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Introduction to Evolutionary Computation

• Evolutionary Computation is the field of study devoted to
the design, development, and analysis is problem solvers
based on natural selection (simulated evolution).

• Evolution has proven to be a powerful search process.
• Evolutionary Computation has been successfully applied to

a wide range of problems including:
– Aircraft Design,
– Routing in Communications Networks,
– Tracking Windshear,
– Game Playing (Checkers [Fogel])



Introduction to Evolutionary Computation
(Applications cont.)

• Robotics,
• Air Traffic Control,
• Design,
• Scheduling,
• Machine Learning,
• Pattern Recognition,
• Job Shop Scheduling,
• VLSI Circuit Layout,
• Evolvable Hardware



Introduction to Evolutionary Computation
(cont.)

• An Example Evolutionary Computation
Procedure EC{

  t = 0;
  Initialize Pop(t);

  Evaluate Pop(t);
  While (Not Done)

  {
    Parents(t) = Select_Parents(Pop(t));

Offspring(t) = Procreate(Parents(t));
Evaluate(Offspring(t));

Pop(t+1)= Replace(Pop(t),Offspring(t));

t = t + 1;
  }



Introduction to Evolutionary Computation
(cont.)

• In an Evolutionary Computation, a population of candidate
solutions (CSs) is randomly generated.

• Each of the CSs is evaluated and assigned a fitness based
on a user specified evaluation function. The evaluation
function is used to determine the ‘goodness’ of a CS.

• A number of individuals are then selected to be parents
based on their fitness. The Select_Parents method must be
one that balances the urge for selecting the best performing
CSs with the need for population diversity.



Introduction to Evolutionary Computation
(cont.)

• The selected parents are then allowed to create a set of
offspring which are evaluated and assigned a fitness using
the same evaluation function defined by the user.

• Finally, a decision must be made as to which individuals of
the current population and the offspring population should
be allowed to survive.



Introduction to Evolutionary Computation
(cont.)

• Once a decision is made the survivors comprise the next generation
(Pop(t+1)).

• This process of selecting parents based on their fitness, allowing them
to create offspring, and replacing weaker members of the population is
repeated for a user specified number of cycles.

• Stopping conditions for evolutionary search could be:
– The discovery of an optimal or near optimal solution
– Convergence on a single solution or set of similar solutions,
– When the EC detects the problem has no feasible solution,
– After a user-specified threshold has been reached, or
– After a maximum number of cycles.



Introduction to Evolutionary Computation:
A Simple Example

• Let’s walk through a simple example!
• Let’s say you were asked to solve the following problem:

– Maximize:
– f6(x,y) = 0.5 + (sin(sqrt(x2+y2))2 – 0.5)/(1.0 + 0.001(x2+y2))2

– Where x and y are take from [-100.0,100.0]
– You must find a solution that is greater than 0.99754, and
– you can only evaluate a total of 4000 candidate solutions (CSs)

• This seems like a difficult problem. It would be nice if we
could see what it looks like! This may help us determine a
good algorithm for solving it.



Introduction to Evolutionary Computation:
A Simple Example

• A 3D view of f6(x,y):



Introduction to Evolutionary Computation:
A Simple Example

• If we just look at only one dimension f6(x,1.0)



Introduction to Evolutionary Computation:
A Simple Example

• Let’s develop a simple EC for solving this problem
• An individual (chromosome or CS)

– <xi,yi>
– fiti = f6(xi,yi)



Introduction to Evolutionary Computation:
A Simple Example

Procedure simpleEC{
  t = 0;

  Initialize Pop(t); /* of P individuals */
  Evaluate Pop(t);

  while (t <= 4000-P){
Select_Parent(<xmom,ymom>); /* Randomly */

Select_Parent(<xdad,ydad>); /* Randomly */

Create_Offspring(<xkid,ykid>):
   xkid = rnd(xmom, xdad) + Nx(0,s);
   ykid = rnd(ymom, ydad) + Ny(0,s);
fitkid = Evaluate(<xkid,ykid>);

Pop(t+1) = Replace(worst,kid);{Pop(t)-{worst}}»{kid}

t = t + 1;

  }
}
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