How Emulating Ant Colonies Can Help Find Solutions To A New Class of Real-World Optimization Problems.

Introduction:

In the mid-1990s Marco Dorigo [1] discovered computer algorithms could find surprisingly good solutions to difficult optimization problems if those algorithms mimicked the behavior of ant colonies. These “ant system” algorithms have vastly improved over the intervening years, but they still are restricted to solving combinatorial optimization problems. No ant system algorithm currently exists that can solve continuous optimization problems. This situation is unfortunate because Nature has demonstrated real ant colonies are amazingly resilient and their behavior has certain characteristics that would prove useful for solving continuous optimization problems.

This research effort will create a new class of ant system algorithms that are specifically designed to solve continuous optimization problems. These new algorithms must emulate additional functions of ant colonies not present in current ant system algorithms. For example, ant colonies in the real world have scouts that perform long-range reconnaissance; worker ants that forage for food; a queen ant that procreates; and nurse ants that attend ant larvae. All current ant system algorithm versions only model the foraging functions. We believe an algorithm that emulates some of the other functions real ants do(particularly, long-range reconnaissance(would very effectively solve continuous optimization problems. Our goal is to create just such an ant system algorithm.

This research will be conducted at the University of New South Wales (UNSW) in Canberra, Australia. Dr. Greenwood is a renowned expert in developing evolutionary computation algorithms(i.e., algorithms that solve problems by mimicking what Nature does. His primary collaborator (and host) at UNSW is Dr. Hussein Abbass who has conducted considerable research in multi-agent systems. Of course the success of this research effort depends on detailed information about ant colony ecosystems so that the new algorithms will mimic the appropriate behavior mechanisms. The third member of the research team will provide that information: Dr. Theo Evans, a noted entomologist at the Commonwealth Scientific and Industrial Research Organization, who specializes in the study of ant and termite colonies. These three researchers are the perfect combination of research experience needed for a successful project.

In the next section a brief description of ant colony behavior is given to introduce the reader to important terminology. The following section describes a basic ant system algorithm and the type of optimization problems they can solve. It will also be shown why the current versions cannot handle continuous optimization problems. The last section describes the areas of investigation and how we intend to create these new ant system algorithms.

Background:

In nature it is foraging workers who provide food for the ant colony. When a foraging worker discovers a new food source, it can either bring the food back to the colony or leave it and tell other ants where the food is located. If an ant decides it needs help in retrieving a food source, it lays down a chemical trail from the food source to the colony so other ants will know where to find the food. This chemical is called a pheromone and the pheromone strength tells the food quality. (How the ant finds its way back to the colony is another story, however.)

As ants move along the chemical trail they deposit more pheromone. This “reinforces” the path. Later, once the food source has been exhausted, the pheromone evaporates and the trail is no longer used. Barriers inserted into existing paths pose no problem. The ants begin to explore alternative paths. The most frequently used new path accumulates the most pheromones until eventually it becomes the primary path between the colony and a food source.

Research Description:

To really understand what this research project involves requires a thorough understanding of how the current ant algorithms work. The best way to achieve this is to look at the original problem ant algorithms were designed to solve: the world-famous Traveling Salesman Problem (TSP). The problem is defined as follows. A salesman has to visit several cities. The exact distance between any two cities is known. The order in which the salesman should visit these cities is called a “tour”. There are many possible tours but only feasible tours are of any interest. A tour is considered feasible if it satisfies the following two conditions:

1) All cities are visited

2) No city is visited more than once

[image: image1.png]

The objective is the find a feasible tour that covers the least amount of distance. This will not be an easy tour to find because there are so very many possible feasible tours. Indeed, a TSP with N cities has N! Feasible tours
. It isn’t hard to see that even a moderate size N makes this search impractical.

An ant algorithm solves a TSP problem by taking a small number of say 10 or 12 ants and each one on a different, randomly chosen city. During each algorithm step, every ant moves to another city. Each ant therefore completes a feasible tour after N algorithm steps. However, ants can’t move to just any city. An ant moves from city i to city j with some probability P(i , j) (0. Of course P(i , j) = 0 if city j was already visited. That ensures the tour stays feasible.

Remember real ants choose which path to take by the intensity of chemical pheromones. This chemical evaporates over time unless it is continually renewed, which allows old paths to be abandoned in favor of new, more promising paths. In the ant algorithm those dynamics are simulated with a set of “virtual pheromones” stored in computer memory. A direct path exists between every city i and j, and a virtual pheromone is stored for every path. These virtual pheromone values are important because they determine the P(i , j) values. The larger the virtual pheromone value, the higher the P(i , j) value.

Initially all virtual pheromones have the same value. Each time an ant traverses a path it deposits a small amount of pheromone. Hence, the most often traversed paths will have the largest pheromone values. All pheromone values on the lowest distance tour found by any of the ants is further increased by a small amount to highlight the best tour found so far. All virtual pheromones on all paths are then decreased by a tiny amount to simulate evaporation. These ant algorithm steps are repeated over and over again until eventually one minimum distance tour stands out(i.e., P(i , j) is approximately equal to 1.0 for every city i and city j on the tour. The basic steps in an ant algorithm are shown below. (The termination condition is usually a fixed number of times through the algorithm steps.)

