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Abstract—This paper presents a simple multimembered evolu-
tion strategy to solve global nonlinear optimization problems. The
approach does not require the use of a penalty function. Instead, it
uses a simple diversity mechanism based on allowing infeasible so-
lutions to remain in the population. This technique helps the algo-
rithm to find the global optimum despite reaching reasonably fast
the feasible region of the search space. A simple feasibility-based
comparison mechanism is used to guide the process toward the
feasible region of the search space. Also, the initial stepsize of the
evolution strategy is reduced in order to perform a finer search
and a combined (discrete/intermediate) panmictic recombination
technique improves its exploitation capabilities. The approach was
tested with a well-known benchmark. The results obtained are very
competitive when comparing the proposed approach against other
state-of-the art techniques and its computational cost (measured by
the number of fitness function evaluations) is lower than the cost
required by the other techniques compared.

Index Terms—Constrained optimization, multimembered evo-
lution strategy, nonlinear optimization, panmictic recombination
technique.

I. INTRODUCTION

VOLUTIONARY algorithms (EAs) have been widely

used to solve several types of optimization problems [1],
[8], [10], [11]. Nevertheless, they are unconstrained search
techniques and lack an explicit mechanism to bias the search
in constrained search spaces. This has motivated the develop-
ment of a considerable number of approaches to incorporate
constraints into the fitness function of an EA [6], [25].

The most common approach adopted to deal with constrained
search spaces is the use of penalty functions [28]. When using
a penalty function, the amount of constraint violation is used
to punish or “penalize” an infeasible solution so that feasible
solutions are favored by the selection process. Despite the pop-
ularity of penalty functions, they have several drawbacks from
which the main one is that they require a careful fine tuning of
the penalty factors that accurately estimates the degree of pe-
nalization to be applied so that we can approach efficiently the
feasible region [6], [32].
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Evolution strategies (ES) have been found not only efficient
in solving a wide variety of optimization problems [1], [2], [4],
[12], [31], but also have a strong theoretical background [3], [5],
[30].

Our approach uses the self-adaptive mutation mechanism of a
multimembered evolution strategy to explore constrained search
spaces. This is combined with a comparison mechanism which
uses three feasibility-based rules to guide the search toward the
global optima of constrained optimization problems. To avoid a
high selection pressure and maintain infeasible solutions in the
population, a simple diversity mechanism is added. The idea is
to allow the individual with the lowest amount of constraint vio-
lation and the best value of the objective function to be selected
for the next population. This solution can be chosen with 50%
probability either from the parents or the offspring population.
A hybrid panmictic recombination operator that combines dis-
crete and intermediate recombination is used to improve the ex-
ploitation mechanism of our algorithm.

With these combined elements, the algorithm first focuses on
reaching the feasible region of the search space. After that, it is
capable of moving over the feasible region as to reach the global
optimum. The infeasible solutions that remain in the population
are used to sample points in the boundaries between the fea-
sible and the infeasible regions. Thus, the main focus of this
paper is to show how a multimembered evolution strategy cou-
pled with very simple mechanisms is able to produce results that
are highly competitive with respect to other constraint-handling
approaches that are representative of the state-of-the-art in evo-
lutionary optimization.

This paper is organized as follows. In Section II, we define
the global nonlinear optimization problem that we aim to solve.
After that, in Section III a description of previous approaches
based on similar ideas is provided. Section I'V presents a detailed
description of our approach. Then, in Section V, we present the
experimental design and show the obtained results which are
discussed in Section VI. Section VII provides an experimental
study that aims to identify the mechanism that is mainly respon-
sible for the effectiveness of our proposed approach. The rate at
which our approach reaches the feasible region (in the test func-
tions adopted) is analyzed in Section VIIIL. In Section IX, some
conclusions are established. Finally, some possible paths for fu-
ture research are provided in Section X.

II. STATEMENT OF THE PROBLEM

We are interested in the general nonlinear programming
problem in which we want to

Find Z which optimizes f(Z) (1
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subject to
gi(7) <0, i=1,....n )
hi(#) =0, j=1,....p 3)
where Z is the vector of solutions & = [z1,Z2, ... ,x,,]T, n is

the number of inequality constraints, and p is the number of
equality constraints (in both cases, constraints could be linear
or nonlinear).

If we denote with F to the feasible region and with S to the
whole search space, then it should be clear that 7 C S.

For an inequality constraint that satisfies g;(Z) = 0, then we
will say that is active at Z. All equality constraints h; (regardless
of the value of & used) are considered active at all points of F.

III. PREVIOUS WORK

The inspiration of our approach was motivated by the idea of
exploring the capabilities of multiobjective optimization con-
cepts to solve global optimization problems. We compared four
representative approaches using the same test functions adopted
in this paper [18], [21]. One of the conclusions of this work was
the importance of a mechanism to maintain diversity in the pop-
ulation (i.e., to allow feasible and infeasible solutions to remain
in the population during all the evolutionary process) [23].

Motivated by the fact that the most recent and competitive
approaches to solve constrained optimization problems are
based on an ES (e.g., stochastic ranking (SR) [29] and the adap-
tive segregational constraint handling evolutionary algorithm
(ASCHEA) [13]), we hypothesized the following:

1) The self-adaptation mechanism of an ES helps to sample
the search space well enough as to reach the feasible
region reasonably fast.

2) The simple addition of feasibility rules to an ES should
be enough to guide the search in such a way that the
global optimum can be approached efficiently.

Thus, based on these ideas, we implemented a generic
ES-based approach to solve constrained optimization prob-
lems. Then, we performed an empirical study in which we
varied the type of selection (“+” or “,”) and the type of muta-
tion (noncorrelated or correlated) [19]. We also implemented
a variation of a (u + 1)-ES with the “1/5 successful rule” to
adapt on-line the sigma value [19]. Constraints were handled
using rules based on feasibility (see Section IV for details).

The use of rules based on feasibility has been explored in the
past by other authors. Jiménez and Verdegay [15] proposed an
approach similar to a min—max formulation used in multiob-
jective optimization combined with tournament selection. The
rules used by them are similar to those adopted in this work.
However, Jiménez and Verdegay’s approach lacks an explicit
mechanism to avoid the premature convergence produced by the
random sampling of the feasible region because their approach
is guided by the first feasible solution found.

Powell and Skolnick [26] proposed to map feasible solutions
into the interval (—oo, 1), and infeasible solutions into the in-
terval (1, co). The aim is to consider feasible solutions always
superior to infeasible ones.

Individuals are evaluated using [26]

f(@),
)= 1+7r (i 9:(Z) + Zp: hj(:i')) , otherwise
i=1 j
“)

7j=1

f(Z) is scaled into the interval (—oo,1), g;(Z) and h;(Z) are
scaled into the interval (1, 00), and r is a constant. Powell and
Skolnick [26] used linear ranking selection in order to get a
slower convergence.

Deb [9] proposed the selection criteria adopted in our work as
tournament rules to select individuals using a genetic algorithm
(GA). In his approach, the following expression is used to assign
fitness to a solution:

if feasible
fit(#

fi(@), if feasible

i6(Z) =  fuomse + 32 ¢;(7), otherwise ©)
j=1

where fyorst 18 the objective function value of the worst feasible
solution. However, Deb proposed to use niching as a diversity
mechanism, which introduces some extra computational time
(niches are an O(N?) procedure). As in Powell and Skolnick’s
algorithm [26], in Deb’s approach, feasible solutions are always
considered better than infeasible ones. This contradicts the idea
of allowing infeasible individuals to remain in the population.
Therefore, this approach will have difficulties in problems in
which the global optimum lies on the boundary between the
feasible and the infeasible regions.

Coello and Mezura [7] used tournament selection based on
feasibility rules (this is one of four different multiobjective-
based techniques compared). They also adopted nondominance
checking using a sample of the population (as the multiobjective
optimization approach called niched Pareto genetic algorithm
(NPGA) [14]). In this approach, a user-defined parameter .S, is
used to control the diversity in the population. This approach
provided good results in some well-known engineering prob-
lems and in some benchmark problems, but presented problems
when facing high dimensionality [7].

From our ES’s comparative study, the best results were
provided by the variation of a (1 + 1)-ES [19] in which one
child created from p mutations of the current solution com-
petes against it and the best one is selected as the new current
solution. The details of this approach are shown in Fig. 1.

