On the Practicality of Using Intrinsic Reconfiguration
for Fault Recovery

Garrison W. Greenwood
Department of Electrical & Computer Engineering
Portland State University
Portland, OR 97207

Keywords: evolvable hardware, fault recovery, intrinsic evolution, reconfiguration

Abstract

Evolvable hardware combines the powerful search capability of evolutionary al-
gorithms with the flexibility of reprogrammable devices, thereby providing a natural
framework for reconfiguration. This framework has generated an interest in using
evolvable hardware for fault-tolerant systems because reconfiguration can effectively
deal with hardware faults whenever it is impossible to provide spares. But systems
cannot tolerate faults indefinitely, which means reconfiguration does have a deadline.
The focus of previous evolvable hardware research relating to fault-tolerance has been
primarily restricted to restoring functionality, with no real consideration of time con-
straints. In this paper we are concerned with evolvable hardware performing reconfig-
uration under deadline constraints. In particular, we investigate reconfigurable hard-
ware that undergoes intrinsic evolution. We show that fault recovery done by intrinsic
reconfiguration has some restrictions, which designers cannot ignore.

1 Introduction

Reliable systems can be depended on to provide continual service. Unfortunately, faults are
inevitable, which leads to disruptions in service. One way of increasing a system’s availability
is to make it fault-tolerant—i.e., capable of detecting and recovering from hardware faults.
Exchanging a faulty component with an operating spare is the most widely used method for
hardware fault recovery [1], but this method is not always practical. For instance, in some
systems mission essential equipment occupies all of the available space leaving no room for
spare hardware. Another case is when system failure results from an unanticipated change in
the operational environment. For example, high radiation environments can induce effects in
metal-oxide-semiconductor devices [2] and high temperatures can lead to failures in voltage
converters [3]. Simply replacing the original system with an identical copy accomplishes
nothing if the environmental conditions haven’t changed.

Reconfiguring a faulty system eliminates the need for redundant hardware. Reconfigu-
ration methodically changes the failed system’s architecture until a desired functionality is
restored. There is no guarantee full functionality can be restored in all cases. Nevertheless,
reconfiguration is a viable fault recovery technique—especially when providing redundant
hardware becomes impractical.

Our work presented in this paper concentrates on those fault tolerant systems that cannot
use redundant hardware for fault recovery and are therefore forced to use reconfiguration.
Spacecraft or unmanned air vehicles are good examples; both have little room for spare
hardware and they must operate in potentially hostile environments.

Evolvable hardware (EHW) has emerged as a powerful method for doing original hard-
ware design—which naturally suggests it could be equally useful for doing hardware recon-
figuration. The idea behind EHW is to combine the biologically-inspired search methods
of evolutionary algorithms with the flexibility of reconfigurable hardware. The evolutionary
algorithm searches throughout the space of all possible configurations looking for the one
that performs the best. Every configuration the evolutionary algorithm finds must be eval-
uated and there are two accepted methods: extrinsic evolution where the evaluation is done
in software, and intrinsic evolution where the evaluation is done on a hardware implementa-
tion. In many instances intrinsic evolution is necessary because the only real way to evaluate
a configuration is to implement it and have it actually operate in the physical environment.
Intrinsic reconfiguration refers to any search process that uses intrinsic evolution to find new
hardware configurations.

Three types of devices are suitable reconfigurable architectures: the field programmable
gate array (FPGA) for digital applications; the field programmable analog array (FPAA)
for analog applications; and the field programmable transistor array (FPTA) that can be
used in either analog or digital applications. These devices represent different levels of
granularity. Both the FPGA and FPAA provide configurable blocks of circuitry along with
programmable routing resources. Conversely, the FPTA consists of an array of MOSFET
transistors interconnected via programmable switches. A small number of capacitors are
included on-chip, but resistors are synthesized using the MOSFET transistors. FPGAs and
FPAAs are available as commercial off-the-shelf (COTS) devices (e.g., see [4] and [5]); the
FPTA was fabricated for NASA’s Jet Propulsion Laboratory and is currently only available
for research studies [6].

