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Abstract

The paper aims at clarifying some misunderstandings
about the consensus problem. These misunderstand-
ings prevent consensus from being considered as it
should be, i.e., a fundamental paradigm in the context
of fault-tolerant distributed systems, not only from a
theoretical point of view, but also from a practical point
of view. Siz frequent misunderstandings are discussed.

Misunderstanding 1:
Consensus is for theoreticians only

Consensus can be viewed as a general form of agree-
ment in distributed systems [17]. The problem is de-
fined over a set of processes {p1,ps,...,pn}: each pro-
cess p; has an initial value v;, and the correct processes
(those that do not crash) have to decide on a com-
mon value v that is the initial value of one of the pro-
cesses [3]. This problem has attracted theoreticians for
over 15 years and has resulted in a large body of work,
the most known being the Fischer, Lynch and Pater-
son result proving that consensus is not solvable in an
asynchronous system! if a single process may crash
(the so called FLP impossibility result) [9]. Apart
from this result, many solutions to the consensus prob-
lem have been described in other system models (syn-
chronous [6], partially synchronous [7], asynchronous
with failure detectors [3], etc).

While the consensus problem has attracted much
attention in the theoretical distributed systems com-
munity, it has been largely ignored by systems’ im-
plementors. Implementors usually consider the con-
sensus problem to be irrelevant for real systems. It is
frequently argued that:

L An asynchronous systems does not bound the transmission
delay of messages, nor the relative process speeds.

o Real systems have to solve practical agree-
ment problems such as atomic broadcast (also
called total order broadcast), atomic commit-
ment, leader election, group membership, etc. So
why worry about the consensus problem and the
FLP impossibility result?

Such a claim, stating that results applying to the con-
sensus problem are irrelevant to other agreement prob-
lems, is incorrect. The simplest example is atomic
broadcast: the atomic broadcast problem and the con-
sensus problem have been shown to be equivalent [3].
Equivalence means that (i) any solution to the atomic
broadcast problem can be used to solve the consen-
sus problem?, and (ii) any solution to the consensus
problem can be used to solve the atomic broadcast
problem®. Because of (i), the atomic broadcast prob-
lem is also subject to the FLP impossibility result. Be-
cause of (ii), a solution for the consensus problem can
be used as a building block to solve the atomic broad-
cast problem. This last statement is usually turned
down with the following argument: it is not because
consensus can be used to implement atomic broadcast,
that consensus has to be used to implement atomic
broadcast. However, because of (i), the inherent diffi-
culty of solving the consensus problem inevitably ap-
plies to the atomic broadcast problem, independently
of the solution that is used.

While atomic broadcast is equivalent to consensus,
the same result does not hold for all agreement prob-
lems. However, this does not reduce the difficulty of
the other agreement problems, which are at least as
hard to solve as consensus (e.g., atomic commitment,
see [10]). A rigorous approach to consensus, which

2This is easy to show: (1) initially, every process p; atomi-
cally broadcasts its initial value v;; (2) the decision is the first
value v delivered.

3(i) is called reduction of the atomic broadcast problem to the
consensus problem, and (ii) is called reduction of the consensus
problem to the atomic commitment problem.



can be used to address other agreement problems [11],
is thus of primary importance when building fault-
tolerant distributed systems.

Misunderstanding 2:
Time-outs are enough

The FLP impossibility result applies to asyn-
chronous systems, in which there is no time. For this
reason, the FLP impossibility result is often consid-
ered as an obvious result: without time, there is no
way to detect crashed process. So it is frequently ar-
gued that:

o Consensus can easily be solved by adding time-
outs to the asynchronous system model.

This statement is flawed. The absence of time in
the asynchronous system model does not prevent pro-
cesses from suspecting the crash of other processes. A
time-out mechanism can easily be implemented based
on a (purely local) logical time: the logical time of
process p; can be defined as the number of instruc-
tions that p; has executed. In other words, adding
time-outs to the asynchronous system model is not
enough to overcome the FLP impossibility result [6].
The heart of the FLP result is the impossibility to dis-
tinguish crashed processes from those that are slow or
connected via slow links.

Understanding that time-outs are not enough to
overcome the FLP impossibility result, does not lead
implementors to care about it. The usual argument is
the following;:

o The FLP impossibility result has been proven in
an unrealistic system model: the scenarios used
to prove the impossibility result never occur in a
real system.