However, the approach presented premature convergence in
some test functions [19]. A (1 + A)-ES was proposed in [20],
which improved the robustness and quality of the previous ES
proposed by the same authors. In this case, a self-adaptive pa-
rameter called selection ratio (.S,.) (similar to that proposed by
Coello and Mezura [7] and mentioned above) is adopted. S,
refers to the percentage of selections that will be performed in
a deterministic way (as used in the original version of our ES
where the child replaces the current solution using the feasi-
bility-based comparison mechanism). In the remaining 1 — S,
selections, there are two choices: 1) either the parent (out of the
) with the best value of the objective function will replace the
current solution (regardless of its feasibility) or 2) the best parent
(using again the feasibility-based comparison mechanism) will
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Fig. 1.  Algorithm of the variation of a (1x + 1)-ES used in the first version of
the approach.

replace the current solution. Both options are given 50% prob-
ability each.

The (1 + A)-ES approach proposed in [20] made evident that
having a good mechanism to maintain diversity is one of the
keys to produce a constraint-handling approach that is compet-
itive with the techniques representative of the state-of-the-art in
the area.

However, these two approaches, based on a single-membered
ES lack the explorative power to allow them sample large search
spaces. Thus, we decided to re-evaluate the use of a (1t + A)-ES
to solve this limitation, but in this case, adding the diversity
mechanism implemented in our previous approaches.

IV. OUR APPROACH

Our new approach is based on the same concepts that its pre-
decessors discussed in Section III: (1) the self-adaptation mech-
anism of an ES and (2) a comparison mechanism based on the
following criteria.

1) Between two feasible solutions, the one with the highest

fitness value wins.

2) If one solution is feasible and the other one is infeasible,

the feasible solution wins.

3) If both solutions are infeasible, the one with the lowest

sum of constraint violation is preferred.

Also, it has a simple diversity mechanism similar to that used
inthe (1+\)-ES and a combination of discrete and intermediate
panmictic recombination.

The detailed features of our algorithm are the following.

* Diversity Mechanism: With an idea similar to that used
in the (14 A)-ES version, we allow infeasible solutions to
remain in the population. However, unlike this previous
approach, where the best parent based only on the objective
function (regardless of its feasibility) can survive, in this

new approach we allow the infeasible individual with the
best value of the objective function and with the lowest
amount of constraint violation to survive for the next
generation. This solution (called by us the best infeasible
solution) can be chosen either from the parents or the
offspring population, with 50% probability. This process
of allowing this solution to survive for the next generation
happens three times every 100 during the same generation.
However, it is a desired behavior because a few copies
of this solution will allow its recombination with several
solutions in the population, specially with feasible ones.
Recombining feasible solutions with infeasible solutions
in promising areas (based on the good value of the objective
function) and close to the boundary of the feasible region
will allow the ES to reach global optimum solutions
located precisely on the boundary of the feasible region
of the search space (which are known as the most difficult
solutions to be reached). Following the idea of allowing
justafew infeasible solutions (one in case of the (1+))-ES
approach), we allow the best infeasible solution to be
copied into the population for the next generation just
three times for every 100 attempts. This works in the
following way: When the deterministic replacement is
used to form the population for the next generation in
an ES, the best individuals from among the parents and
offspring are selected using the comparison mechanism
previously indicated (in a deterministic way). The process
will pick feasible solutions with a better value of the
objective function first, followed by infeasible solutions
with a lower value of constraint violation. However, three
times from every 100 picks, the best infeasible solution
(from either the parents or the offspring population with
50% probability each) is copied in the population for
the next generation. The pseudocode is listed in Fig. 2.
Based on the empirical evidence observed in the pre-
vious version of the approach [20], where we used a popu-
lation of three offspring, we decided to use a small number
of copies of the best infeasible solutions for the next gen-
eration of our approach. For values larger than three, the
quality and robustness of our approach tend to decrease.
Combined Recombination: We use panmictic recom-
bination, but with a combination of the discrete and
intermediate recombination operators. Each gene in the
chromosome can be processed with any of these two re-
combination operators with 50% probability. This operator
is applied to both, strategy parameters (sigma values)
and decision variables of the problem. The pseudocode is
shown in Fig. 3. Note that we use intermediate recombi-
nation by just computing the average between the values
of the variables of each parent (as originally proposed
by Schwefel [30]).
Reduction of the Initial Stepsize of the ES: The previous
versions of our algorithm are based on a variation of a
(1 + 1)-ES [19] and a (1 4+ A)-ES [20]. Thus, they do not
use a population of solutions but employ the most simple
scheme of an ES, where only one sigma value is used
for all the decision variables. We observed that when this
sigma value was close to zero, the previous approaches
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function population_for_next_generation()
For i=1 to 1 Do
If flip(0.97)
Select the best individual based on the comparison mechanism
from the union of the parents and offspring population,
add it to the population for the next generation and delete
it from this union.
Else
If flip(0.5)
Select the best infeasible individual from the parents
population and add it to the population for the next
generation.
Else
Select the best infeasible individual from the offspring
population and add it to the population for the next
generation.
End If
End If
End For
End
Fig. 2. Pseudocode of the generation of the population for the next generation

with the diversity mechanism incorporated. flip(P) is a function that returns
TRUE with probability P.

function combined_recombination()
Select randomly mate_1 from the parents population
For i=1 to NUMBER_OF_VARIABLES Do
Select randomly mate_2 from the parents population
If flip(0.5)
If flip(0.5)
child; = mate_1;
Else
child; = mate_2;
End If
Else
child; = mate_1; + ((mate-2; — mate_1;/2,0)
End If
End For
End
Fig. 3. Pseudocode of the panmictic combined (discrete-intermediate)

recombination operator used by our approach. flip(P) is a function that
returns TRUE with probability P.

were capable of reaching the global optimum, or at least
improve the value of the final solution. Therefore, in our
new approach based on a multimembered ES, we decided
to favor finer movements in the search space. We experi-
mented with just a percentage of the quantity obtained by
the formula proposed by Schwefel [30]. We initialize the
sigma values (we use one for each decision variable) for
each individual in the initial population with only a 40%

Create "u" random solutions p(0)
with reduced initial stepsize
]
I =1 |
[]
—>| Evaluate p(0) |
¥
I 1=0 |
1

Apply combined crossover
to create one newisolution(l)
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. Do
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— . 1
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* e I’
" . ,
p(t)=replace best "u" - R s

S
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Fig. 4. Algorithm of our (;t + A)-ES. The thick boxes indicate the three
modifications made to the original ES.

of the value obtained by the following formula (where n
is the number of decision variables):

o;(0) = 0.4 x (%) (6)

where Az; is approximated with the expression (sug-
gested in [29]), Az; ~ z¥ — zl, where 2% — ! are the
upper and lower bounds of the decision variable 7.

Summarizing, our approach works over a simple multimem-
bered evolution strategy (SMES): (1 + A)-ES. The only modifi-
cations introduced are the reduction of the initial stepsize of the
sigma values, the panmictic combined (discrete-intermediate)
recombination, and the changes to the original deterministic re-
placement of the ES (made by sorting the solutions using the
comparison mechanism based on feasibility discussed at the be-
ginning of this section), allowing the best infeasible solution,
from either the parents or the offspring population, to remain in
the next generation. The details of our approach are presented
in Fig. 4.

Unlike Deb’s [9] technique, our approach does not use
niches in order to maintain diversity in the population. This
is because inside the replacement process used to produce the
population for the next generation, we incorporate a mechanism
that allows slightly infeasible solutions with a good objective
function value to be considered better than feasible ones. This
ES-like replacement makes also a difference with respect to
Powell and Skolnick’s approach [26], which uses proportional
selection (with linear ranking) on a GA-based approach.
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TABLE 1
VALUES OF p FOR THE 13 TEST PROBLEMS CHOSEN

Problem | n ’ Type of function ‘ p ‘ LI ‘ NI ‘ LE | NE
201 13 quadratic 0.0003% | 9 | 0 | O 0
202 20 nonlinear 99.9973% | 1 1 0 0
203 10 nonlinear 0.0026% | 0 | O 0 1
204 5 quadratic 27.0079% | 0 | 6 | O 0
205 4 nonlinear 0.0000% | 2 | 0 | O 3
206 2 nonlinear 0.0057% | 0 | 2 0 0
207 10 quadratic 0.0000% | 3 | 5| 0 0
208 2 nonlinear 0.8581% | 0 | 2 0 0
209 7 nonlinear 05199% [ 0 | 4 | O 0
gl0 8 linear 0.0020% | 3 3 0 0
gll 2 quadratic 0.0973% | 0 | O | O 1
gl2 3 quadratic 4.7697% | 0 | 93| 0 | ©
gl3 5 nonlinear 0.0000% | 0 | © 1 2

V. EXPERIMENTS AND RESULTS

To evaluate the performance of the proposed approach, we
used the 13 test functions described in [29]. The test functions
chosen contain characteristics that are representative of what
can be considered “difficult” global optimization problems for
an evolutionary algorithm. Their expressions are provided in the
Appendix, at the end of the paper.