Some recent work has shown EHW can be quite effective for reconfiguring existing hard-
ware to overcome faults [7, 8, 9]. The ability of evolutionary algorithms to find good recon-
figurations is not at issue in this paper. We instead are concerned with the issue of time.
Most EHW-based studies rely on device simulators rather than physical hardware. This
simulator use means the time to download a configuration, the time to program the device,
and the time to conduct a fitness evaluation on the reconfigured hardware has largely been
ignored—even though they dramatically affect the evolutionary algorithm’s running time.

Systems cannot operate indefinitely with faults. It should be obvious that timing con-
straints must be considered whenever evolutionary fault recovery is used. Why then do
researchers ignore them? Greenwood, et. al [10] were the first to suggest EHW-based re-
configuration has a time limit. Researchers almost exclusively focus on using EHW only to
restore functionality. The evolutionary algorithm running time is usually reported, some-

times as a maximum, or sometimes as an average taken over many runs. Average running
time doesn’t guarantee compliance with a hard recovery deadline. Even the maximum run-
ning time is worthless because there is no guarantee some future trial run won’t take too
long.

Designers must contemplate a variety of factors before choosing a fault recovery method.
This paper describes the advantages and limitations of intrinsic reconfiguration so designers
can make an informed choice. In addition, several recommendations about the best ways to
use intrinsic reconfiguration for fault recovery are included. No new methods to speed up the
evolution are discussed. The reader should understand intrinsic reconfiguration properties
are not application dependent and are not restricted to any particular type of evolutionary
algorithm. Those properties are the central theme of this paper. Optimization issues are
handled more appropriately within the context of a specific problem.

The paper is organized as follows. Section 2 compares extrinsic and intrinsic reconfigura-
tion and explains why the latter is usually the only option for fault recovery. Section 3 gives
a brief introduction to RTS and shows why fault-tolerant systems are real-time. Section 4
derives a formula for estimating the intrinsic reconfiguration time and gives some examples
to show reconfiguration time can be surprisingly long. Section 5 presents guidelines for fu-
ture development of fault recovery systems that employ intrinsic reconfiguration. Finally,
some practical issues involving intrinsic reconfiguration are given in Section 6.

2 Why Intrinsic Reconfiguration?

We are concentrating on autonomous fault tolerant systems—i.e., systems that can detect,
isolate and ultimately recover from a fault without human intervention. Whenever EHW is
used for fault recovery, the evolution can be done either intrinsically with physical hardware
or extrinsically with hardware simulations. Is one method better than the other? We believe
only the intrinsic method makes any sense for two reasons:

(a) lack of in-silu computing resources

Most EHW research is conducted in laboratories using Pentium PCs or UNIX
workstations—resources not usually installed on a deep-space probe heading towards
the planet Neptune! A more likely computing environment for reconfiguration oper-
ations would be a single low-end microprocessor. Such a processor is relatively slow
and can only address small amounts of memory, which affects the simulation runtime
and the accuracy of the hardware models. Lack of space also precludes using pipelined
hardware or multiple processors that could speed up the simulation. Conversely, intrin-
sic reconfiguration doesn’t use hardware models, so there are no modeling inaccuracies.
Low-end microprocessors are quite capable of running evolutionary algorithms used for
EHW. In fact, compact genetic algorithms even run entirely on a single VLSI chip [11].

(b) inherent inaccuracies in hardware simulations

A serious problem for spacecraft is collision with orbital debris [12]. Unforeseen failures
like these are hard to represent accurately in a simulation, and even then only if
the precise nature of the failure is known. Unfortunately, getting accurate failure

information is nearly impossible with truly autonomous systems, especially when the
failure was caused by exogenous events such as collisions. Evolving a new hardware
configuration with an incomplete or inaccurate simulation is futile. On the other
hand, intrinsic reconfiguration never has to make simplifying assumptions because the
evolving hardware is directly interfaced to the damaged system. Hence, there is no
doubt about how much functionality is restored in the reconfigured system.