This is probably the most interesting point to discuss.
While the FLP impossibility result holds in an asyn-
chronous system, most implementations assume “im-
plicitly” a stronger system model. Typically, a LAN
with a time-out of 30 seconds to detect crashed pro-
cesses might adequately be modelled as a synchronous
system (with infrequent timing failures). In this case
the FLP impossibility result does not hold*.
Nevertheless, there is an inevitable trade-off be-
tween (1) reducing the probability of timing failures
(i-e., the probability of incorrect failure suspicions),

4However, in this case it is not appropriate to characterize
the system as being asynchronous!

and (2) fast reaction to process crashes. This trade-
off is at the heart of the misunderstanding. Consider
atomic broadcast implemented using a sequencer pro-
cess (e.g., Amoeba [12], Isis [1]), and a time-out of 30
seconds to suspect the crash of the sequencer process.
In this case, at least 30 seconds are needed to react to
the crash of the sequencer process, i.e., the crash of the
sequencer will lead to a black-out period of at least 30
seconds. This might be unacceptable for time-critical
applications. On the other hand, reducing the time-
out value increases the probability of incorrect failure
suspicions! The probability of false suspicions might
still be low with a time-out of 15 seconds, but it can
be high with a time-out of a 1/2 second! As soon as
the probability of incorrect failure suspicions becomes
non-negligible, it is no longer adequate to consider the
system as being synchronous. In this case the FLP
impossibility result becomes relevant, and a rigorous
solution to the consensus problem (and to consensus
related problems) that tolerates frequent incorrect fail-
ure suspicions, becomes mandatory.

To summarise, (1) the difficulty of solving consensus
and (2) a fast reaction to process crashes — in order to
reduce the black-out period of the system — are closely
related.

Misunderstanding 3:
There is no life after FLP

Having understood the fundamental difficulty of
solving consensus, one could make the following ob-
servation:

o Consensus is sometimes solvable, and sometimes
not: so why care about the latter case? Just live
with it!

Indeed, the FLP impossibility result states that in an
asynchronous system there is no algorithm that solves
consensus in every possible run®. Given any algorithm
A, the algorithm can at best solve consensus in a sub-
set of all possible runs, which we will denote by .A-
runs®. A different algorithm A’ might solve consensus
in a different subset of runs, denoted by A'-runs. If
A-runs C A'-runs, then algorithm A’ can be seen as
more resilient than algorithm A.

In other words, the FLP impossibility result forces
us to characterize the set of runs in which a given
algorithm solves consensus. This is well understood
in the synchronous system model, in which an algo-
rithm A for solving an agreement problem is proven

5We ignore here the probabilistic algorithms.
8 A-runs are usually called the admissible runs of A.



correct only in runs with no more than f failures (pro-
cess crashes, channel omission failures, channel timing
failures)”.

Several researchers have been working on weakening
the assumptions of the synchronous model (bounded
number of failures) in the context of the consensus
problem. This has led to the definition of various sys-
tem models: partially synchronous [7], timed asyn-
chronous [5], asynchronous with failure detectors [3].
These models have led to algorithms that never lead
processes to disagree on the decision value (i.e., the
safety property is never violated). The partially syn-
chronous model and the timed asynchronous model,
both assume a bound § on the transmission delay of
messages and do not bound the number of timing fail-
ures. However, they put the following restrictions on
runs:

e the partially synchronous model assumes the ex-
istence of some time ¢ after which there are no
longer timing failures®;

e the timed asynchronous model assumes that the
systems goes through stable periods, and unsta-
ble periods. A stable period is a period during
which no timing failures occur.

The asynchronous system model augmented with
failure detectors does not assume any bound on the
message transmission delay, but characterizes the in-
correct failure suspicions that can occur during a run.
Consider the failure detector ¢S [3]:

e in an asynchronous system augmented with the
failure detector ¢S, there is a time ¢ after which
one correct process is no more suspected by any
correct process.

To summarise, the FLP result has led to the defini-
tion of various models (partially synchronous model,
timed asynchronous model, asynchronous model with
failure detectors) that are less restrictive than the syn-
chronous model, and allow us to characterize the runs
under which a given algorithm solves consensus.

7A major drawback of algorithms based on the synchronous
system model is that, whenever a run does not satisfy the bound
f, the safety property of the consensus problem is violated (i.e.,
two processes can disagree on the decision value). Notice that
this is not the fault of the synchronous system model, but of the
algorithms that have been developed based on the assumptions
of the synchronous model.

8We discuss the “no more” assumption in the next section.

Misunderstanding 4:
The failure detector model is
unrealistic

Among the three models mentioned above, the
asynchronous model with failure detectors is the most
simple and the most general. The simplicity of the
model has allowed the proof of an important mini-
mality result [2]: ©S is the weakest failure detector
that allows us to solve consensus in an asynchronous
system®. In other words, an algorithm A that solves
consensus in an asynchronous system with the failure
detector ©S is optimal: there exists no algorithm A’
and no run r such that A’ solves consensus in run r,
but not A.