To get an estimate of how difficult is to generate feasible
points through a purely random process, we computed the p
metric (as suggested by Michalewicz and Schoenauer [25])
using the following expression:

o=l
5]

where |S| is the number of random solutions generated (S =
1,000, 000 in our case), and | F'| is the number of feasible solu-
tions found (out of the total | S| solutions randomly generated).

The values of p for each of the functions chosen are shown
in Table I, where n is the number of decision variables, LI is
the number of linear inequalities, NI the number of nonlinear
inequalities, LE is the number of linear equalities, and NE is the
number of nonlinear equalities.

We performed 30 independent runs for each test function. The
learning rates values were calculated using the formulas pro-
posed by Schwefel [30] (where n is the number of decision vari-
ables of the problem)

(Vi)

The initial values for the standard deviations were calculated
using (6).
For the experiments, we used the following parameters:
* 1 = 100;
* )\ = 300;
* number of generations = 800;
* number of objective function evaluations = 240000.

N

7= (\/%)71. 8)

The combined recombination operator explained in detail
in Section IV was used both for the decision variables of the
problem and for the strategy parameters (sigma values). Note
that we do not use correlated mutation [22].

To deal with equality constraints, a dynamic mechanism orig-
inally proposed in ASCHEA [13] and used in [20] is adopted.
The tolerance value € is decreased with respect to the current
generation using the following expression:

€;(t)
€j(t+1)= 100195 9

The initial ¢ was set to 0.001. Note that the use of the value
1.001 95 in (9) causes the allowable tolerance for the equality
constraints to go from 0.001 (initial value) to 0.0004 (final
value) given the number of iterations adopted by our approach
(if more iterations are performed, this value will tend to zero).

For problem g13, ¢y was set to a much larger value (3.0), be-
cause in this case it is very difficult to generate feasible solu-
tions during the initial generations of our approach. Thus, by
using a large tolerance value, more individuals will be able to
satisfy the equality constraints and will serve as reference solu-
tions that the algorithm will improve over time. Given that this
larger value is adopted, we also changed the constant decreasing
value. So, instead of using 1.00195, we adopt, in this case, a
value of 1.0145. Such a value causes the allowable equality con-
straint violation to go from 3.0 (initial value) to 0.00003 (final
value) given the number of iterations adopted by our approach.
Note that the final allowable tolerance is smaller in this case, de-
spite the initial larger value. As a matter of fact, we recommend
to use this second setup for the tolerance of the equality con-
straints in problems in which no feasible solutions can be found
by our algorithm when using a small initial €.

Additionally, for problems g03 and g¢13, the initial stepsize
required a more dramatic decrease. They were defined as 0.01
(just a 5% instead of the 40% used for the other test functions)
for g03 and 0.05 (2.5%) for g13. These two test functions seem
to provide better results with very smooth movements. It is im-
portant to note that these two problems share the following fea-
tures: moderately high dimensionality (five or more decision
variables), nonlinear objective function, one or more equality
constraints, and moderate size of the search space (based on the
range of the decision variables). These common features sug-
gest that for these types of problems, finer movements provide
a better sampling of the search space using an evolution strategy.

The statistical results of our SMES are summarized in
Table II.

We compared our approach against three state-of-the-art
approaches: the homomorphous maps (HM) [17], SR [29], and
the ASCHEA [13]. The best results obtained by each approach
are shown in Table III. The mean values provided are compared
in Table IV and the worst results are presented in Table V.
The results provided by these approaches were taken from the
original references for each method.

HM performs a homomorphous mapping between an n-di-
mensional cube and a feasible search space (either convex or
nonconvex). The main idea of this approach is to transform
the original problem into another (topologically equivalent)
function that is easier to optimize by an EA. HM handles two
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TABLE 1I
STATISTICAL RESULTS OBTAINED BY OUR SMES FOR THE 13 TEST FUNCTIONS OVER 30 INDEPENDENT RUNS. A RESULT IN BOLDFACE
INDICATES THAT THE GLOBAL OPTIMUM (OR BEST KNOWN SOLUTION) WAS REACHED

Statistical Results of the Simple Multimembered Evolution Strategy (SMES)
Problem Optimal Best Mean Median Worst St. Dev.
g01 —15.000 —15.000 —15.000 —15.000 —15.000 0
202 0.803619 0.803601 0.785238 0.792549 0.751322 1.67E-2
203 1.000 1.000 1.000 1.000 1.000 2.09E-4
g04 —30665.539 | —30665.539 | —30665.539 | —30665.539 | —30665.539 0
205 5126.498 5126.599 5174.492 5160.198 5304.167 50.06E+0
206 —6961.814 —6961.814 —6961.284 —6961.814 —6952.482 1.85E+0
207 24.306 24.327 24.475 24.426 24.843 1.32E-1
208 0.095825 0.095825 0.095825 0.095825 0.095825 0
209 680.63 680.632 680.643 680.642 680.719 1.55E-2
glo 7049.25 7051.903 7253.047 7253.603 7638.366 136.02E+0
gll 0.75 0.75 0.75 0.75 0.75 1.52E-4
gl2 1.000 1.000 1.000 1.000 1.000 0
gl3 0.053950 0.053986 0.166385 0.061873 0.468294 1.77E-1

cases: convex feasible space and nonconvex feasible space.
HM uses a binary-coded GA with gray codes, proportional
selection without elitism and traditional crossover and mutation
operators.

The aim of SR is to balance the influence of the objective
function and the penalty function when assigning fitness to a so-
lution. SR does not require the definition of a penalty factor. The
selection process is based on a ranking process. Instead, a user-
defined parameter called Py sets the probability of using only
the objective function to compare two solutions to sort them.
Then, when the solutions are sorted using a bubble-sort like al-
gorithm, sometimes, depending of the ¢ value, the comparison
between two adjacent solutions will be performed using only
the objective function. The remaining comparisons will be per-
formed using only the penalty function that consists, in this case,
of the sum of constraint violation. SR uses a (30,200)-ES with
global intermediate recombination applied only to the strategy
parameters (not to the decision variables of the problem).

ASCHEA is based on three components: 1) an adaptive
penalty function; 2) a constraint-driven recombination; and
3) a segregational selection based on feasibility. In ASCHEA’s
most recent version [13], the authors propose to use a penalty
factor for each constraint of the problem. Also, the authors
added a niching mechanism to improve the performance of the
algorithm in multimodal functions. Finally, the authors added
a dynamic and an adaptive scheme to decrease the tolerance
value used in the transformation of equality constraints into two
inequality constraints. The approach uses a (100 + 300)-ES
with standard arithmetical recombination.

VI. DISCUSSION OF RESULTS

As described in Table II, our approach was able to find the
global optimum in seven test functions (g01, g03, g04, g06, g08,
gl and gl2) and it found solutions very close to the global

optimum in the remaining six (g02, g05, g07, g09, g10, g13).
In Table VI, we show the number of runs in which the global
optimum (or best known solution) was reached. In addition, we
show the lowest and the average generation number in which
such global optimum was found. The results obtained suggest
that for the problems in which the global optimum was reached,
the algorithm is capable of finding it using no more than 250
generations (about 75 000 evaluations of the objective function),
except for function g01, where the number of generations is 671.

When compared with respect to the three state-of-the-art
techniques previously indicated, we found the following (see
Tables III-V).