The above discussion should not imply intrinsic reconfiguration has no disadvantages.
Fault recovery is inherently a real time process—an idea largely ignored by the evolvable
hardware community. We will shortly show that intrinsic reconfiguration can take surpris-
ingly long. In fact, under certain circumstances it may take so long that it cannot be used
for fault recovery! Our objective is to first show designers the limitations of intrinsic recon-
figuration and second to provide the necessary tools for evaluating its potential as a fault
recovery method. However, before discussing those issues the reader must understand what
makes a system a real-time system.

3 Real-time systems

This section provides a brief introduction to real-time systems. Interested readers are referred
to some of the excellent books on this topic for further information (e.g., see [13]). We begin
with a formal definition of a real-time system.

Definition: (real-time system)
Any system that is both logically and temporally correct

Logical correctness means the system satisfies all functional specifications. Temporal
correctness means the system is guaranteed to perform these functions within explicit time-
frames. Fault-tolerant systems qualify as real-time systems because fault detection and fault
recovery inherently have deadlines. That is, the fault must be detected within a certain
period of time after it occurs, and the fault must be corrected within a certain period of
time after it is detected. Fault recovery may also have an expected start time.

The notion of real-time is often interpreted to mean really fast. This interpretation is
not correct. Real-time does not necessarily mean fast—and fast does not necessarily mean
real-time. Suppose a document must be sent from Chicago to London, and two delivery
systems are available: surface mail with a guaranteed 3-day delivery time or e-mail with a
guaranteed 5 minute delivery time. The e-mail delivery is orders of magnitude faster than
surface mail, but that does not necessarily mean it qualifies as a real-time delivery system.
It is the required delivery deadline that ultimately establishes whether the real-time system
definition has been met. For example, both systems are real-time systems if the deadline
is six days because both are logically and temporally correct. However, neither one is a
real-time system if the deadline is three minutes because neither one is temporally correct.

Real-time systems are classified as hard or soft. Hard systems have catastrophic con-
sequences if the temporal requirements are not met—up to and including complete system

destruction. In fact, if the hard system is safety-critical, failure could lead to injury or even
death. Conversely, soft systems only have degraded performance if the temporal require-
ments aren’t met. The classification of a fault-tolerant system, in particular, depends on the
nature of the faults and the consequences for failing to detect and correct them in a timely
manner. Suppose a fault results in an over-temperature condition. If the system hardware
can survive this condition for up to five minutes, then fault recovery must be completed
within five minutes to prevent further damage. This would be a hard fault-tolerant system.
On the other hand, if the fault only causes a minor loss of some sensor data, fault recovery
could take considerably longer without dire consequences. This would be a soft fault-tolerant
system.

4 Quantifying Reconfiguration Time

In this section we derive a formula for estimating the intrinsic reconfiguration time and de-
scribe how the formula is used. The derivation assumes the hardware environment consists
of a single processor—i.e., a microprocessor or microcontroller—interfaced to a single re-
configurable device. The processor is responsible for executing the evolutionary algorithm,
converting configurations into a proper file format, downloading the configuration to the
device, and running fitness tests to evaluate the configuration. The processor may or may
not be dedicated to reconfiguration. That is, the processor may be engaged with other tasks
whenever reconfiguration is not being performed.

4.1 Formula Derivation

The evolutionary algorithm manipulates a genome that encodes all of the information needed
to create a hardware configuration. During each generation A offspring are created. However,
with intrinsic evolution an offspring’s fitness evaluation cannot begin until the configuration
information is physically downloaded and the device is programmed. Let £, denote the time
it takes to do this. Since A downloads take place every generation, the download time per
generation lasts Af, seconds. If {; denotes the duration of the fitness test per individual,
then Aty is the fitness evaluation time per generation.