However, the failure detector model (in the context
of asynchronous systems) is often not well understood
and the following criticisms are expressed:

1. The failure detector ©S is not implementable in
an asynchronous system.

2. The model does not incorporate process recovery:
in real systems processes do recover.

We discuss each of these criticisms.

1. The question about the implementability of the
OS failure detector is equivalent to the following ques-
tion, in the context of the timed asynchronous model
(see “Misunderstanding 3”): can stable periods be im-
plemented? Obviously the question does not make
sense. The question about the implementability of ¢S
is exactly of the same nature! The definition of ¢S
must be seen as a specification for the implementation
of the failure detection mechanism: the time-out value
chosen should be as small as possible (if fast reaction
to process crashes is required), but not too small, to
guarantee the properties of ¢S with a probability close
to 1.

Providing such a guarantee might appear to be im-
possible, because &S requires the existence of a correct
process p and o time t after which p is no more sus-
pected by any correct process. In other words, after ¢,
the property must hold “forever”. Can such a prop-
erty be ensured? Actually, requiring that a property
holds “forever” is only necessary from a formal point
of view, but not from a pragmatic point of view. From
a pragmatic point of view, “forever” means “until the
problem (e.g., consensus) is solved”19.

9The failure detector GW is usually presented as the weakest
for solving consensus. However, ¢S and OW are equivalent [3].
10This is obvious: who cares what happens once a problem
is solved. However, from a formal point of view, the specifica-



2. The consensus problem, and the failure detec-
tors, have been defined in a model in which processes
do not recover. This simplifies the specification. Take
for example a model with process recovery and a pro-
cess p that crashes and later recovers. Is p a correct
process? This is an important question, because the
specification of the consensus problem requires that
every “correct” process eventually decides. Thus, if
the answer is “yes”, p must eventually decide; if the
answer is “no”, p is not obliged to decide. How-
ever, the “crash/no recovery” model can be extended
to include process recovery. Solving consensus in a
“crash/recovery” model using failure detectors is dis-
cussed in [14]. The solution is very close to the solution
in the “crash/no recovery” model.

Misunderstanding 5:
Time-free means inefficient

The partially synchronous model and the timed asyn-
chronous model are both time based models. The
asynchronous model with failure detectors is a “time-
free” model (time is hidden in the failure detectors).
It is frequently argued that:

o Solving consensus in a time-free model leads to
a complex and inefficient solution.

We start by discussing the complexity issue. To make
the discussion concrete, we consider the Chandra-
Toueg consensus algorithm based on the failure detec-
tor S [3]. The algorithm has multiple rounds, with
a different process acting as the coordinator in every
round (the so-called rotating coordinator paradigm).
The algorithm indeed requires some time to be fully
understood, because it is intrinsically complex. Com-
plexity should however not be mixed up with ineffi-
ciency. The algorithm is complex because it can tol-
erate an unbounded number of incorrect failure suspi-
cions. However, in a run with no process crashes and
no failure suspicions (we call such runs good runs), the
Chandra-Toueg consensus algorithm solves consensus
in the first round! It is legitimate to evaluate the effi-
ciency of a consensus algorithm in such good runs'!.
Defining a measure for the efficiency of a distributed
algorithm is not easy. The number of messages sent
by an algorithm A is one possible measure of the ef-
ficiency of 4. The number of communication steps

tion “until the problem is solved” is not adequate, because it
mixes the specification of failure detectors, with its use to solve
a problem.

111f the failure detectors are implemented with adequate time-
outs, and if crashes are rare, then good runs are by far the most
frequent runs.

(or latency degree, see [15]), is probably a more ade-
quate measure. Taking into account both the number
of messages and the number of communication steps
is an even better measure for the efficiency of an al-
gorithm. To keep things simple, we measure here the
efficiency of a consensus algorithm as the number of
communication steps in good runs.

Solving consensus with three communica-
tion steps. The Chandra-Toueg consensus algo-
rithm based on <8 requires three communication
steps in good runs (Fig. 1)!2:

e initially, process p; broadcasts its initial value vy
(p1 proposes vy as the decision value);

e a process accepts p1’s proposal by sending an
ack back to p1;

e once p; has received a majority of ack messages,
it broadcasts a decide message.
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Figure 1: The Chandra-Toueg consensus algorithm
based on ¢S (in good runs).

Solving consensus with two communication
steps. The Chandra-Toueg consensus algorithm can
be improved. The early consensus algorithm [15], also
based on the ¢S failure detector, solves consensus in
only two communication steps in good runs (Fig. 2):

e initially, process p; also broadcasts its initial
value vq;

e every process accepts p;’s proposal by forward-
ing v1 to all. A process decides after having re-
ceived v; from a majority of processes.