A. Compared With the Homomorphous Maps (HM)

Our approach found a better “best” solution in ten problems
(g01, g02, g03, g04, g05, g06, g07, g09, g10, and gl2) and a
similar “best” result in other two (g08 and g11). Also, our tech-
nique reached better “mean” and “worst” results in ten prob-
lems (g01, g03, g04, g05, g06, g07, g08, g09, g10, and g12). A
“similar” mean and worst result was found in problem gl11. The
HM found a “better” mean and worst result in function g02. No
comparisons were made with function g13 because such results
were not available for HM.

B. Compared With Stochastic Ranking (SR)

With respect to SR, our approach was able to find a better
“best” result in functions g02 and g10. In addition, it found a
“similar” best solution in seven problems (g01, g03, g04, g06,
208, gl1, and g12). Slightly better “best” results were found by
SR in the remaining functions (g05, g07, g09, and g13). Our ap-
proach found better “mean” and “worst” results in four test func-
tions (g02, g06, 209, and g10). It also provided similar “mean”
and “worst” results in six functions (g01, g03, g04, g08, gl1,
and gl2). Finally, SR found again better “mean” and “worst”
results in functions g05, g07, and g13.
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“-” MEANS THAT NO FEASIBLE SOLUTIONS WERE FOUND. NA = NOT AVAILABLE

TABLE III
COMPARISON OF THE BEST SOLUTIONS FOUND BY OUR SMES AGAINST THE HOMOMORPHOUS MAPS (HM), STOCHASTIC RANKING (SR), ASCHEA, OUR GA
VERSION AND TWO OTHER VERSIONS OF OUR SMES: ONE THAT USES ONLY RECOMBINATION AND ANOTHER ONE THAT USES BOTH RECOMBINATION AND
STEPSIZE REDUCTION. A RESULT IN BOLDFACE INDICATES A BETTER RESULT OR THAT THE GLOBAL OPTIMUM (OR BEST KNOWN SOLUTION) WAS REACHED.

Comparison of the best solution obtained.

P Optimal HM SR ASCHEA SMES GA Recomb. Recomb.&
Step.Reduc.
201 —15.000 —14.7886 —15.000 —15.0 —15.000 —14.440 —15.000 —15.000
202 0.803619 0.79953 0.803515 0.785 0.803601 0.796231 0.803589 0.803592
203 1.000 0.9997 1.000 1.0 1.000 0.990 0.800 1.000
g04 | —30665.539 —30664.5 —30665.539 —30665.5 —30665.539 —30626.053 | —30665.445 | —30665.422
g05 5126.498 — 5126.497 5126.5 5126.599 — 5133.935 5126.988
206 —6961.814 —6952.1 —6961.814 —6961.81 —6961.814 —6952.472 —6961.814 | —6961.814
g07 24.306 24.620 24.307 24.3323 24.327 31.097 24.360 24.343
208 0.095825 0.0958250 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825
209 680.63 680.91 680.630 680.630 680.632 685.994 680.632 680.631
gl0 7049.25 7147.9 7054.316 7061.13 7051.903 9079.770 7231.497 7062.754
gll 0.75 0.75 0.750 0.75 0.75 0.75 0.75 0.75
gl2 1.000 0.999999857 1.000000 NA 1.000 1.000 1.000 1.000
gl3 0.053950 NA 0.053957 NA 0.053986 0.134057 0.171855 0.058037
TABLE 1V

COMPARISON OF THE MEAN SOLUTIONS FOUND BY OUR SMES AGAINST THE HOMOMORPHOUS MAPS (HM), STOCHASTIC RANKING (SR), ASCHEA, OUR GA
'VERSION AND TWO OTHER VERSIONS OF OUR SMES: ONE THAT USES ONLY RECOMBINATION AND ANOTHER ONE THAT USES BOTH RECOMBINATION AND
STEPSIZE REDUCTION. A RESULT IN BOLDFACE INDICATES A BETTER RESULT OR THAT THE GLOBAL OPTIMUM (OR BEST KNOWN SOLUTION) WAS REACHED.

“-” MEANS THAT NO FEASIBLE SOLUTIONS WERE FOUND. NA = NOT AVAILABLE

Comparison of the mean solution obtained.

P Optimal HM SR ASCHEA SMES GA Recomb. Recomb.&
Step.Reduc.
g01 —15.000 —14.7082 —15.000 —14.84 —15.000 —14.236 —15.000 —15.000
g02 0.803619 0.79671 0.781975 0.59 0.785238 0.788588 0.802376 0.798786
203 1.000 0.9989 1.000 0.99989 1.000 0.976 0.529 1.000
g04 | —30665.539 —30655.3 —30665.539 —30665.5 —30665.539 —30590.455 | —30665.445 | —30661.106
205 5126.498 — 5128.881 5141.65 5174.492 - 5133.935 5158.739
206 —6961.814 —6342.6 —6875.940 —6961.81 —6961.284 —6872.204 —6961.814 | —6961.814
207 24.306 24.826 24.374 24.66 24.475 34.980 24.472 24.474
208 0.095825 0.0891568 0.095825 0.095825 0.095825 0.095799 0.095825 0.095825
209 680.63 681.16 680.656 680.641 680.643 692.064 680.637 680.637
gl0 7049.25 8163.6 7559.192 7193.11 7253.047 10003.225 7355.564 7193.887
gll 0.75 0.75 0.750 0.75 0.75 0.75 0.752 0.752
gl2 1.000 0.999134613 1.000000 NA 1.000 1.000 1.000 1.000
gl3 0.053950 NA 0.057006 NA 0.166385 - 0.787648 0.247404

C. Compared With the Adaptive Segregational Constraint
Handling Evolutionary Algorithm (ASCHEA)

Compared against ASCHEA, our algorithm found “better”
best solutions in three problems (g02, g07, and g10) and it found
“similar” best results in six functions (g01, g03, g04, g06, g08,
and g11). ASCHEA found slightly “better” best results in func-
tion g05 and g09. Additionally, our approach found “better”
mean results in four problems (g01, g02, g03, and g07) and it

found “similar” mean results in three functions (g04, g08, and
gl1). ASCHEA surpassed our mean results in four functions
(g05, 06, g09, and g10). We did not compare the worst results
because they were not available for ASCHEA. Also, we did not
perform comparisons with respect to ASCHEA using functions
g12 and g13 for the same reason.

As we can see, our approach showed a very competitive per-
formance with respect to these three state-of-the-art approaches.
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TABLE V
COMPARISON OF THE WORST SOLUTIONS FOUND BY OUR SMES AGAINST THE HOMOMORPHOUS MAPS (HM), STOCHASTIC RANKING (SR), ASCHEA, OUR GA
VERSION AND TWO OTHER VERSIONS OF OUR SMES: ONE THAT USES ONLY RECOMBINATION AND ANOTHER ONE THAT USES BOTH RECOMBINATION AND
STEPSIZE REDUCTION. A RESULT IN BOLDFACE INDICATES A BETTER RESULT OR THAT THE GLOBAL OPTIMUM (OR BEST KNOWN SOLUTION) WAS REACHED.

Comparison of the worst solution obtained.
P Optimal HM SR ASCHEA SMES GA Recomb. Recomb.&
Step.Reduc.
g01 —15.000 —14.6154 —15.000 NA —15.000 —14.015 —15.000 —15.000
g02 0.803619 0.79119 0.726288 NA 0.751322 0.779140 0.787626 0.785255
g03 1.000 0.9978 1.000 NA 1.000 0.956 0.294 0.999
g04 —30665.539 —30645.9 —30665.539 NA —30665.539 —30567.105 —30649.424 —30647.484
g05 5126.498 — 5142.472 NA 5304.167 — 5246.968 5201.935
g06 —6961.814 —5473.9 —6350.262 NA —6952.482 —6784.255 —5218.657 —6961.814
g07 24.306 25.069 24.642 NA 24.843 38.686 24.658 24.789
208 0.095825 0.0291438 0.095825 NA 0.095825 0.095723 0.095825 0.095825
209 680.63 683.18 680.763 NA 680.719 698.297 680.649 680.664
g10 7049.25 9659.3 8835.655 NA 7638.366 11003.533 7548.530 7368.333
gll 0.75 0.75 0.750 NA 0.75 0.752 0.785 0.767
gl2 1.000 0.991950498 1.000000 NA 1.000 0.999 1.000 1.000
gl3 0.053950 NA 0.216915 NA 0.468294 - - 0.466266
TABLE VI is lower than the other techniques with respect to which it was

