
Density-functional theory and the

Kohn-Sham equations

Introduction

The calculation of the many-body wave function of a system of interacting electrons is
a formidable task which can only be carried out – and is only meaningful – for systems
with a few tens of electrons [1]. If observables for larger systems are to be determined,
the calculation of the many-body wave function has to be avoided. One possibility is to
write the desired quantities as functionals of the electronic density, a function of just three
variables, rx, ry, rz. A very early attempt along these lines is the Thomas-Fermi theory
[2, 3, 4], a modern and theoretically rigorous approach is density-functional theory (DFT)
[5]. Within DFT usually the Kohn-Sham (KS) equations are utilized which describe
independent particles moving in an effective potential. Thus DFT provides with the KS
equations a strict and theoretically sound procedure to map the real system of interacting
electrons onto a fictitious system of non-interacting so-called Kohn-Sham electrons. In
this way the KS equations provide a powerful tool for the numerical determination of the
electronic ground state of many-electron systems.

Short description

Since the electron-electron interaction is known (Coulomb potential), the Hamilton oper-
ator of a quantum-mechanical many-electron system is completely determined once the
external potential vext(r) is specified in which the electrons move. From a very funda-
mental point of view the problem is therefore solved, leaving only the “technical detail”
of actually computing the solution of the Schrödinger equation. The theorem of Hohen-
berg and Kohn (HK) [5], which is the foundation of density-functional theory, focuses on
the relationship between vext(r) and the electronic density n(r) of the ground state. The
theorem states that there exists a one-to-one mapping between vext(r) and n(r). In order
to fully specify an electronic system it is therefore equivalent to determine either vext(r)
or n(r).

Theorem: Let vext(r) be an arbitrary external potential. It then holds:

a) For a non-degenerate ground state |Ψ〉 of the system the external potential vext(r)
is determined, within a trivial additive constant, as a functional of the electronic
density n(r).
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b) Given an external potential vext(r), the correct ground-state density n(r) minimizes
the ground-state energy E0, which is a functional uniquely determined by n(r). It
holds,

E0 ≤ Ev[ñ] , (1)

where ñ(r) is any trial density fulfilling ñ(r) ≥ 0 and
∫

d3r ñ(r) = N , N being the
number of electrons in the system.

The theorem – which has a remarkable short proof – guarantees the existence of an energy
functional E[n] that reaches its minimum for the correct density n(r) yet gives no explicit
prescription for its construction. In order to determine E[n] it is useful to separate the
various known contributions to the total energy, like Ts[n], the kinetic energy of a non-
interacting electron gas, Eext[n], the classical Coulomb energy of the electrons moving
in the external potential vext(r), and ECoul[n], the classical energy due to the mutual
Coulomb interaction of the electrons:

E[n(r)] = Ts[n(r)] + Eext[n(r)] + ECoul[n(r)] + Exc[n(r)] . (2)

The last term Exc[n] contains the quantum-mechanical exchange and correlation energy
and – in principle – the difference between the true kinetic energy, T [n], and Ts[n], the
kinetic energy of the gas of non-interacting KS-electrons. But since this difference is very
small it is typically neglected.

Due to the second part of the HK theorem, namely that the total energy is minimized
by the true ground-state density, the variational principle can now be utilized. With the
standard functional derivatives and the additional definition of the so-called exchange-
correlation potential,

vxc(r) =
δExc[ñ(r)]

δñ(r)

∣∣∣∣
ñ(r)=n(r)

, (3)

the following set of equations can be derived [6, 7, 8, 9]:

[
− h̄2

2m
∇2 + veff(r)

]
ϕi(r) = εi ϕi(r) , (4)

where the effective potential – as a functional of the electronic density – is given by

veff(r) = veff [n(r)] = vext(r) + e2
∫

d3r′
n(r′)
|r− r| + vxc[n(r)] (5)

and the electronic density as

n(r) =
N∑

i=1

|ϕi(r)|2 . (6)

The set of equations (4) to (6) are the famous Kohn-Sham (KS) equations. They have
to be solved self-consistently, i.e., starting from some initial density a potential veff [n(r)]
is obtained for which the equations (4) are solved and a new electronic density (6) is
determined. From the new density an updated effective potential can be calculated and
this process is repeated until self-consistency is reached, i.e., until the new electronic
density equals the previous one.
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Formally the KS equations describe a system of non-interacting particles. This makes
the KS equations so easy to solve. However, since the KS electrons move in an effective
potential which is set up by the other electrons, many-body correlation effects are consid-
ered within the KS equation. In fact, the KS equations give an exact description of the
many-electron system since up to this point no approximations have been made.

