options for implementation: Synthesis - rev_1

Device: I Dpllons/[}uﬂslramtsl Implementation F\esultsl Timing Hepulll Ven\ugl WHDL |

Implementations:
Techhology: Part: Speed: Package: E

[Lucent ORCA Series 4 =] [eem2 == =lfeezsz =]

— Device Mapping Option:

Option Value | =~
Fanout Guide 100
Dizable 100 Insertion r

Force GSR Usage auto

Option Description

Guide far fanout-based aptimizations [zuch as replication) (__
-
Synplicity

OK I Cancel | Loapl I Help I

Use ispLEVER Project Navigator Results for Device Utilization and Performance

Many synthesis tools give usage reports at the end of a successful synthesis. These reports show the name and
the number of library elements used in the design. The data in these reports do not represent the actual implemen-
tation of the design in the final Place and Route tool because the EDIF netlist will be further optimized during Map-
ping and Place and Route to achieve the best results. It is strongly recommended to use the MAP report and the
PAR report in the ispLEVER Project Navigator tool to understand the actual resource utilization in the device.
Although the synthesis report also provides a performance summary, the timing information is based on estimated
logic delays only. The Place & Route TRACE Report in the ispLEVER Project Navigator gives accurate perfor-
mance analysis of the design by including actual logic and routing delays in the paths.

Technical Support Assistance

Hotline: 1-800-LATTICE (North America)
+1-503-268-8001 (Outside North America)

e-mail: techsupport@Ilatticesemi.com

Internet: www.latticesemi.com

12-17

	HDL Synthesis Coding Guidelines for Lattice Semiconductor FPGAs
	Introduction
	General Coding Styles for FPGA
	Hierarchical Coding
	Design Partitioning
	State Encoding Methodologies for State Machines
	Coding Styles for FSM
	Using Pipelines in the Designs
	Comparing IF statement and CASE statement
	Avoiding Non-intentional Latches

	HDL Design with Lattice Semiconductor FPGA Devices
	Lattice Semiconductor FPGA Synthesis Library
	Implementing Multiplexers
	Clock Dividers
	Register Control Signals
	Use PIC Features
	Implementation of Memories
	Preventing Logic Replication and Limited Fanout
	Use ispLEVER Project Navigator Results for Device Utilization and Performance

	Technical Support Assistance