NUMBER OF RUNS (OUT OF 30) WHERE THE GLOBAL OPTIMUM (OR BEST
KNOWN SOLUTION) WAS FOUND. WE ALSO SHOW THE BEST AND
AVERAGE GENERATION NUMBER AT WHICH THE GLOBAL OPTIMUM
(OR BEST KNOWN SOLUTION) WAS FOUND

Problem | Runs that find the optimum | Lowest generation | Average
g01 30 634 671
203 30 41 184
804 30 113 129
206 15 47 249
208 30 11 18
gll 30 28 88
gl2 30 63 s

D. Advantages of the Approach

Our approach can deal with moderately constrained problems
(g04), highly constrained problems, problems with low (g06 and
g08), moderated (g09) and high (g01, g02, g03,and g07) dimen-
sionality, with different types of combined constraints (linear,
nonlinear, equality, and inequality) and with very large (g02),
very small (g05 and g13) or even disjoint (g12) feasible regions.
Also, the algorithm is able to deal with large search spaces
(based on the intervals of the decision variables) with a very
small feasible region (g10). Furthermore, the approach can find
the global optimum in problems where such optimum lies on
the boundaries of the feasible region (g01, g02, g04, g06, g07,
and g09). This behavior suggests that the mechanism of main-
taining the best infeasible solution helps the search to sample
the boundaries between the feasible and infeasible regions.

Regarding computational cost, we can say that the number of
fitness function evaluations (FFE) performed by our approach

compared. Our approach performed 240000 FFE. Stochastic
ranking performed 350 000 FFE, the HMs performed 1400 000
FFE, and ASCHEA required 1 500 000 FFE.

VII. FINDING THE STRENGTH OF THE APPROACH

Once we corroborated the effectiveness of our approach, it
became particularly relevant to identify the key component (or
combination of them) that was mainly responsible for the good
performance of our algorithm. For that sake, we designed two
experiments.

The aim of the first experiment was to know which of the
three modifications to the (x4 A)-ES was mandatory, or if only
the combined effect of all three made the algorithm work.

The goal of the second experiment was to reinforce our hy-
pothesis regarding the effectiveness of the self-adaptation mech-
anism of an ES to sample constrained search spaces.

The experiments consisted of the following.

* Cross Validation of Our ES’ Mechanisms: We tested
our SMES using each of its mechanisms separately and
combining them in pairs, in order to recognize which of
them was mandatory. It is important to note that removing
the diversity mechanism implies disallowing the best in-
feasible solution to remain in the population for the next
generation of the algorithm. The comparison mechanism
(the three rules based on feasibility) remains in all cases
in order to guide the search to the feasible region of the
search space.

* ES Against GA: Our second experiment consisted on im-
plementing a real-coded GA with the same combined re-
combination and the same diversity mechanism used in
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TABLE VII

BEST SOLUTIONS FOUND BY OUR SMES WITH ITS THREE MECHANISMS ANALYZED SEPARATELY. ‘<’ MEANS INFEASIBLE. A RESULT
IN BOLDFACE INDICATES A BETTER RESULT OR THAT THE GLOBAL OPTIMUM (OR BEST KNOWN SOLUTION) WAS FOUND

Best solutions obtained by our SMES with its three mechanisms analyzed separately

Problem Optimal Only Combined Recombination | Only Diversity Mech. | Only Stepsize Reduction
201 —15.000 —15.000 —15.000 —15.000
202 0.803619 0.803589 0.763226 0.744524
203 1.000 0.800 0.995 0.482
204 —30665.539 —30665.445 —30663.625 —30664.609
805 5126.498 5133.935 5127.187 5126.938
206 —6961.814 —6961.814 —6961.814 —6961.814
207 24.306 24.360 24.576 24.429
208 0.095825 0.095825 0.095825 0.095825
209 680.63 680.632 680.654 680.654
gl0 7049.25 7231.497 7078.823 7059.549
gll 0.75 0.75 0.75 0.75
gl2 1.000 1.000 1.000 1.000
gl3 0.053950 0.171855 0.025667% 0.013617x

TABLE VIII

MEAN SOLUTIONS FOUND BY OUR SMES WITH ITS THREE MECHANISMS ANALYZED SEPARATELY. “x” MEANS INFEASIBLE. A RESULT
IN BOLDFACE INDICATES A BETTER RESULT OR THAT THE GLOBAL OPTIMUM (OR BEST KNOWN SOLUTION) WAS FOUND

Mean solutions obtained by our SMES with its three mechanisms analyzed separately

Problem Optimal Only Combined Recombination | Only Diversity Mech. | Only Stepsize Reduction
g01 —15.000 —15.000 —14.055 —14.493
202 0.803619 0.802376 0.674 0.627237
203 1.000 0.529 0.692 0.212
204 —30665.539 —30665.445 —30630.231 —30633.003
205 5126.498 5133.935 5373.424 5271.296
206 —6961.814 —6961.814 —6950.373 —6961.439
207 24.306 24.472 26.883 26.694
208 0.095825 0.095825 0.095825 0.095825
209 680.63 680.637 681.098 681.299
gl0 7049.25 7355.564 7783.965 7527.588
gll 0.75 0.752 0.755 0.752
gl2 1.000 1.000 1.000 1.000
gl3 0.053950 0.787648 0.052238x 0.201332%

our SMES. Here, we wanted to see if the use of a GA in-
stead of an ES would make any significant difference in

terms of performance.

‘We will discuss next the results obtained in each of these two

experiments.

A. Cross Validation of Our ES’ Mechanisms

We tested six different versions of our SMES.

* Only combined recombination.
* Only diversity mechanism.
* Only stepsize reduction.

* Combined recombination and diversity mechanism.
* Combined recombination and stepsize reduction.

* Stepsize reduction and diversity mechanism.

The parameters used in these six versions are exactly the

same used in the experiments described in Section V. Thus, the
number of evaluations of the objective function is also the same

(240 000).

The best results obtained for the three first versions (with

only one feature) are presented in Table VII. Mean results are

shown in Table VIII and worst results are shown in Table IX.
The best, mean, and worst results obtained for the last three ver-
sions (combination of two features) are shown in Tables X—XII.
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TABLE IX
WORST SOLUTIONS FOUND BY OUR SMES WITH ITS THREE MECHANISMS ANALYZED SEPARATELY. “*” MEANS INFEASIBLE. A RESULT
IN BOLDFACE INDICATES A BETTER RESULT OR THAT THE GLOBAL OPTIMUM (OR BEST KNOWN SOLUTION) WAS FOUND

Worst solutions obtained by our SMES with its three mechanisms analyzed separately
Problem Optimal Only Combined Recombination | Only Diversity Mech. | Only Stepsize Reduction
g01 —15.000 —15.000 —10.875 —12.585
202 0.803619 0.787626 0.586408 0.499773
203 1.000 0.294 0.441 0.021
204 —30665.539 —30649.424 —30447.381 —30582.023
g05 5126.498 5246.968 6018.426 6090.623
206 —6961.814 —5218.657 —6618.615 —6952.750
207 24.306 24.658 38.710 31.982
208 0.095825 0.095825 0.095825 0.095825
209 680.63 680.649 681.752 683.611
glo 7049.25 7548.530 9089.470 8585.027
gll 0.75 0.785 0.824 0.767
gl2 1.000 1.000 0.999 1.000
gl3 0.053950 1.0004x 0.06212 1.965371
TABLE X

BEST SOLUTIONS FOUND BY OUR SMES WITH ALL POSSIBLE COMBINATIONS OF TWO OF ITS (THREE) MECHANISMS. “*” MEANS INFEASIBLE.
A RESULT IN BOLDFACE INDICATES A BETTER RESULT OR THAT THE GLOBAL OPTIMUM (OR BEST KNOWN SOLUTION) WAS FOUND

Best solutions obtained by our SMES with two of its mechanisms combined.
Problem Optimal Combined Recombination & | Combined Recombination & | Stepsize Reduction &
Diversity Mechanism Stepsize Reduction Diversity Mechanism
g01 —15.000 —15.000 —15.000 —15.000
802 0.803619 0.803549 0.803592 0.741027
g03 1.000 0.998 1.000 0.725
g04 —30665.539 —-30665.539 —30665.422 —30665.318
g05 5126.498 5105.347x 5126.988 5126.534
206 —6961.814 —6961.814 —6961.814 —6961.814
207 24.306 24.353 24.343 24.478
g08 0.095825 0.095825 0.095825 0.095825
209 680.63 680.633 680.631 680.671
gl0 7049.25 7092.887 7062.754 7095.610
gll 0.75 0.75 0.75 0.75
gl2 1.000 1.000 1.000 1.000
gl3 0.053950 0.055491 0.058037 0.033529%