The t, value depends on the type of reconfigurable device—i.e., an FPGA, FPAA or
FPTA—whereas t; is application dependent because the test duration is determined by the
scope of the fitness test. Every offspring consumes ¢, + {; time units. It therefore follows
that an evolutionary algorithm running for k generations, while producing A offspring per
generation, has an intrinsic reconfiguration time of

To(k,A) = k(1 + 1) (1)

4.2 Some Examples

Table 1 shows the programming time (¢,) for several reconfigurable devices. This program-
ming time cannot be ignored, despite being rather small in most FPGAs, because EHW

‘ Device ‘ Type ‘ Size ‘ Mfg ‘ tp (ms) ‘ Ref. ‘ Notes

ispPAC10 FPAA | 4 | Lattice Semiconductor | 100 [14]
AN220E04 | FPAA | 4 Anadigm 38 | 15 | 1,2
XC3020A FPGA | 64 Xilinx 15 | (16 | 2
Virtex XCV50 | FPGA | 1728 Xilinx 7 [4] 3
XC4085XL FPGA | 3136 Xilinx 192 [16] 2
APEX 11 EP2A70 | FPGA | 6720 Altera 125 |7 | 4
JPL’s FPTA2 FPTA | 64 fabricated by MOSIS 0.008 [18] 5

(1) All 18 banks are reloaded with 256 bytes/bank
(2) Serial transfer with 10 MHz clock

(3) Byte-wide transfer with 10 MHz clock

(4) Byte-wide transfers with 66 MHz clock

(5) Byte-wide transfers with 160 MHz clock

Table 1: Programming times for various popular reconfigurable devices. All are COTS
devices except for the FPTA. The units for size are configurable logic blocks for FPGAs,
modules for FPAAs, and cells for FPTAs. The references indicate where the ¢, value is

documented.

algorithms frequently have populations sizes in the hundreds and they run for thousands of
generations.

Example 1:

An EP2A70 FPGA is intrinsically evolved by a generational GA. The population size is
200 and 1000 generations are processed. From Table 1, ¢, = 12.5 ms. Then the time spent
just reprogramming the FPGA is A -k - {, or about 42 minutes.

L¢ is responsible for the rather long search times often encountered in analog applications.
For instance, suppose a proportional-derivative controller is implemented in an FPAA. A
controller’s fitness is found by applying a step input to the control system and then measuring
its settling time. The fitness evaluation lasts at least as long as the settling time does, which
can be somewhat lengthy. Indeed, settling times of two minutes are not unheard of [19].
Under these circumstances, it wouldn’t take a very large population size nor a large number
of generations to make an intrinsic reconfiguration run for hours or even days before finishing.

Example 2:

An AN220E04 FPAA is used to compensate for aging effects in a control system responsi-
ble for positioning a satellite’s communications antenna. The reconfiguration search is done
by a generational GA run for 500 generations with a population size of 100. The system’s
step response is measured to determine if the compensation is correct. This step response
test takes £y = 625 milliseconds to conduct. Hence, A = 100, £ = 500 and ¢, = 3.8 ms.
Substituting into Eq. (1) yields 7,.(500,100) ~ 8.7 hours.

5 Discussion

Reconfiguration times are meaningless until they are put into context. For instance, take
Example 2 from the previous section. Suppose brief communication sessions with the satellite
are scheduled at 10 hour intervals. A session may be skipped, but skipping two sessions in a
row is not permitted. If a fault is detected just prior to a scheduled session, and if the error
results in missing the session, then the fault recovery deadline is 10 hours. This is the worst
case scenario'. An almost 9 hour reconfiguration time may seem quite long, but in this case
it is perfectly acceptable because T, < 10. On the other hand, it would not be acceptable if
communication sessions were scheduled at 6 hour intervals.

The only way to determine if there is a problem is to compare the reconfiguration time
against the fault recovery deadline. This latter quantity is system dependent. No problem
exists so long as the reconfiguration time is less than the recovery deadline.

This time comparison adds a new perspective on intrinsic evolution and, at the same time,
imposes a new requirement. Reconfiguration becomes a real-time process whenever it is used
as a fault recovery method. Consequently, it is no longer sufficient to just talk about how an
evolutionary algorithm was able to restore a circuit’s functionality. These statements may
show logical correctness, but without comparing the reconfiguration time against a deadline
there is no proof of temporal correctness. Just reporting an algorithm’s running time doesn’t
say anything about temporal correctness either. The key point is expressed by the following
first principle:

No fault recovery method can legitimately proclaim efficacy until it is proven to
be both logically and temporally correct.

