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Abstract

Knowledge about the fitness landscape structure aids in the design of effective search operators
used in algorithms that solve difficult combinatorial optimization problems. Localized regions (i.e.,
neighborhoods) provide valuable structural clues.

Some researchers have claimed that the search operator “induces” the fitness landscape and therefore
must be defined before any characterization of a landscape’s structure is possible. In this paper we argue
that such claims are flawed and can produce erroneous structural information. Formal proofs show that

only a metric space interpretation of a fitness landscape can produce a correct characterization.
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1 Introduction

There is an ongoing interest in the design of efficient algorithms capable of finding good solutions to difficult
combinatorial optimization problems. Implicit is the idea that each solution has an associated real num-
ber value that reflects the quality of that solution. Any algorithm that “solves” an optimization problem
must search the solution set for that particular solution with the highest quality value. Put another way,
optimization problems are basically search problems.

Sewall Wright [24] introduced the concept of a fitness landscape to capture the underlying dynamics of
evolutionary search. This landscape formulates the solution set as a collection of genotypes arranged in

an abstract genotype space. The arrangement makes two genotypes adjacent if they differ by only a single



mutation!. Each genotype is also assigned a real number, which indicates a fitness value. More formally, a

fitness landscape consists of
e a large (albeit finite) set of solutions S
e a fitness function f : S — R4 (the positive real number line)
e the concept of a neighborhood between solutions

In the context of combinatorial optimization problems each genotype encodes all of the problem param-
eters needed to describe a solution. The solution constructed from the genotype is the phenotype and the
fitness value indicates the solution quality. Searching for a solution is thus equivalent to exploring a fitness
landscape for the highest peak. In the rest of this paper we use the terms genotype space, search space and
solution set interchangeably.

The neighborhood concept allows us to interpret S as a vertex set of a graph I', where T is the solution set
of a fitness landscape f [21]. Our definition of a neighborhood is similar to that used in metric space—i.e.,
the neighborhood of a genotype gg consists of all other genotypes within an open ball of radius § centered
at go. Of course, this implies some definition of “distance” in the fitness landscape?.

The importance of a neighborhood cannot be understated. Many real-world optimization problems are
NP-complete, which makes their genotype space exponentially large—exhaustive search is not practical. It
therefore becomes paramount that the search operator be capable of exploring the landscape with minimal
computational effort. The design of such an operator becomes more likely if the topology of the landscape
is known, and it is the neighborhoods that provide that knowledge. For example, consider an arbitrary
genotype go; its neighborhood consists of all genotypes within a small region encompassing gg. If the fitness
of these neighboring genotypes differs markedly from that of gg, then the landscape is rugged—indicating a
large number of local optima. Hence, the search operator should only make small moves over the landscape.
Conversely, if fitness in the neighborhood does not differ much from that of gg, then the landscape is smooth
and large moves can be made with little chance of missing the global optima.

It is important to stress that the above definition of a neighborhood does not identify the search operator
used by an algorithm to explore the fitness landscape. In other words, neighborhoods are defined solely by
the genomic encoding; a genotype’s neighbors are those genotypes that differ by only a bounded mutation,
without regard to the underlying mechanism that caused the mutation. This interpretation is widely accepted

by a large number of researchers—it is a canonical definition. Many researchers have used this definition with

'In biological terms, an alternative form of a gene is called an allele. Adjacent genotypes thus have only one allele that is
different.
2This definition will usually be problem dependent.



abstract binary sequence spaces [4, 11, 13, 16, 17], while others have used it with more sophisticated landscape
models [1, 2]. Nevertheless, some researchers have promoted the idea that a genotype alone cannot define
the neighborhood—a search operator must be predefined because it somehow “induces” a neighborhood
structure. (A partial list of recent examples espousing this idea includes [9, 18, 22].) Unfortunately, such
notions are ill conceived and the purpose of this paper is to show why this is so. Specifically, we argue
that using a search operator to help define neighborhoods or even the fitness landscape itself can lead to

inconsistent and even contradictory results. We provide several examples to substantiate our argument.