From the results shown in Tables VII-IX, it is clear that the

With respect to the comparison among versions which use

version with only the combined recombination provided the
better “best” results, as well as the best “mean” and “worst”
results for most of the functions. The version with only the
diversity mechanism obtained better “best,” “mean,” and “worst”
results only for function g03, and was unable to reach the
feasible region in gl3. The version with only the stepsize
reduction obtained better “best” results for functions g05 and
g10, and it also obtained a better “worst” result for function
206. However, this version was also unable to reach the feasible
region in gl3.

two (out of three) combined mechanisms, the results indicate
that the combination of the recombination with the stepsize
reduction provided the best and more robust results (see Ta-
bles X—XII). This version obtained better “best” results for
problems g02, g03, g07, g09, and gl10. Also, it found sim-
ilar “best” results for problems g01, g03, g06, g08, gl1, and
gl12. The combined recombination coupled with the stepsize
reduction obtained better “mean” results for problems g02,
203, g05, g07, g09, g10, gl1, and gl3, and it obtained similar
“mean” results for problems g01, g06, g08, and g12. Finally,
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TABLE XI
MEAN SOLUTIONS FOUND BY OUR SMES WITH ALL POSSIBLE COMBINATIONS OF TWO OF ITS (THREE) MECHANISMS. A RESULT
IN BOLDFACE INDICATES A BETTER RESULT OR THAT THE GLOBAL OPTIMUM (OR BEST KNOWN SOLUTION) WAS FOUND

Mean solutions obtained by our SMES with two of its mechanisms combined.
Problem Optimal Combined Recombination & | Combined Recombination & | Stepsize Reduction &
Diversity Mechanism Stepsize Reduction Diversity Mechanism
g01 —15.000 —15.000 —15.000 —14.125
202 0.803619 0.775841 0.798786 0.609223
g03 1.000 0.808 1.000 0.315
g04 —30665.539 —30665.539 —30661.106 —30637.253
g05 5126.498 5249.087x 5158.739 5303.175
206 —6961.814 —6900.247 —6961.814 —6961.814
g07 24.306 24.559 24.474 26.327
208 0.095825 0.095825 0.095825 0.095825
209 680.63 680.643 680.637 681.040
glo 7049.25 7605.077 7193.887 7823.012
gll 0.75 0.754 0.752 0.757
gl2 1.000 1.000 1.000 1.000
gl3 0.053950 0.372581 0.247404 0.108290+

TABLE XII
WORST SOLUTIONS FOUND BY OUR SMES WITH ALL POSSIBLE COMBINATIONS OF TWO OF ITS (THREE) MECHANISMS. A RESULT
IN BOLDFACE INDICATES A BETTER RESULT OR THAT THE GLOBAL OPTIMUM (OR BEST KNOWN SOLUTION) WAS FOUND

Worst solutions obtained by our SMES with two of its mechanisms combined.
Problem Optimal Combined Recombination & | Combined Recombination & | Stepsize Reduction &
Diversity Mechanism Stepsize Reduction Diversity Mechanism
g01 —15.000 —15.000 —15.000 —11.694
202 0.803619 0.647445 0.785255 0.446562
g03 1.000 0.243 0.999 0.088
g04 —30665.539 —30665.539 —30647.484 —30523.984
g05 5126.498 *6877.772 5201.935 6005.305
g06 —6961.814 —6173.165 —6961.814 —6961.808
g07 24.306 25.136 24.789 30.682
208 0.095825 0.095825 0.095825 0.095825
209 680.63 680.664 680.664 681.724
glo 7049.25 13883.840 7368.333 9099.229
gll 0.75 0.854 0.767 0.909
gl2 1.000 1.000 1.000 1.000
gl3 0.053950 1.229679x 0.466266 0.469699+

this version provided better “worst” results for problems g02,
203, g05, g06, g07, g10, gl1, and g13, and similar “worst”
results for problems g01, g08, and g12.

Based on the results obtained, we decided to compare the
results provided by the two most competitive versions of our
SMES (the version with only the combined recombination and
the version with the combined recombination coupled with the
stepsize reduction). The comparison of results is shown in the
last three columns from Tables III-V. The results indicated that
the version with both the recombination and the stepsize reduc-

tion provided better “best” results in seven problems (g02, g03,
205, g07, g09, g10, and g13) and similar “best” results in other
five (g01, g06, g08, g11, and g12). This version with two mech-
anisms reached better “mean” results in three problems (g03,
g10, and g13), and similar “mean” results in six functions (gO1,
206, g08, 209, gl1, and g12). Finally, this version provided
better “worst” results in six problems (g03, g05, g06, g10, gl1.
and g13), and it provided similar “worst” results in three more
(g01, g08. and g12). All these results suggest that the stepsize re-
duction, which provides finer mutation movements in the search
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space, help the combined recombination to sample the feasible
region as to find competitive results.

The main question that arose at this point was: what is the role
of the diversity mechanism in the success of our approach? In
order to answer this question, we compared the results of the
version with combined recombination and stepsize reduction
against the version with the three mechanisms. The results can
be seen in columns 9 and 6, respectively, from Tables III-V. The
complete version provided better “best” results in six functions
(g02, g04, g05, g07, g10, and g13), and similar “best” results
in other six (g01, g03, g06, g08, gl1, and 12). Moreover, the
complete version provided better “mean” results for three prob-
lems (g04, gl11 and g13), and similar “mean” results in other
four (g01, g03, g08 and g12). Finally, the complete version ob-
tained better “worst” results in three problems (g03, g04, and
gl1), and it reached similar “worst” solutions for other three
(g01, g08, and g12).

Thus, our approach provides results of a better quality when
using the diversity mechanism. However, the price paid for this
higher quality of results is a slight decrease in robustness. Also,
the overall results (providing competitive results in all 13 test
functions) are better when the diversity mechanism is incorpo-
rated into our SMES. It is also worth reminding that the goal of
the diversity mechanism is to allow the search to generate so-
lutions in the boundaries of the feasible region (which is some-
thing critical when dealing with constraints that are active in the
global optimum). Hence, the use of such diversity mechanism
seems a logical choice for dealing with active constraints.

To conclude, the combined recombination seems to be the
dominant mechanism, which is assisted by the fine mutation
movements provided by the reduction of the initial stepsize. Fi-
nally, the diversity mechanism helps to sample solutions located
on the boundaries between the feasible and infeasible regions.

B. ES Against GA

For the comparison of performance between a GA and an evo-
lution strategy, we used a real-coded GA with nonuniform mu-
tation [24]. Such a GA used the same comparison mechanism
(with the diversity mechanism) adopted by our SMES. It is im-
portant to note that we tested different mutation operators for
real-coded GAs and nonuniform mutation provided the best re-
sults. Furthermore, we intended that the GA used the same fea-
tures of the ES (except for the self-adaptive mutation which we
hypothesized was the main strength of our ES-based approach).
Finally, the same dynamic mechanism to handle the tolerance
for equality constraints was employed.

The parameters used by our real-coded GA were the
following:

* population size: 200;

* maximum number of generations: 1200;

e crossover rate: 0.8;

¢ mutation rate: 0.6;

* number of objective function evaluations: 240000 (the
same performed by our SMES).

We performed 30 runs for each test problem. The results ob-
tained by the GA are presented in Tables III-V in column 7,
and they are compared against those provided by the SMES

in column 6. As can be seen, both the quality and robustness
of the results provided by the GA are significantly poorer than
those obtained with the evolution strategy in all the test func-
tions adopted. The exceptions are g08, gl1, and gl2, in which
the GA was able to find competitive results. These results high-
light the strong influence (positive in this case) of using a more
adequate search engine, in our case an ES over a GA. Therefore,
the results seem to confirm our initial hypothesis about the use-
fulness of an ES to sample constrained search spaces in a more
appropriate way.

