```
// Define the top-level module called ripple carry
// counter. It instantiates 4 T-flipflops. Interconnections are
// shown in Section 2.2, 4-bit Ripple Carry Counter.
module ripple carry counter(q, clk, reset);
output [3:0] q; //I/O signals and vector declarations
               //will be explained later.
input clk, reset; //I/O signals will be explained later.
//Four instances of the module T_FF are created. Each has a unique
//name.Each instance is passed a set of signals. Notice, that
//each instance is a copy of the module T FF.
T_FF tff0(q[0],clk, reset);
T_FF tff1(q[1],q[0], reset);
T_FF tff2(q[2],q[1], reset)
T_FF tff3(q[3],q[2], reset);
endmodule
// Define the module T FF. It instantiates a D-flipflop. We assumed
// that module D-flipflop is defined elsewhere in the design. Refer
// to Foure 2-4 for interconnections.
module T_FF(q, clk, reset);
//Declarations to be explained later
output q;
input clk, reset;
wire d;
D_FF dff0(q, d, clk, reset); // Instantiate D_FF. Call it dff0.
not n1(d, q); // not gate is a Verilog primitive. Explained later.
endmodule
```

temple