2 Background

We begin by qualitatively characterizing a rugged fitness landscape. A landscape is considered “smooth” in
the region surrounding a genotype if its neighboring points—i.e., genotypes with nearly identical alleles—
differ in fitness by only a small amount. Conversely, a landscape is “rugged” if its neighboring points
differ markedly in fitness. A promising statistical approach to characterizing landscapes was advanced by
Weinberger [23] who suggested using a random walk to gather statistical information. Starting at some
randomly chosen genotype g; the walk next visits a randomly chosen neighbor. Repeating this process yields
a sequence of fitness values fi, fi41,.... Weinberger assumed that since there is some underlying distribution
of fitness values, a random walk in any direction is sufficient to gather statistics. The degree of correlation

between two genotypes s steps apart in this random walk is given by the correlation function

R(s) =

<ftft+5>2_ <ft>2 (1)

%%

where (-) means the expected value over all pairs s steps apart. If a high degree of correlation exists, then the
landscape 1s smooth. Highly uncorrelated landscapes have a large number of local optima and any adaptive
walk (i.e., a walk restricted to fitter neighbors) is likely to stop very quickly Kauffman [12]. These landscapes
are presumed to be statistically 1sotropic. In other words, independent of where the random walk begins, the
statistical information is invariant; a sufficiently long walk will infer any correlation present in the landscape.
We have previously shown that isotropy does not hold for the class of constrained optimization problems
where constraints determine if a genotype is feasible [5]. Nevertheless, the method of conducting walks is
powerful and is instrumental to our discussion.

A mischaracterization of the true landscape topology can occur if one relies on a search operator to induce
that landscape. Visualizing a genotype space as a metric space can show this. Some basic terminology of

metric spaces is given below. More detailed information can be found in a variety of texts (e.g., see Mendelson



[15)).
A metric space is a set of points and a distance metric that indicates the closeness of pairs of points. Let

X be a finite, non-empty set of points and define p: X x X — Ry,

Definition 1. The pair (X, p) is called a metric space provided that for all z,y,z € X, the following

properties:
(i) plz,y) > 0
(ii) p(z,y) = 0iff 2 =y
(idi) plz,y) = ply, @)
(iv) p(z,2) < p(=,y) + p(y, 2)

p is a metric that quantifies the distance between two points in X. The last requirement above represents

the well-known triangular inequality. The next two definitions describe special subsets of X.

Definition 2. Let (X, p) be a metric space. For any point z € X and any real number § > 0, let
B(z;0) =z :p(z,2) < d

Then B(z;4) is called an open ball with center z and radius 4.

Definition 3. Let (X, p) be a metric space and let @ € X. A subset N of X is a neighborhood of a if there

is a d > 0 such that

B(a;6) C N

Definition 2 states that B(z;J) contains the set of points in X that are within a distance § of the point z,
while Definition 3 points out that a neighborhood contains all points of X that are sufficiently close to a. In
particular, for every § > 0, B(a;d) is a neighborhood of a.

A natural distance measure to use with binary strings is the hamming distance, which measures the
number of bit positions in which the two n-bit strings differ. It is easy to verify that all conditions from
Definition 1 are satisfied; the genotype space comprised of n-bit binary strings can therefore be interpreted
as a metric space. With § = 2, the open ball centered at the binary string zg is the neighborhood of zy, and
it includes all zx|p(zg, zx) = 1 because any such zj differs by only a single mutation. This is completely
consistent with the canonical definition of neighborhood. Of course larger neighborhoods can exist by making

d>2.



3 Discussion

Let G denote the genotype space corresponding to an optimization problem. The genotype representation
we consider is the n-bit binary string, i.e., z = {0,1}" € G. Our goal is to find a value of z that minimizes
an objective function f(z). The genotype space G consists of all  that can be encoded as an n-bit binary
string.

A concrete example of how search operators induce inconsistent neighborhoods definitions comes from a
popular stochastic search algorithm: the genetic algorithm (GA). The GA is a probabilistic search algorithm
that maintains a population of individuals where each individual represents a unique solution. During each
iteration, stochastic reproduction operators create new solutions, which are evaluated. This evolutionary
process continues until a termination condition is satisfied. To fully appreciate the inconsistency of the
neighborhood definition, a more detailed explanation of the GA is needed. The GA is typically implemented

as follows:

1. The optimization problem is formulated and the objective function used to evaluate each potential

solution—i.e., determine the “fitness” of that solution—is defined.

2. A population of candidate solutions is randomly initialized. FEach candidate solution encodes the
problem parameters, which uniquely describe that solution. Holland [8] suggested that a binary string

be used as a data structure, where the number of bits depends on the degree of desired resolution.

3. Each candidate solution is decoded and the problem parameter values are provided to the objective

function that renders a fitness value.

4. Each individual 7 is assigned a reproduction probability p; proportional to its relative fitness with

respect to the current population of individuals.