VIII. REACHING THE FEASIBLE REGION

After discussing the quality, robustness, and competitiveness
of our approach, and after studying the effect of its three main
mechanisms, we wanted to verify the rate (measured in terms
of generations) at which the algorithm was able to reach the
feasible region. This is an important issue, because in many
real-world problems it is normally desirable to find feasible
(even if not optimal) solutions with the lowest possible number
of FFEs. This fact is due to different reasons typically found in
industry: time-expensive evaluations of the objective function,
restricted time to provide results in highly constrained problems,
etc. Note, however, that a too fast arrival to the feasible region
is not always desirable, since it may bias the search and keep us
from reaching the global optimum.

To study this issue, we monitored the percentage of feasible
solutions in the population of our SMES at every 200 genera-
tions (let us keep in mind that the total number of generations
was fixed to 800). The results are presented in Fig. 5(a). As can
be seen, for all the test problems our approach reaches the fea-
sible region by generation 200. For problem g05, more than 20%
of the population is feasible by generation 200 and for the re-
maining functions almost all the population is feasible by then.
Based on the results found, we were interested in answering two
questions:

1) What is the behavior before generation 200 (i.e., how
fast does the population become almost feasible—where
“almost feasible” refers to having a population in which
at least 50% of the individuals are feasible—)?

2) How well is the diversity maintained at late stages of the
evolutionary process?

The results obtained for these two questions are shown in
Fig. 5(b) and (d) for question 1 and in Fig. 5(c) for question
2. Fig. 5(b) shows that the feasible region is reached at gen-
eration 20 in most cases. This means that (except for g05 and
g13) the approach only requires 6100 FFE to find feasible solu-
tions. In Table XIII, we show the statistical results obtained at
this stage of the search. Note that although the results are still
far from the optimum, with the exception of problems g05 and
g13, most of the solutions are feasible. In Fig. 5(d), we observe
in a close-up of Fig. 5(b) that the algorithm has the capability
of maintaining some infeasible solutions despite the almost-fea-
sible population (which follows the main motivation for using
the diversity mechanism adopted). In addition, we show the sta-
tistical results obtained at generation 200 in Table XIV. A sub-
stantial improvement of the quality and robustness of the results
is shown at generation 200, where only 20 000 FFE have been
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performed. Indeed, the results are close to the optimum in most
of the problems (for problems g08 and g12 the algorithm has
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SMES after 20 generations.

Problem Optimal Best Mean Median ‘Worst St. Dev.
g01 —15.000 —7.291 —5.686 —5.685 —3.820 9.05E-1
202 0.803619 0.442641 0.372686 0.370697 0.317450 2.65E-2
203 1.000 0.949 0.785 0.827 0.526 1.13E-1
204 —30665.539 | —30563.615 | —30473.319 | —30462.027 | —30401.756 | 40.26E+0
805 5126.498 *5067.897 5211.511 5199.974 +5643.923 103.26E+0
206 —6961.814 —6890.164 —6235.589 —6188.203 —5552.386 371.89E+0
207 24.306 62.136 135.969 121.868 682.452 107.72E+0
208 0.095825 0.095825 0.095825 0.095825 0.095817 2.0E-6
209 680.63 686.592 704.351 704.377 719.151 8.91E+0
gl0 7049.25 12777.324 17407.559 17284.081 25774.398 | 2368.59E+0
gll 0.75 0.750 0.783 0.764 x0.897 4.07E-2
gl2 1.000 0.999 0.999 0.999 0.999 7.0E-5
gl3 0.053950 %0.001348 %0.009035 %(0.004388 %0.026345 8.45E-3

reached the global optimum). This means that the approach is

about to converge in most cases. This highlights the importance
of the diversity mechanism in order to avoid that the algorithm

180 200

Percentage of feasible solutions. (a) Every 200 generations (from 0 to 800). (b) Every 20 generations (from 0 to 200). (c) Detailed oscillation of feasible

gets trapped in local optima and it can reach a better solution
(even the global optimum).

On the other hand, Fig. 5(c) shows a zooming of Fig. 5(a),

where it is possible to see again in detail the smooth oscillation
on the percentage of feasible solutions during the evolutionary
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TABLE XIV

BOLDFACE INDICATES THAT THE GLOBAL OPTIMUM (OR BEST KNOWN SOLUTION) WAS REACHED

SMES after 200 generations.

Problem Optimal Best Mean Median Worst St. Dev.
201 —15.000 —14.999 —14.960 —14.999 —13.828 2.10E-1
202 0.803619 0.801158 0.777458 0.787125 0.678203 2.43E-2
203 1.000 1.000 0.999 0.999 0.987 3.74E-3
g04 —30665.539 | —30665.539 | —30665.531 | —30665.536 | —30665.473 1.35E-2
g05 5126.498 5126.988 5179.163 5162.323 5379.227 63.5E+0
206 —6961.814 —6961.808 —6959.910 | —6961.624 | —6938.690 4.39E+0
207 24.306 24.473 24.734 24.711 25.401 2.15E-1
208 0.095825 0.095825 0.095825 0.095825 0.095825 0
209 680.63 680.643 680.680 680.680 680.736 2.43E-2
gl0 7049.25 7076.725 7330.398 7319.405 7816.830 153.72E+0
gll 0.75 0.75 0.75 0.75 0.76 3.07E-3
gl2 1.000 1.000 1.000 1.000 1.000 0
gl3 0.053950 x0.041436 0.145069 *0.045766 0.387152 1.53E-1

process after generation 200. This behavior suggests that the di-
versity mechanism still works well, maintaining near-feasible
solutions with a good value of the objective function in the pop-
ulation (between one and three infeasible solutions are enough
based on the previous results of the (1 + \)-ES approach [20],
which is able to avoid local optima with only a few copies of the
best infeasible solution).

The final results (on generation 800) provided in Table II,
compared with those on generation 200 (Table XIV), suggest
that our diversity mechanism does its job of avoiding prema-
ture convergence and, when coupled with the combination of
discrete and intermediate recombination and the self-adaptation
mechanism of the ES leads the evolutionary search toward the
global optimum of a problem.

It is important to remark that the process of finding the global
optimum takes almost 3/4 of the evolutionary search and only
1/4 (or less) is necessary to find the feasible region of the search
space. We argue that this behavior depends mostly on the land-
scape of the function, but such an idea is not explored any further
in this work.

The point we want to make here is that our approach is fast
at reaching the feasible region, while managing to avoid local
attractors as to converge to the global optimum or its close
vicinity.

IX. CONCLUSION

A new approach to handle constraints in evolutionary opti-
mization was proposed in this paper. The proposed approach
does not require the use of a penalty function, it uses the original
self-adaptation mechanism of a multimembered ES to sample
the search space in order to reach the feasible region and it
adopts a simple comparison mechanism based on feasibility to
guide the search toward the global optimum. Furthermore, the

proposed technique adopts a combination of discrete and inter-
mediate panmictic recombination in order to improve the ex-
ploitation effort. Additionally, to favor finer movements in the
search space, the initial values of the stepsize (sigma values) are
decreased in 60% with respect to the values normally adopted
with a multimembered ES. Finally, the approach uses a diver-
sity mechanism which consists of allowing infeasible solutions
close to the boundaries of the feasible region to remain in the
next population.

This approach is very easy to implement and its computa-
tional cost (based on the number of FFEs) is considerably lower
than the cost reported by three other constraint-handling tech-
niques which are representative of the state of the art in evolu-
tionary optimization.

X. FUTURE WORK

One issue that deserves some further study is the sensitivity
of our approach to the initial stepsize, since it is important to
have a better understanding of the influence of this parameter
on the performance of our algorithm. In addition, due to the
relevance shown by the combined recombination operator, we
are interested in testing other types of recombination operators
like generalized panmictic intermediate recombination.