Initialize pheromone values on each path between cities

While (termination condition not met)

place each ant on a different city

 use pheromone values to compute all P(i , j) transition probabilities

do

 each ant moves from its present position (city i) to a new position

 (city j) with probability P(i , j) to construct a tour

 increase pheromone value on all traversed paths

 until (all ants construct a tour)

 increase pheromones on the lowest distance tour found by any of the ants

 decrease pheromones on all paths to simulate evaporation.

end while

The TSP is an example of a combinatorial optimization problem. In these types of problems each solution is an ordering of a discrete number of objects and the goal is to find the best possible order. (In TSP the goal is to find the order to visit N cities such that the overall distance traveled is minimized.) The other type of problem is a continuous optimization problem where the set of feasible solutions is in a continuous space. An example of this type of problem is to find values of two real numbers x and y that minimizes some function f(x,y). All (x,y) pairs of values form a continuous surface. An example of one such f(x,y) is shown below.

[image: image2.png]

[image: image3.wmf]y

x

f (x,y)

No existing ant algorithm can solve a continuous optimization problem. Ant algorithms were originally designed specifically to solve combinatorial optimization problems, which simplified the design in several ways: (1) ants only have to have a finite number of next moves, (2) all ants perform exactly one task, and (3) communication via pheromone deposits is sufficient. Those characteristics are simply too restrictive for a continuous optimization problem because the ants must now explore a continuous surface with a topological structure (valleys, peaks, ridges, etc.). Any efficient exploration of a continuous surface requires some ants to search in a local neighborhood while other ants conduct a long-range reconnaissance. Direct ant-to-ant communication is now needed so searchers can exchange their discoveries. This type of communication isn’t needed when solving a combinatorial optimization problem. However, real ants rely heavily on ant-to-ant communication [2].

The purpose of this research effort is to design an entirely new type of ant algorithm that can solve continuous optimization problems. We believe this new ant algorithm will perform optimally if it can mimic what ant colonies do in nature. A portion of the research effort will therefore involve observing real ant colonies in their natural environment. This new ant algorithm will have little in common with existing ant algorithms. The anticipated differences between our proposed ant algorithm and current ant algorithms are summarized in the table below.

	Current Ant Algorithms
	Proposed Ant Algorithm

	ants can move to only a finite number of other points
	ants move to an infinite number of other points

	all ants perform a single task (foraging)
	ants perform one of two possible tasks (foraging or reconnaissance)

	all ants move according to one rule
	ant movements depend on which task they perform. Different tasks have different movement rules.

	ants move between discrete points i and j with probability P(i , j)
	ants move from a point i to a region within a continuous landscape

	ants communicate indirectly via pheromone levels
	ants communicate indirectly via pheromone levels

	no direct ant-to-ant communication is allowed
	ant-to-ant communication is included

Research Approach:

Designing a new ant algorithm capable of solving continuous optimization problems involves several tasks. First, we must identify relevant ant colony behaviors. Real ants have evolved effective methods of foraging for food over rugged ground surfaces. Man has much to learn by observing ants because the ground surface structures ants explore are not that much different than the surface structures commonly found in continuous optimization problems. This first task involves physically observing ant colonies in their natural environment to understand how ants forage and, in particular, how they conduct long-range reconnaissance. We hope to answer two questions about ants that reconnoiter long distances:

(1) how do they find their way back to the colony?

(2) how do they communicate the results of their search to the other ants?

Once the appropriate ant behaviorisms are identified, the second task is to construct accurate computer models of them. A number of features found in existing ant algorithms must be modified or abandoned. For example, pheromones can no longer be placed on direct, straight-line paths because ants don’t move in straight lines on continuous surfaces. Instead we anticipate using pheromone “smears” that are applied to surface regions in our new ant algorithm. Our ant algorithm will conduct searches locally (to emulate foraging) and globally (to emulate long-range reconnaissance). Ant-to-ant communication must also be added to help the ant colony move to new regions where good solutions to the continuous optimization problem are located.

Finally, thorough testing is essential. There are a number of high-dimensional continuous surfaces suitable as test cases to see how our modeled ant behavior compares to real ant behavior and to evaluate how well the ant algorithm converges toward the globally optimal solution. Twenty-three benchmark functions are listed in [3].
Bibliography:

[1] M. Dorigo, V. Maniezzo and A. Colorni (1996), “Ant System: Optimization by a Colony of Cooperating Agents”, IEEE Trans. on Sys., Man & Cyber.(Part B, 26(1): 29-41

[2] B. Ehmer and W. Gronenberg (1997), “Antennal Muscles and Fast Antennal Movements in Ants”, J. Comp. Physiol. B, 167:297-296

[3] X. Yao, Y. Liu and G. Lin (1999), “Evolutionary Programming Made Faster”, IEEE Trans. Evol. Comput. 3(2): 82-102

� N! denotes N factorial, which equals (N)(N-1)(N-2)((((2)(1). For example 5! = 5(4(3(2(1 = 120.