5. Parents are selected for reproduction according to the reproduction probabilities p;. Offspring—i.e.,
new candidate solutions—are created by operators such as bit mutation or crossover (see below). This

process 1s repeated until a new population is created.

6. The process 1s halted if sufficient computation time has been expended or if a sufficient quality solution

has been found. Otherwise, go to step (3).

GAs attempt to emulate the evolutionary dynamics found in Nature. These dynamics are influenced
by five primary forces: natural selection, mutation, gene flow, genetic drift, and non-random mating. The

probabilistic selection method in GAs emulates natural selection and to a certain extent the non-random



mating forces. The random initialization of the first population emulates gene flow. Genetic drift is essential
for a GA to converge. This latter force is a key element of our argument and so it is worth discussing in
more detail.

Genetic drift refers to the loss of genetic variation in a finite population due to random sampling errors.
Its effects are inversely proportional to the population size—i.e., genetic drift occurs sooner in smaller
populations. This loss in genetic variation has no particular direction, which means there is no way of
predicting which genes will be lost. The only thing that is known with certainty is, over time, genetic drift
will change allele frequencies within the population even if no other evolutionary forces are present.

In terms of GAs, this means eventually the same bits are fixed in every member of the population. Put
another way, ultimately some alleles are entirely removed from the population. This phenomena is regularly
observed in GAs (see [19] for a thorough analysis). Tt is also the reason why search operators cannot induce
fitness landscapes.

The most widespread reproduction operator used in GAs is the crossover operator, which combines
portions of two parents to produce an offspring. The simplest version is the one-point crossover operator.
Two parents are randomly chosen (according to p;) and the same bit position is randomly chosen in each.

The segments are then swapped to produce two offspring. This process is shown in Figure 1.

Parent#1: 1001101000 Offspring#1: 1001000110
; |
Paent#2: 0010000110 Offspring#2: 0010101000

Figure 1: An example of one-point crossover used in a GA. The vertical line shows the crossover point.

The most general form of crossover is m-point crossover. Here m identical bit positions are chosen in both
parents. Suppose we label these positions {ry,rs, ..., 7m}. Then the offspring copies all bits from position 1
up to position r; from the first parent, all bits from position r; to ro from the second parent, all bits from
position 7 to rs from the first parent, and so on. In other words, alternating segments are taken from each
parent to form the offspring.

Without loss in generality, we consider a simple GA where only the one-point crossover operator is used
for reproduction. No form of mutation is used. Each solution z in the search space S is encoded as a fixed
length binary string, so unique solutions have unique binary patterns. The GA runs for a large, but finite,
number of generations.

But there is a problem. At any given iteration ¢, the GA is evolving a finite population P(¢) where

|P(t)| << |S|. Individuals are selected from the previous population (P(¢ — 1)) with a probability directly



proportional to their fitness—i.e., highly fit individuals are chosen with a greater probability. Genetic drift
will occur because the population size is finite, which means after running a GA for a period of time, every
individual in the population will have the same one or more bits fixed at the same value.

The inescapable consequences of genetic drift helps to explain why one should not consider fitness land-
scapes to be induced by a search operator. If the GA uses only crossover for reproduction—i.e., no mutations
are permitted—then no matter how many times crossover is subsequently applied, these bits will never change
value. All fitness landscapes now become time dependent because the effects of genetic drift change gene
frequencies alleles and not all search operators can restore lost alleles. For instance, if the left-most bit of
every individual in the population is fixed at 0, then an infinite number of crossover operations will never
produce an offspring with the left-most bit set to 1. In effect, every genotype g € S of the form 1#### - #
has disappeared from the search space®.

In reality these genotypes still do exist even though the search operator cannot visit them. Over time

genetic drift causes the search space of a GA to shrink. This can be illustrated with the sequence

S0 D525 D - DSk_1 DS, DSk41 2D DS D - DSN=SNp1=""" (2)

where S; is the search space at generation ¢. Eventually at some generation k£ only a proper subset is
formed because genetic drift has eliminated some of the alleles. Subsequent generations are subsets until
some generation m where again genetic drift removes more alleles. This process continues until generation
N where the search space contains only a single genotype—i.e., the GA’s population has converged and is
now homogeneous. However, the situation is completely different if the search operator allows gene flow. In

this case no shrinkage of the search space occurs and the evolving sequence is

S, =S5, Vi (3)

The inability of some search operators to compensate for genetic drift effects is fundamental to our
argument that search operators do not induce landscapes that can be correctly characterized. This is stated

formally by the following:

Theorem 1 Let S be a search space of a GA. Then the topology of any S’ C S is completely independent

of any search operator that moves through S’.