12PRjgure 1 takes into account an obvious optimisation of the
first round of the Chandra-Toueg consensus algorithm.
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Figure 2: The early consensus algorithm based on ©8,
in good runs.

Solving consensus with only one communica-
tion step? Solving consensus in two communication
steps in good runs is not so bad! Is it possible to do
better? Better means solving consensus in a single
communication step. If this is not possible, then the
early consensus algorithm is optimal in the number of
communication steps in good runs!

Our intuition is that there is no algorithm, what-
ever (realistic) system model, even time-based, that
solves consensus with a single communication step in
good runs'3. Typically, such an algorithm would de-
cide in good runs on the initial value of one of the
processes, e.g., p1 (see Figure 3). However, such an
algorithm cannot be correct. A process, after having
received v1, cannot be sure that the other processes
also have received v; (and decided on v1). Consider
the following scenario:

e process p; broadcasts vy;

e simultaneously, a network failure separates the
processes in two partitions, one partition includ-
ing {p1,p2}, the other including {ps, ps, ps}. As-
sume that only ps, and of course p;, receive vy
and decide v1. Processes ps, ps and ps are likely
to decide on a value different from vy, i.e., the
agreement property of the consensus problem is
violated.

One might be tempted to fix the problem in a time-
based model as follows:

e whenever some process p; has received p;’s ini-
tial value vy, process p; waits for some dura-
tion A before deciding (where A is the duration
needed to detect that a network failure might
have occurred). After A, if p; has not been no-
tified of a network failure, then p; decides on v;.

13Notice that the algorithm given in [8], based on the timed
asynchronous model, appears to have the same number of com-
munication steps as the Chandra-Toueg algorithm based on ¢S8.
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Figure 3: Algorithm with a single communication step
in good runs: the agreement property of consensus is
violated.

This introduces a hidden cost A in the consensus
algorithm, which has to be added to the one step com-
munication cost of the algorithm. A careful analysis is
needed to compare the cost of (i) two communication
steps vs (ii) one communication step plus A. How-
ever, a result showing that (ii) is less costly would be
surprising, since the delay needed to detect a commu-
nication failure is at least the delay needed to transmit
a message.

Misunderstanding 6:
Asynchronous algorithms cannot be
used for time critical applications

It has been argued in [4] that:

e asynchronous atomic broadcast algorithms can-
not be used in critical applications, because they
do not guarantee a bound on the time it takes to
broadcast a message in the presence of failures.

This argument is incorrect. If an algorithm A, based
on a model M, guarantees a bound on the time it takes
to solve atomic broadcast (or any agreement problem),
this is because the model M restricts the number of
failures (e.g., the synchronous system model), and is
not due to a more sophisticated algorithm 4.

There might indeed be a difference between two al-
gorithms A; and Az based on two different system
models, My, respt. Ms. If only one of them, say My,
incorporates a model for resource allocation (process
scheduling, network allocation), then the algorithm Ay
might be more adequate for time critical applications
than the algorithm A based on a different model.
However, we know of no atomic broadcast algorithm



(and more generally of no agreement algorithm) based
on such a model.

We believe that the right approach when building
agreement algorithms for time critical applications, is
a two phase approach:

e Phase 1. Develop an algorithm A;; in a time
free model (asynchronous model with failure de-
tectors), and prove it correct (safety, liveness);

e Phase 2. “Immerse” the algorithm in a real sys-
tem, e.g., a system with real-time clocks. Real-
time guarantees can for example be obtained as
the result of the immersion of the algorithm Ay,
by taking into account the specific properties of
the real system.

This argument can be found in [13], where Phase 1
is called “design” phase of the algorithm and Phase 2
is called “implementation” phase. In the implemen-
tation phase, details not present in the design phase
are decided, e.g., the implementation of the failure de-
tectors (heartbeat messages vs. ping/I-am-alive mes-
sages, values for time-outs, etc). Such implementation
decisions depend obviously on the characteristics of
the underlying network. A timeliness analysis of the
time-free algorithm 4;; can then be done, based on
the characteristics of the underlying network (see for
example [16]).

Conclusion

While discussing frequent misunderstandings about
solving consensus and consensus related problems, the
paper has advocated an approach in which agreement
problems (e.g., consensus) are solved in the most gen-
eral model (asynchronous with failure detectors).

Such a general approach does not lead to loss of
efficiency and should be adequate even in the context
of time critical applications. Timeliness guarantees
include liveness guarantees: therefore proving liveness
should be the first step before considering timeliness
properties.
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