Another path of future research consists of applying our ap-
proach to the solution of real-world (engineering) optimization
problems. Additionally, we are also interested in implementing
our constraint handling mechanism using other heuristics such
as differential evolution [27] and particle swarm optimization
[16]. This aims to explore the possibility of decreasing its com-
putational cost (measured in terms of the number of FFEs), after
reaching the feasible region, since in the current approach al-
most 75% of the search process is spent on this task.
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APPENDIX
TEST FUNCTIONS

1) g01

4
Minimize f(Z) = E

4 13
2
-5 E Ty — E T;
i=1 i=5

subject to

g1(%) =221 + 222 + z10+ 211 — 10 <0
92(%) = 221 + 223+ T10 + T12 — 10 <0
93(%) = 229 + 223 + £11 + 212 — 10 <0
9a(Z) = =8z1 + 219 <0

95(%F) = =8za + 211 <0

g6(¥) = —8z3 + 212 <0

g7(f) = =224 — 25 + 2190 < 0

98(7) = —2w¢ — w7 + 211 <0

go(#) = =228 — w9+ 212 <0

where the bounds are 0 < z; < 1(7 = 1,...,9),0 < z; <
100(¢ = 10,11,12), and 0 < x13 < 1. The global optimum is

atz* =(1,1,1,1,1,1,1,1,1,3,3,3, 1), where f(z*) = —15.
Constraints g1, g2, 93, 94, g5, and gg are active.
2) g02
> cos* () — 21, cos”(z;)
Maximize f () = [=2
> i
=1
subject to
g1(8) =075 = JJ2: <0
i=1
= Z —75n<0 (10)

wheren = 20and 0 < z; < 10(¢ = 1,...,n). The global max-

imum is unknown; the best reported solution is [29] f(z*) =

0.803 619. Constraint g, is close to being active (g; = — 1079).
3) g03

Maximize f(Z H
subject to
WE) =27 -1=0
i=1
where n = 10 and 0 < z; < 1( = 1,...,n). The global
maximum is at zF = 1/y/n(i =1,...,n) where flz*) =1

4) g04
Minimize f() = 5.357 854 722 4 0.835689 1z, x5
+ 37.293 23921 — 40792.141
subject to
91(%) = 85.334407 + 0.005 685 8zax5
+ 0.000 626 214 — 0.002 205 3z375

-92<0

92(F) = —85.334 407 — 0.005 685 8225
— 0.000 626 22124 +0.002 205 3335 < 0

g3(Z) = 80.51249 + 0.007 131 Tzp5
+0.002 995 52125 4 0.002 181 322
~110<0

94(Z) = —80.51249 — 0.007 131 Tagz5
— 0.002 995 53125 — 0.002 181 322
+90<0

95(Z) = 9.300961 + 0.004 702 6z325
+0.001 254 72123 4 0.001 908 5314
—25<0

96(%) = —9.300961 — 0.004 702 6315
—0.001 254 7z1 23 — 0.001 908 5324
+20<0

where 78 < 73 < 102, 33 < o < 45, 27 <

x; < 45(i = 3,4,5). The optimum solution is z* =
(78,33,29.995 256 025 682,45, 36.775812905 788),  where
f(z*) = —30665.539. Constraints g1y ge are active.

5) g05

Minimize f() = 3z + 0.000 00123 + 25
0.000002\
T\ )™

91(%) = —z4+ 23— 0.55 <0

92(%) = —z3+ 24— 0.55 <0

hs3(Z) = 1000sin(—x3 — 0.25)
+ 1000 sin(—x4 — 0.25) 4+ 894.8
—x1=0

hy(Z) = 1000sin(z3 — 0.25)
+ 1000 sin(z3 — 24 — 0.25) + 894.8
—x9=0

hs(Z) = 1000sin(z4 — 0.25)
+ 1000sin(z4 — z3 — 0.25)
+1294.8 =0

subject to

~

where 0 < z7 < 1200, 0 < x5 < 1200, —0.55 < z3 <
0.55, and —0.55 < x4 < 0.55. The best known solution is
x* = (679.9453,1026.067,0.118 876 4, —0.396 233 6), where
f(z*) = 5126.4981.

6) 206
Minimize f(Z) = (z1 — 10)® + (25 — 20)3
subject to
g1(Z) = (21— 5)% — (£, — 5)2+100< 0
g2(%) = (21 — 6)? + (22 — 5)* —82.81 <0

where 13 < z; < 100 and 0 < x5 < 100. The optimum solu-
tionis x* = (14.095,0.842 96), where f(z*) = —6961.813 88.
Both constraints are active.
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7) g07

Minimize f() = 23 + 23 + 2120 — 141,
— 1675 + (23 — 10)* 4+ 4(24 — 5)2
+ (w5 — 3)% + 2(z6 — 1)% + 522
+ 7(xg — 11)% 4+ 2(zg — 10)?
+ (w10 — 7)? + 45

subject to

Q
=
8y

I
|
oo
8

-
+
DN
8
[V}
+
Ut
8
©
|
N
8
i
S
|
—
[\
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o

96(T) = 22 + 2(wy — 2)? — 2m129 + 14a;
— b6z <0

0.5(z1 — 8)2 + 2(zo — 4)% + 322 — x¢
-30<0

g8(T) = =3z 4 619 + 12(g — 8)% — 719 < 0

97(&)

where —10 < z; < 10(¢ = 1,...,10). The global optimum
isz* = (2.171 996 2.363 683 8.773 926 5.095 984 0.990 654 8,
1.4305741.321 644 9.828 726 8.280 092 8.375 927), where
f(z*) = 24.306209 1. Constraints g1, g2, g3, g4, g5, and gg
are active.

8) g08

. 3 .
2 2

Maximize f(Z) = sin”( ;ra:l)sm( m2)
z3 (71 + 72)

subject to
g(F) =27 -2 +1<0
92(F)=1-21 4 (z2—4)> <0
where 0 < 27 < 10 and 0 < 22 < 10. The optimum solution
is located at 2* = (1.227971 3,4.245373 3), where f(z*) =

0.095 825.
9) 209

Minimize f() = (z1 — 10)% + 5(zy — 12)?
+ 25 + 3(wq — 11)* 4 1028
+ 7m§ + w‘% —4dxgr7 — 1006 — 87
subject to
g1(%) = =127 + 222 + 323 + @3 + 422
+5z5 <0
g2 () = =282 + Ty + 3w + 1023 + 14
—x5 <0
g3() = =196 + 23x1 + 23 + 622 — 817 <0
g4(%) = 423 4 235 — 3x119 + 223 + Sug
— 1127 <0
where —10 < z; < 10(¢ = 1,...,7). The global
optimum is z* = (2.3304991.951372, —0.477 5414,

4.365 726, —0.624 4870, 1.038 131 1.594 227), where f(z*) =
680.630 057 3. Two constraints are active (g1 and g4).

10) gl10

Minimize f(Z) = 21 + z2 + 3
subject to
91(Z) = —1 + 0.0025(z4 + z6) < 0
92(Z) = =14 0.0025(z5 + 27 —24) <0
() = -140.01(zg —x5) <0
(Z) = —a126 + 833.332 5224 + 100z,
—83333.333 <0

95(Z%) = —xox7 + 125025 + 2oy
—1250z4 <0

96(Z) = —z3x3 + 1250000 + z325
—2500z5 <0

where 100 < z; < 10000, 1000 < =z; < 10000,
(i = 2,3),10 < z; < 1000, (¢ = 4,...,8). The global
optimum is: z* = (579.19,1360.13,5109.92,182.0174,
295.5985,217.9799, 286.40,395.5979), where f(z*) =
7049.25. g1, g2 and g3 are active.

11) gl
Minimize f(#) = 23 + (zo — 1)*
subject to

h(Z —23=0

SN~—
Il

T

V)

where —1 < z; < 1, —1 < 29 < 1. The optimum solution is
* = (£1/v/2,1/2), where f(z*) = 0.75.
12) g12

100 — —5)2 — —5)2 — —5)2
Maximize f(Z) = (1 ) 1(38 5) (23 )

subject to
91(%) = (2 = p)* + (w2 — ¢)* + (w3 — 1)
—0.0625 <0

2

where 0 < z; < 10(¢ = 1,2,3) and p, ¢, r = 1,2,...,9.
The feasible region of the search space consists of 93 disjointed
spheres. A point (z1, 22, x3) is feasible if and only if there exist
P, q, r such the above inequality (12) holds. The global optimum
is located at z* = (5,5, 5), where f(z*) = 1.

13) g13

Minimize f(Z) = e"1¥273%4%s
subject to
hi(Z)=a? +a54+ai+25+22-10=0

( z
hg(f) = XT3 — 51174:175 =0
( z

where —2.3 < x; < 2303 = 1,2) and -3.2 <
x; < 3.2(i = 3,4,5). The optimum solution is z* =
(—1.7171431.5957091.827247,—0.763 641 3, —0.763 645),

where f(z*) = 0.0539498.
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