The validity of this principle is easy to see. If the recovery method isn’t logically correct,
then the problem can’t be fixed. If it isn’t temporally correct, then the problem can’t be
fixed soon enough to prevent other things from going wrong. Without proving logical and
temporal correctness, there is no basis for claiming a fault recovery method is effective.

It is easy to prove if a fault recovery method is logically correct—try it and see if it fixes
the problem. Proving temporal correctness, however, is more complicated because it really
depends on conducting a thorough failure modes and effects analysis (FMEA) or fault tree
analysis (FTA). This analysis should identify all potential faults and their effects on system
performance [20]. One outcome of the failure analysis is the recovery deadlines. Temporal
correctness is proven if a logically correct recovery is guaranteed to finish prior to the recovery
deadline. (Unfortunately, no EHW-based fault recovery method is temporally correct. See
Section 6 for futher details.)

No attempt was made in this study to promote one reprogrammable device over another.
In fact, the devices we chose to study were picked merely to show the broad range of what
is available. There is, however, one caveat. Some reprogrammable devices, such as the
ispPAC10, are E2PROM based. Hence, there is a limit to the number of times the device
can be reconfigured. RAM based devices should be used if the population size and/or the
number of generations is large.

! Missing one session is permitted. If the fault is detected just after a scheduled session, the fault recovery
deadline would be 20 hours.

Up to this point only the programming and fitness evaluation times has been considered.
However, the time an evolutionary algorithm takes to do all of the other tasks done each
generation, such as conducting binary tournaments or performing n-point crossover, is also
important. The genome associated with a particular reprogrammable device is always the
same, so the overhead associated with running the evolutionary algorithm is roughly constant
each generation regardless of the application. Let ¢,, denote the constant overhead value.
Then a more accurate formula for the reconfiguration time is

Tolk, M ton) = EX(t, + 1) + kto 2)

The number of generations (k) and the evolutionary algorithm overhead time (¢,4) can
dramatically affect reconfiguration time. k& depends on the thoroughness of the search and
how easily the evolutionary algorithm escapes local optima. The overhead time depends on
a variety of factors including how parents are chosen, the complexity of the reproduction
operators, and so on. Additional time must be added to account for the time to convert each
genotype into the proper file format needed for the download.

Greenwood, et. al [10] suggested evolutionary algorithms designed for reconfiguration
searches perform best if they have high selection pressure and if they emphasize mutation
for reproduction. In principle, any type of evolutionary algorithm could be used for a recon-
figuration search, but from a practical standpoint genetic programming algorithms should
be avoided. Genetic programming algorithms designed for EHW problems are put on large
multiprocessor systems to abridge their long running time [21, 22]. This becomes especially
problematic for fault-tolerant systems because, if there isn’t enough room for redundant
hardware, then there isn’t enough room for a large multiprocessor system either. It seems
unlikely a full-fledged genetic programming search, run on a single processor, could finish
quickly enough to meet a fault recovery deadline of only a few hours.

Finally, some devices can be partially reconfigured—i.e., configuration changes can be
restricted to only small portions of the device. The idea is to identify the particular re-
gion in the bitstream which requires reconfiguration. A header is then wrapped around this
bitstream data to identify the address at which to start reconfiguration [23]. Partial recon-
figuration reduces ¢,. This reduction may be important in situations where 7, and ¢y are of
the same order of magnitude.

6 Putting Theory Into Practice

We assume the system is fully designed and it meets all functional specifications. The objec-
tive is now to find out how the system can fail and the resultant effects. This evaluation can
be done in several ways and the interested reader can find more comprehensive information
elsewhere (e.g., [24] contains an excellent introduction).