Proof 1 Let O be the set of search operators that move through S'. This set can be partitioned as O =

3 ‘#' means eithera O or a 1



OgU Ong where Og (Ong) is the subset of operators that does (does not) introduce gene flow.

If O; € Ong, then Eq. (2) shows how S" changes as the GA processes generations. But this effect is caused
by genetic drift, which no O; € Ong can compensate for. Furthermore, repeated runs of the GA will not
produce the exact same effect because genetic drift has no specific direction; the topology change is therefore
independent of the search operator choice. Eq. (3) holds for every operator in Og, which makes the topology

independent of any operator in Og. Thus, in either case, the topology is independent of the search operator.

Theorem 2 A correct topological characterization of S’ C S can be computed from a metric space interpre-

tation of S.

Proof 2 A metric space interpretation of S contains all possible genotypes so a statistical analysis such
as given in Eq. (1) will be accurate. Furthermore, the interpretation does not require identifying a search

operator. The proof follows from Theorem 1.

Genetic drift ultimately leads to irreversible alterations in the neighborhood structure. The believe that
search operators induce landscapes gives a distorted view of a neighborhood that is more than just a mild
inconvenience. In fact, the inability of a search operator to visit some points introduces real difficulties into

the quest for an optimal solution. Specifically,

e The inability to visit some genotypes within a neighborhood makes that neighborhood incomplete in
the sense that some genotypes have, in effect, been removed from the search space—perhaps even

including the globally optimal one. Nevertheless, these genotypes do actually exist.

e Proofs exist that show stochastic search algorithms—such as evolutionary programs—will converge to
the global optimum if given enough running time [7]. However, these proofs presume the search operator
used is ergodic. Incomplete neighborhoods destroy any pretense of ergodicity, thereby negating these

proofs.

o Statistical analysis of the landscape can serve as a basis of choosing suitable search operators [12,
14]. The removal of some genotypes alters the topology of the neighborhood, which yields erroneous
statistical values. Any new search operators chosen from this incorrect correlation value may not

perform as expected.

4 An Example

In particular we want to expand on this last point and illustrate how incomplete neighborhoods can mis-

characterize a landscape neighborhood. Consider the following decision problem:



Let I = {i1,...,1n} be a randomly chosen set of positive integers from the interval [1,1000] and
choose another positive integer called the goal. Are there five distinct elements in I that will total

exactly to the goal?

This problem is an instance of the subset sum problem, which is NP-complete [3]. Each solution is an
integer array containing five elements from I and a 1-mutant neighbor has only a single element incremented
or decremented by 1. We consider a solution to be infeasible if either (a) the total exceeds the goal or (b)
the solution has a number i such that ¢ € [1,1000] but ¢ ¢ I. The fitness of a feasible solution equals the
total of the five numbers; the fitness of an infeasible solution is set to -500. (We used 2500 for the goal.)
Observe that the fitness for feasible solutions is strictly positive while infeasible solutions form “sinkholes”
of extremely low fitness in the landscape. These sinkholes are intrinsic to fitness landscapes corresponding

to constrained optimization problems [5].

0.0 -

-1.0

-1.5

2.0 | | | | |

Figure 2: Correlation in the subset sum problem fitness landscape from random walks started at the same
initial solution and restricted to an open ball of radius 20. The solid (dashed) line is from a 2000 step walk
conducted with the O1 (O2) operator. Note that plot is semi-logarithmic.

We are going to characterize two landscapes for this problem: one is complete in the metric sense while
the other has say the fifth position in the integer array fixed. (The second landscape is a subset of the first
landscape.) Both landscapes are induced by search operators, but the second one is missing genotypes due
to genetic drift. We are going to characterize the landscapes by gathering statistics from a long random
walk on the landscapes. Denote O1 (O2) as the operator that walks between 1-mutant neighbors in the first
(second) landscape. Both walks are 2000 steps long and begin at the same point. Furthermore, both walks
are restricted to a neighborhood defined by an open ball of radius 20 centered at the start point. In order
to make the comparison as fair as possible, we recorded the array position that was mutated to create each

step for the O1 walk, and mutated the same position in the same way during the same step to create the



02 walk®. Figure 2 shows the correlation obtained from one such walk. It is clear that the two operators do
not perceive the same neighbor structure. The characterization by the O1 walk is more accurate because it

traverses a complete neighborhood.

