
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 115, No. 3, pp. 549–570, December 2002 ( 2002)

Simple Explanation of the No-Free-Lunch
Theorem and Its Implications1

Y. C. HO
2

AND D. L. PEPYNE
3

Communicated by M. A. Simaan

Abstract. The no-free-lunch theorem of optimization (NFLT) is an
impossibility theorem telling us that a general-purpose, universal opti-
mization strategy is impossible. The only way one strategy can outper-
form another is if it is specialized to the structure of the specific problem
under consideration. Since optimization is a central human activity, an
appreciation of the NFLT and its consequences is essential. In this
paper, we present a framework for conceptualizing optimization that
leads to a simple but rigorous explanation of the NFLT and its
implications.4

Key Words. No-free-lunch theorem, optimization, learning, decision
making, search, strategy selection, impossibility theorem, representation
and encoding, robustness, sensitivity, complexity.

1. Introduction

Many scientific fields of study have postulated impossibility theorems.
In mathematics, for example, Godel’s theorem roughly states that, in any
mathematical system, facts always exist that cannot be proved or disproved.
In economics, Arrow’s impossibility theorem on social choice precludes the

1Funding for this work was provided by EPRI�DoD CIN�SI Contract WO8333-03, Army
Contracts DAAL 03-92-G-0115 and DAAH 04-0148, AFOSR Contract F49620-98-1-0387,
ONR Contract N00014-98-10720, and a DoD CIP�IA Fellowship.

2Research Professor, Division of Engineering and Applied Sciences, Harvard University, Cam-
bridge, Massachusetts.

3Research Associate, Division of Engineering and Applied Sciences, Harvard University, Cam-
bridge, Massachusetts.

4An earlier version of this paper was published in the Proceedings of the IEEE Conference on
Decision and Control, December 2001. Additional work on the relation between the no-free-
lunch theorem, computational complexity, and network security will appear separately in
another paper by Y. C. Ho and Q. C. Zhao.

549
0022-3239�02�1200-0549�0  2003 Plenum Publishing Corporation



JOTA: VOL. 115, NO. 3, DECEMBER 2002550

ideal of a perfect democracy. The no-free-lunch theorem (NFLT, Refs. 1–
10), though far less celebrated and much more recent, tells us that, if we
cannot make any prior assumptions about the optimization problem we are
trying to solve, no strategy can be expected to perform better than any
other. Put in another way, a general-purpose universal optimization strategy
is theoretically impossible, and the only way one strategy can outperform
another if it is specialized to the specific problem under consideration.

Without question, optimization is central to much of human activity.
One might even go so far as to say that optimization—improving the human
condition—is the goal of civilization. This makes an appreciation of the
NFLT and its consequences fundamental. Our contribution in this paper is to
provide what we believe is a simple and intuitive explanation of the NFLT
and its implications. Our main assumption is one that we call the finite world
assumption, where all input and output sets are assumed to be discrete and
finite in size. The finite world is the world of digital computers, and hence it
does not impose any real loss of generality, since virtually all optimization
nowadays is done using numerical algorithms or simulation programs run-
ning on digital computers. In a finite world, all the information about an
optimization problem can be summarized in a matrix that we call the funda-
mental matrix F. In its most broad interpretation, the rows of F are stra-
tegies, the columns are the universe of all possible problems, and the matrix
entries are the performances of the strategies on the problems. The essence
of the NFLT is that the row averages of F are always equal; i.e., averaged
over all possible problems, all strategies give the same performance. Deeper
structure of F leads to other NFLTs and many useful insights.

The remainder of the paper is organized as follows. Section 2 gives the
definitions and essential background necessary for the rest of the paper by
defining the F-matrix and developing its properties. In Section 3, we use the
F-matrix and its properties to prove NFLTs for optimal strategy selection,
search algorithms, input space encodings, and stochastic optimization prob-
lems. Section 4 then discusses several implications of the NFLT, including
the conservation of performance, conservation of robustness, representation
of prior knowledge, performance�sensitivity tradeoff, performance�robust-
ness tradeoff, and the complexity�fragility tradeoff. Section 5 looks at how
the F-matrix can be used to understand optimization algorithms such as
random restarts and ordinal optimization (Ref. 11) and observations about
computational complexity and the challenge of optimization against
malicious adversaries. The paper closes in Section 6 with a short conclusion.

2. Definitions and Essentials

Consider the mapping yGf (x), where x is a candidate from a solution
set X, y is a scalar from a performance set Y, and f is a cost or objective



JOTA: VOL. 115, NO. 3, DECEMBER 2002 551

function. The optimization problem is to choose the solution x∈X whose
performance y is best in some sense (e.g., minimizes f ). Under our finite
world assumption, the sets X and Y are discrete and finite in size rep-
resenting, for example, the input and performance spaces of a discretized
continuous-variable optimization problem or the set of tours and discretized
tour lengths of a combinatorial traveling salesman problem (TSP). The next
lemma establishes that, when the sets X and Y are finite, then the universe
of unique mappings from X to Y is also finite.

Lemma 2.1. If X has size �X � and Y has size �Y �, then there are
�F �G�Y ��X � unique mappings in the set FG{f:X→Y}.