Systems are typically evaluated with one of the following methods:

o failure modes and effects analysis (FMEA)

A bottom-up method that looks at each component’s failure modes and how
those failures affect system performance.

o faull tree analysis (FTA)

A top-down method that assumes a specific failure has happened and then
analyzes each subsystem to look for the cause.

e failure modes and effects testing (FMET)
Failures are injected into the system to observe their effects.

A designer would use either a FMEA or a FTA to identify the system’s failure modes
and their effects. For each effect the analysis will show what actions (if any) would prevent
the effect from occurring, and if so, how much fault recovery time is allowed.

In principle a fault recovery should not be used unless it is both logically and temporally
correct. Logical correctness is proven with a FMET—i.e., inject the fault and see if intrinsic
reconfiguration prevents the effect from occurring. However, proving temporal correctness
is an entirely different story.

The reality is temporal correctness cannot be formally proven for intrinsic reconfiguration
because it uses an evolutionary algorithm. Since these algorithms are stochastic, indepen-
dent runs are not guaranteed to produce a repeatable outcome. Hence, there is no way to
guarantee a fixed number of generations will always find a desired circuit configuration.

This limitation does not, however, mean intrinsic reconfiguration cannot be used for fault
recovery. It is also a reality that no system is perfect, always capable of performing when
called upon. Systems do fail, so all recovery methods—whether or not they use evolutionary
algorithms—have a finite probability of not executing. Consequently, the primary concern
is to reduce the likelihood of failure. All a designer can do is minimize the failure risk to an
acceptable level. There are ways to minimize risk when using intrinsic reconfiguration, but
that depends on whether the fault is anticipated or unanticipated.

6.1 Minimizing Risk With Anticipated Faults

Anticipated faults are those faults identified while conducting an FMEA or FTA. These
faults are precisely known and their effects are observed. Moreover, the fault recovery time
is known because the analysis tells the time delay between the fault and its effect.

It was stated above that an FMET will verify logical correctness. But the first thing—
before even conducting the FMET—is to see if intrinsic reconfiguration has any chance of
meeting a recovery deadline. Here simulation can be useful®>. Once the fault is identified a
designer can envision the type of circuitry needed for fault correction. The designer could
construct an evolutionary algorithm to generate candidate hardware configurations and use
the simulator to evaluate them. A test run will show how many generations it takes to
produce the necessary circuit configuration. FEq. (2) will estimate the physical hardware
reconfiguration time which can then be compared against the fault recovery deadline.

The FMET should be conducted if and only if the reconfiguration time is less than the
recovery deadline. The best way to minimize any risk is to allow sufficient slack time. In

2Some COTS device vendors provide simulators for their products. Custom FPAAs and FPTAs and some
mixed-signal devices can use PSpice for simulation.

other words, the intrinsic reconfiguration should end well short of the recovery deadline. The
definition of “well short” of course depends on the system and the consequences of missing
the recovery deadline. In safety-critical systems—i.e. systems where failure can lead to total
system destruction, physical injury or even death-—the recovery deadline should be several
times longer than the reconfiguration time. That requirement can be relaxed for systems
that aren’t safety-critical, but reducing the reconfiguration time will always decrease the
risk. This means the designer must know what constitutes an acceptable level of risk before
specifying the maximum reconfiguration time.

Another way of reducing risk uses concepts taken from on-board preventive maintenance
programs [25]. The main idea is to do fault recovery in stages. In other words, during
each stage, which is a fixed time period, intrinsic reconfiguration is only expected to find an
somewhat improved solution. The evolutionary algorithm uses the final population from the
previous stage as the initial population in the current stage. The (still faulty) system has
degraded performance, but it remains online between stages. This process continues until
full recovery is achieved.

No fault recovery procedure can remove all risk. This means other actions may be
necessary. See MIL-STD-882D for some additional risk mitigation measures [26].

6.2 Minimizing Risk With Unanticipated Faults

Unanticipated faults are caused by events beyond a designer’s control. Two sources of unan-
ticipated faults are persistent, unexpected environmental changes or damage resulting from
exogenous events such as collision with orbital debris. In many instances the exact change
in the environment or the extent of damage cannot be accurately determined. Consequently,
unanticipated faults frequently have unpredictable effects. Without knowing the effect, it is
impossible to state the recovery time; temporal correctness is no longer relevant. However,
logical correctness may still be important but that depends on the source of the unanticipated
fault.