The approximations enter in the expression for the unknown exchange-correlation func-
tional Exc. A widely used approach is the local-density approximation (LDA). It is as-
sumed that the density of an inhomogeneous system can be locally described by a homo-
geneous electron gas [6]. A homogeneous electron gas is fully specified by its electronic
particle density n which is often expressed in terms of the corresponding Wigner-Seitz
radius rs,

rs =
(

3

4π n

)1/3

. (7)

Within the LDA the functional for the exchange-correlation energy, Exc, can be written
as

Exc[n] =
∫

d3r
[
n(r) εxc[n(r)]

]
, (8)

where εxc is the exchange-correlation energy per particle of a homogeneous electron gas
of density n. From the last equation the exchange-correlation potential can be further
evaluated. The functional derivative (3) can be simplified to an ordinary derivative,

vxc =
δExc

δn
=

d

dn

[
n(r)εxc[n(r)]

]
. (9)

In the next step, the exchange-correlation potential is split into its exchange part vx and
a correlation part vc,

vxc(rs) = vx(rs) + vc(rs) . (10)

Wigner and Seitz [10] showed within the Thomas-Fermi model that vx can be approxi-
mated by (here and in the following Hartree atomic units are used)

vx(rs) = −
(

9

4π2

) 1
3 1

rs

⇐⇒ vx(n) = −
(

3

π
n

) 1
3

. (11)

The situation is more difficult for the correlation part. However, there are accurate values
for εc(n) available which stem from quantum Monte Carlo calculations by Ceperley and
Alder [11]; a widely used parametrization of these data is due to Perdew and Zunger [12].
Finally, the resulting vc is

vc(rs) = A ln rs + (B − 1

3
A) +

2

3
C rs ln rs +

1

3
(2D − C) rs , rs < 1 (12)

and

vc(rs) =
γ

1 + β1
√

rs + β2 rs

1 + 7
6
β1
√

rs + 4
3
β2 rs

1 + β1
√

rs + β2 rs

, rs ≥ 1 , (13)

with numerical parameters

γ = −0.1423 β1 = 1.0529 β2 = 0.3334 (14)

A = 0.0311 B = −0.048 C = 0.0020 D = −0.0116 . (15)
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With the best functionals available today – which are much more complicated than the
one presented above – the total energy can be calculated to within 2 kcal/mol (≈ 0.09
eV/atom). This value is about a factor of 2 worse than the accuracy achieved with
quantum chemical calculations (configuration interaction, CI) and it is assumed that it
will not be improved essentially in the future. However, geometries determined within
DFT achieve an accuracy which is comparable to those of CI calculations (10−2 Å).

References

[1] W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).

[2] E. Fermi, Atti. Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat. Rend. 6, 602 (1927).

[3] L. H. Thomas, Proc. Cambrigde Philos. Soc. 23, 542 (1927).

[4] B. H. Bransden and C. J. Joachain, Physics of atoms and molecules, Longman,
London and New York, 1983.

[5] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

[6] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

[7] S. Lundqvist and N. H. March, editors, Theory of the Inhomogeneous Electron Gas,
Plenum Press, New York, 1983.

[8] R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford
University Press, New York, 1989.

[9] R. M. Dreizler and E. K. U. Gross, Density Functional Theory, Springer, Berlin,
1990.

[10] E. P. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933).

[11] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

[12] J. P. Perdew and A. Zunger, Phys. Rev. B. 23, 5048 (1981).

Wolf-Dieter Schöne 4


