ECE 559 — Project #4

DUE: February 26

Problem instance: A graph G = (V, E) where $V = \{1, 2, ..., n\}$ is the set of vertices and $E \subseteq V \times V$ the set of edges. An edge between vertices i, j is denoted by the pair $\langle i, j \rangle \in E$, and we define the *adjacency matrix* (e_{ij}) according to

$$e_{ij} = \begin{cases} 1 & \text{if } \langle i, j \rangle \in E \\ 0 & \text{otherwise} \end{cases}$$

Feasible solution: A set V' of nodes such that $\forall i, j \in V' : \langle i, j \rangle \notin E$ (i.e., $e_{ij} = 0$).

Objective function: The size |V'| of the independent set V'.

Optimal solution: An independent set V' that maximizes |V'| (i.e., the max cardinality independent set).

An example of an independent set problem is shown in Figure 1.

Figure 1: The independent set $\{2, 4, 7, 9\}$ is a feasible solution but not globally optimum.

The easiest form of genotype is to represent a candidate solution as the bit string (b_1, b_2, \ldots, b_n) : $b_i = 1 \Leftrightarrow i \in V'$. This way, the *i*-th bit indicates the presence $(b_i = 1)$ or absence $(b_i = 0)$ of vertex *i* in the candidate solution. Note that $\sum_i b_i = |V'|$. A natural evaluation of an individual \mathbf{x} is thus

$$eval(\mathbf{x}) = \sum_{i=1}^{n} b_i + penalty(\mathbf{x})$$

where the penalty reduces the evaluation of individual \mathbf{x} for infeasibility.

You are to construct a genetic algorithm that solves an instance of the independent set problem. The graph itself is shown in Figure 2. Use a population of size $\mu = 20$ and run your GA for 100 generations. You will have to define an appropriate penalty function. Plot the best of 20 independent runs¹.

¹In independent runs, there is no requirement that all runs have the same initial population.

Figure 2: Test graph for the independent set GA problem.