6.2.1 Changed Environment

Component characteristics can change when the operational environment changes [2, 3]. A
new hardware configuration might exploit those changed characteristics to restore any lost
functions. For example, Stoica et al. [6] successfully reconfigured a FPTA to restore functions
lost due to temperature increases. Logical correctness always holds for these type of problems
because the recovery objective is to completely restore all original system functions.

6.2.2 Exogenous Events

Exogenous events create havoc with an operating system because there is no way to predict
what faults will be induced; there is likewise no way to predict the ultimate effects. Conse-
quently, logical correctness may be unattainable because there is no guarantee the available
fault recovery method can deal with an unspecified failure mode.

Under these circumstances the corrective action switches from restoring system functions
to guaranteeing system survival—which contradicts the normal interpretation of logical cor-

10

rectness in a fault tolerant system. Intrinsic reconfiguration would initially just search for a
stable system configuration that stops any fault migration. For example, compensators can
keep a system stabilizable even when a sensor or actuator completely fails [27]. Any other
recovery actions may have to be done after the damaged system is taken offline.

We conclude this section with the following two remarks:

1. Deterministic recovery methods are designed to handle only a very specific set of faults.
They therefore have almost no ability to deal with unanticipated faults—especially
faults caused by exogenous events. On the other hand intrinsic reconfiguration can
evolve novel circuitry that a designer never considered. In this realm we believe intrinsic
reconfiguration has the most potential as a fault recovery method.

2. Temporal correctness is ignored under certain circumstances. Does this mean the first
principle of fault recovery is invalid? Not at all. The first principle always holds
when recovery is from an anticipated fault. The reason is an anticipated fault can
be thoroughly analyzed to determine its effect and recovery time; temporal correct-
ness requirements are therefore clearly defined. Conversely, unanticipated faults were
never analyzed, so any discussions about recovery time are meaningless. Temporal
correctness cannot be defined in these cases.

7 Conclusions

EHW-based reconfiguration is a viable method of performing fault recovery in systems with-
out redundant hardware. Fault-tolerant systems are real-time systems. Consequently, any
attempts to intrinsically evolve a new hardware configuration must consider the device pro-
gramming time, the fitness evaluation time, and the evolutionary algorithm overhead time
because they all contribute to the reconfiguration time. Eq. (2) gives a formula that estimates
the intrinsic reconfiguration time.

It has been shown neither a large population size nor thousands of generations are neces-
sary to have reconfiguration searches with surprisingly long finishing times. However, a long
search time by itself is not enough to reject reconfiguration as a fault recovery method. Intrin-
sic reconfiguration can be used for fault recovery so long as it finishes before the mandatory
recovery deadline.

Finally, a first principle of EHW-based reconfiguration was given. All intrinsic reconfigu-
ration fault recovery methods are stochastic processes—which means they can never satisfy
the first principle because temporal correctness cannot be satisfied. This does not mean
intrinsic reconfiguration can’t be used be fault recovery. The designer just needs to be aware
there is some risk involved. Intrinsic reconfiguration can be used so long as the designer
believes the risk is acceptable.

References

[1] A. Avizienis. Towards systematic design of fault-tolerant systems. [EFEE Comput.,
30(4):51-58, 1997.

11

2]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

H. Hughes and J. Benedetto. Radiation effects and hardening of MOS technology:
devices and circuits. IEEE Trans. Nuclear Sci., 50(3):500-521, 2003.

M. Wismer. Steady-state operation of a high-voltage multiresonant converter in a high-
temperature environment. IEEFE Trans. Power Elec., 18(3):740-748, 2003.

Virtex 2.5V field programmable gate array product specification DS003-1 (V 2.5). Xilinx
Inc., April 2, 2001.

AN220F04 datasheet—dynamically reconfigurable FPAA. Anadigm Inc., 2002.