5 Final Remarks

Not everyone believes distance metrics are necessary. Stadler, et. al [20] studied folding of RNA sequences into
secondary structures and concluded that phenotypes organized according to genetic accessibility produces
a space that lacks a metric. They do admit combinational optimization problem solutions often fit into a
regular structure such as a hypercube (where the notion of distance makes perfect sense), but they go on
to claim the notion of “neighborhood” does not require a distance measure but instead relies on a genotype
to phenotype mapping. However, they studied a only small set of similar biological problems and tried to
broadly apply their findings to the evolutionary search for solutions to arbitrary combinatorial optimization

problems. Their arguments about evolutionary searches of genotype spaces are flawed in three ways:

1. Neighborhoods in hypercubes are completely independent of the genotype to phenotype mapping. An
example of a regular topological space suitable for any combinatorial problem using binary strings for a
genotype—and many problems fall into this category—is Kauffman’s NK landscape [12]. A number of
methods for analyzing the topology of NK landscapes have been proposed, but none of them depend on

any particular mapping. Indeed, in Kauffman’s original work the phenotypes were randomly assigned.

2. Evolutionary algorithms (G As, evolution strategies and evolutionary programming) are widely used to
conduct evolutionary searches over the genotype space of combinatorial problems. Some evolutionary
algorithms use panmictic recombination and tournament selection—even though no counterparts for
these dynamics exist in Nature. This shows algorithm designers do not necessarily believe evolutionary

searches must exactly mimic what Nature does.

3. Nature modifies RNA shapes by mutating an underlying sequence—i.e., shape information is indirectly
encoded because the genotype contains sequence information instead of explicit shape information.
Stadler, et. al argue evolution based on spaces does not require the structure inherent in metric spaces
because “nearness” can be defined in terms of set relations. Evolutionary algorithms use genotypes to
encode representations of problem solutions. However, indirect encoding schemes are extremely rare.
Metric accessibility topologies are commonplace for combinatorial problems because distance measures

are easily defined with direct encodings. Direct encodings are preferred for bioinformatics problems.

4 Any mutations to the fifth position were ignored in the O2 walk.
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For example, evolutionary algorithms have been extensively used to search for solutions to protein
folding problems (see [6] for an excellent survey of recent work). None of the genotypes used with
these evolutionary algorithms encoded residue sequences; instead they directly encoded secondary and
tertiary structure information such as backbone or side-chain torsion angles. Neighborhoods in these

circumstances are defined in terms of a distance measure and not sequence similarity.

The key point here is no compelling motive exists for treating a search space as a plain set devoid of any
structure. There is nothing wrong with considering a search space to be equivalent to a metric space. Indeed,
Stadler et. al never demonstrated how (or if) a point set topology formalism, when compared against a metric
space formalism, leads to improved designs for evolutionary search operators or improved performance in
evolutionary searches. Search spaces for combinatorial problems—even those without binary strings for
genotypes—fit quite naturally into a regular structure where neighborhoods are defined by distances. (A
technique for embedding the search space of any combinatorial problem into a k-ary N-cube is described in
[10].) However, Stadler et. al do agree with us in one regard: they state genotype spaces induced by certain
types of crossover operators are inconsistent with metric distances.

It is reasonable to question if landscape characterization really helps to choose effective search operators.
We believe, for finite populations, it is only worthwhile to use search operators that allow some gene flow.
This is because operators that do not permit gene flow have no ability to compensate for the unavoidable
genetic drift effects.

It is important to note that completely eliminating genetic drift effects is to be avoided. Indeed, without
some genetic drift effects the search algorithm would never converge to the optimal solution. The goal is to
maintain some balance between genetic drift and gene flow. That is, the search should have enough genetic
drift to converge, but also enough gene flow to escape from local optima.

The conclusion one should draw from the above discussion is that search operators do not define neigh-
borhoods within genotype space, but instead define reachability subspaces—i.e., subspaces containing points
that can be visited by one execution of the search operator. We have shown these reachability subspaces do
not always fit the canonical definition of a neighborhood, which introduces a number of problems including
mischaracterization of the landscape’s topology. Conversely, defining neighborhoods solely in terms of the
genetic encoding assures all genotypes are present—which retains the global optimum—and provides the
necessary framework for search algorithm ergodicity. The inability of a search operator to visit specific

points says a lot more about the efficacy of the operator than it does about the landscape’s topology.
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