
Introduction to Evolutionary
Computation

This material is adapted from a presentation constructed by Gerry
Dozier at Auburn University

Introduction to Evolutionary Computation

• Evolutionary Computation is the field of study devoted to
the design, development, and analysis is problem solvers
based on natural selection (simulated evolution).

• Evolution has proven to be a powerful search process.
• Evolutionary Computation has been successfully applied to

a wide range of problems including:
– Aircraft Design,
– Routing in Communications Networks,
– Tracking Windshear,
– Game Playing (Checkers [Fogel])

Introduction to Evolutionary Computation
(Applications cont.)

• Robotics,
• Air Traffic Control,
• Design,
• Scheduling,
• Machine Learning,
• Pattern Recognition,
• Job Shop Scheduling,
• VLSI Circuit Layout,
• Evolvable Hardware

Introduction to Evolutionary Computation
(cont.)

• An Example Evolutionary Computation
Procedure EC{

 t = 0;
 Initialize Pop(t);

 Evaluate Pop(t);
 While (Not Done)

 {
 Parents(t) = Select_Parents(Pop(t));

Offspring(t) = Procreate(Parents(t));
Evaluate(Offspring(t));

Pop(t+1)= Replace(Pop(t),Offspring(t));

t = t + 1;
 }

Introduction to Evolutionary Computation
(cont.)

• In an Evolutionary Computation, a population of candidate
solutions (CSs) is randomly generated.

• Each of the CSs is evaluated and assigned a fitness based
on a user specified evaluation function. The evaluation
function is used to determine the ‘goodness’ of a CS.

• A number of individuals are then selected to be parents
based on their fitness. The Select_Parents method must be
one that balances the urge for selecting the best performing
CSs with the need for population diversity.

Introduction to Evolutionary Computation
(cont.)

• The selected parents are then allowed to create a set of
offspring which are evaluated and assigned a fitness using
the same evaluation function defined by the user.

• Finally, a decision must be made as to which individuals of
the current population and the offspring population should
be allowed to survive.

Introduction to Evolutionary Computation
(cont.)

• Once a decision is made the survivors comprise the next generation
(Pop(t+1)).

• This process of selecting parents based on their fitness, allowing them
to create offspring, and replacing weaker members of the population is
repeated for a user specified number of cycles.

• Stopping conditions for evolutionary search could be:
– The discovery of an optimal or near optimal solution
– Convergence on a single solution or set of similar solutions,
– When the EC detects the problem has no feasible solution,
– After a user-specified threshold has been reached, or
– After a maximum number of cycles.

Introduction to Evolutionary Computation:
A Simple Example

• Let’s walk through a simple example!
• Let’s say you were asked to solve the following problem:

– Maximize:
– f6(x,y) = 0.5 + (sin(sqrt(x2+y2))2 – 0.5)/(1.0 + 0.001(x2+y2))2

– Where x and y are take from [-100.0,100.0]
– You must find a solution that is greater than 0.99754, and
– you can only evaluate a total of 4000 candidate solutions (CSs)

• This seems like a difficult problem. It would be nice if we
could see what it looks like! This may help us determine a
good algorithm for solving it.

Introduction to Evolutionary Computation:
A Simple Example

• A 3D view of f6(x,y):

Introduction to Evolutionary Computation:
A Simple Example

• If we just look at only one dimension f6(x,1.0)

Introduction to Evolutionary Computation:
A Simple Example

• Let’s develop a simple EC for solving this problem
• An individual (chromosome or CS)

– <xi,yi>
– fiti = f6(xi,yi)

Introduction to Evolutionary Computation:
A Simple Example

Procedure simpleEC{
 t = 0;

 Initialize Pop(t); /* of P individuals */
 Evaluate Pop(t);

 while (t <= 4000-P){
Select_Parent(<xmom,ymom>); /* Randomly */

Select_Parent(<xdad,ydad>); /* Randomly */

Create_Offspring(<xkid,ykid>):
 xkid = rnd(xmom, xdad) + Nx(0,s);
 ykid = rnd(ymom, ydad) + Ny(0,s);
fitkid = Evaluate(<xkid,ykid>);

Pop(t+1) = Replace(worst,kid);{Pop(t)-{worst}}»{kid}

t = t + 1;

 }
}

Introduction to Evolutionary Computation:
Reading List

1. Bäck, T., Hammel, U., and Schwefel, H.-P. (1997). “Evolutionary
Computation: Comments on the History and Current State,” IEEE
Transactions on Evolutionary Computation, VOL. 1, NO. 1, April 1997.

2. Spears, W. M., De Jong, K. A., Bäck, T., Fogel, D. B., and de Garis, H.
(1993). “An Overview of Evolutionary Computation,” The Proceedings of
the European Conference on Machine Learning, v667, pp. 442-459.
(http://www.cs.uwyo.edu/~wspears/papers/ecml93.pdf)

3. De Jong, Kenneth A., and William M. Spears (1993). “On the State of
Evolutionary Computation”, The Proceedings of the Int'l Conference on
Genetic Algorithms, pp. 618-623.
(http://www.cs.uwyo.edu/~wspears/papers/icga93.pdf)