A. Stoica, D. Keymeulen, R. Zebulum, A. Thakoor, T. Daud, G. Klimeck, Y. Jin,
R. Tawel, and V. Duong. Evolution of analog circuits on field programmable transistor
arrays. In Jason Lohn et. al, editor, The Second NASA/DoD workshop on Fvolvable
Hardware, pages 99-108, 2000.

D. Keymeulen, R. Zebulum, Y. Jin, and A. Stoica. Fault-tolerant evolvable hardware
using field-programmable transistor arrays. [EEE Trans. Reliab., 49(3):305-316, 2000.

D. Mange, M. Sipper, A. Stauffer, and G. Tempesti. Embryonics: a new methodology for
designing field programmable gate arrays with self-repair and self-replicating properties.

Proc. of the IEEFE, 88(4):516-541, 2000.

L. Sekanina and V. Drabek. Relation between fault tolerance and reconfiguration in
cellular systems. Proc. 6th IEEFE on-line testing workshop, pages 25-30, 2000.

G. Greenwood, E. Ramsden, and S. Ahmed. An empirical comparison of evolutionary
algorithms for evolvable hardware with maximum time-to-reconfigure requirements. In

J. Lohn et. al, editor, Proc. 2003 NASA/DOD Conf. on Evol. Hdwe, pages 59-66, 2003.

H. Gallagher and S. Vigraham. A modified compact genetic algorithm for the intrinsic
evolution of continuous time recurrent neural networks. In W. Langdon et.al, editor,

Proc. GECCO 2002, pages 163-170, 2002.

C. Belk, J. Robinson, M. Alexander, W. Cooke, and S. Pavelitz. Meteoroids and orbital
debris: effects on spacecraft. NASA Reference Publication 1408, 1997.

A. Burns and A. Wellings. Real-Time Systems and Programming Languages. Addison-
Wesley-Longmain, 3rd edition, 2001.

ispPAC10 in-system programmable analog circuit datasheet. Lattice Semiconductor

Corp., 2000.
AN220E04 user’s manual UM020800-U002g. Anadigm Inc., 2002.
Dynamic reconfiguration application note XAPP093. Xilinx Inc., November 10, 1997.

APEX II programmable logic device family data sheet. Altera Inc., August 2003, Ver
3.0.

12

[18]
[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

R. Zebulum, Y. Jin, and A. Stoica. JPL, private communication, 2003.

NGST yardstick mission. NGST Monograph No. 1, Next Generation Space Telescope
Project Study Office, Goddard Space Flight Center, 1999.

Facility system safety guidebook. NASA-STD-8719.7, January 1998.

M. Streeter, M. Keane, and J. Koza. Routine duplication of post-2000 patented inven-
tions by means of genetic programming. In J. Foster et.al, editor, Genetic Programming:

5th Kuro. Conf., FuroGP 2002, pages 26-36, 2002.

M. Keane, J. Koza, and M. Streeter. Automatic synthesis using genetic programming
of an improved general-purpose controller for industrially representative plants. In
A. Stoica et. al, editor, The 2002 NASA/DoD Conference on Evolvable Hardware, pages
113-122, 2002.

G. Hollingworth, S. Smith, and A. Tyrrell. The intrinsic evolution of Virtex devices
through internet reconfigurable logic. Proc. 3rd Int’l Conf. ICES 2000, LNCS 1801
(Springer, Berlin), J. Miller et. al (Eds.):72-79, 2000.

W. Dunn. Practical design of safety-critical computer systems. Reliability Press, 2002.

A. Tai, L. Alkalai, and S. Chau. On-board preventive maintenance: a design-oriented
analytic study for long-life applications. Performance Fval., 35(3-4):215-232, 1999.

MIL-STD-882D. Standard Practice for System Safety. Department of Defense, 10 Febru-
rary 2000.

J. Stoustrup and V. Blondel. Fault tolerant control: a simultaneous stabilization result.

IEEE Trans. Auto. Control, 49(2):305-310, 2004.

13