Proof. Each x∈X may be mapped to one of �Y � possible outputs.
Since there are �X � inputs, it follows immediately that there are at most
�F �G�Y ��X � possible unique mappings from X to Y. �

2.1. Fundamental Matrix. Since the sets X, Y, F are all discrete, we
can assign integer labels to each of their elements, i.e., let

XG{x0 , x1 , . . . , x�X �A1}, YG{y0 , y1 , . . . , y�Y �A1},

FG{f0 , f1 , . . ., f�F �A1}.

How we label the elements is entirely arbitrary. The universe of all possible
unique mappings from X to Y can then be summarized by a matrix that we
call the fundamental matrix F.

Definition 2.1. A fundamental matrix F is a matrix with �X � rows, one
for each x∈X, �F � columns, one for each f∈F, and ijth entry FijGfj (xi)∈Y;
i.e., the ijth entry is the performance of candidate solution xi on cost func-
tion fj .

As an example, if �X �G3 and �Y �G2, then �F �G�Y ��X �G8 and the fun-
damental matrix F is given by

f0 f1 f2 f3 f4 f5 f6 f7

x0 y0 y1 y0 y1 y0 y1 y0 y1

x1 y0 y0 y1 y1 y0 y0 y1 y1 . (1)

x2 y0 y0 y0 y0 y1 y1 y1 y1

Another way to view the construction of F is to look at the matrix
formed by the integer labels of the y’s, which for the example above is

f0 f1 f2 f3 f4 f5 f6 f7

x0 0 1 0 1 0 1 0 1

x1 0 0 1 1 0 0 1 1 . (2)

x2 0 0 0 0 1 1 1 1



JOTA: VOL. 115, NO. 3, DECEMBER 2002552

As seen, the columns in (2) consist of all of the 3 bit binary integers 000
through 111. In the general case, the columns of F will consist of all the
�X � digit, base-�Y � integers. Thus, one way to construct the F matrix is to
count modulo-�Y � through all of the �X � digit integers. Formed in this way,
the ijth entry of F is the index label of the element of Y at that location.
This construction makes it clear that each column of a fundamental matrix
F is not only unique, but that the columns exhaust the universe of all poss-
ible unique columns.

In practice, the size of the input set �X � is often very large (e.g.,
exponential in the dimension of a discretized continuous-variable problem
or combinatorial in the number of cities in a TSP). Likewise, �Y � is also
often huge, making �F �G�Y ��X � an impossibly large number. This generally
precludes actually constructing and storing a fundamental matrix F. But as
a conceptual and pedagogical tool, the framework of the fundamental
matrix F leads to simple intuitive proofs of the NFLTs and provides many
useful insights about optimization and optimization approaches.

2.2. Properties of the F Matrices. Fundamental matrices have some
special structural properties, many of which come from the following obser-
vation. Inspecting the F matrix in (1) reveals that y0 and y1 appear the same
number of times (four) in every row. This key result is formally established
in the following fundamental counting lemma.

Lemma 2.2. Counting Lemma. Consider the fundamental matrix F
associated with some given X of size �X � and given Y of size �Y �. In this
matrix, each y∈Y appears �Y ��X �A1 times in each row.

Proof. By Lemma 2.1, the F-matrix has �Y ��X � columns. Thus, if each
y∈Y appears an equal number of times in each row, then the number of
times each y must appear is �Y ��X ���Y �G�Y ��X �A1. Accordingly, if some y∈Y
appears less than �Y ��X �A1 in some row, then some other y∈Y must appear
more than �Y ��X �A1 times in that same row. With this in mind pick any row
i and any y∈Y. Now, form a submatrix by eliminating from F all columns
for which the matrix entry Fij ≠ y. Since all columns of an F-matrix are
unique, it follows that the columns of this submatrix must also be unique.
Moreover, since all of the columns of the submatrix share a common value
of y in row i, it follows that, when row i is eliminated, the columns of the
submatrix must still be unique. But given that this submatrix has �X �A1
rows and there are �Y � possible outputs, it follows (from Lemma 2.1) that
there can be no more than �Y ��X �A1 columns in this submatrix if its columns
are to be unique. Uniqueness of the columns of F therefore requires that
each y∈Y appear exactly �Y ��X �A1 times in each row. �



JOTA: VOL. 115, NO. 3, DECEMBER 2002 553

The next corollary follows directly from the counting lemma.

Corollary 2.1. For a fundamental matrix F, the row sums (hence row
averages) are all equal.

Proof. Since each y∈Y appears �Y ��X �A1 times in each row, the row
sum for any row i is

∑
jG0

FA1

FijG ∑
kG0

YA1

yk �Y ��X �A1 (3)

and the row average is

(1��F �) ∑
jG0

FA1

FijG(1��Y ��X �) ∑
kG0

YA1

yk �Y ��X �A1G(1��Y �) ∑
kG0

YA1

yk . (4)

�

The next result establishes that, if we successively eliminate specific
columns and rows from a fundamental matrix, the resulting submatrices are
themselves fundamental matrices.

Corollary 2.2. Consider the fundamental matrix F associated with
some given X of size �X � and given Y of size �Y �. Pick any row i and any
y∈Y. The submatrix formed by eliminating from F row i and all columns j
such that Fij ≠ y has �X �A1 rows and �Y ��X �A1 columns is an F-matrix; in
particular, it is the F-matrix associated with the input set XGX \xi (the
original input set X with xi removed) and output set Y.

Proof. Before proving this result, let us illustrate. To do so, begin
with the fundamental matrix in (1). Now, suppose that we eliminate row x0
and all columns j such that fj (x0) ≠ y0 , i.e., eliminate from (1) columns
f1 , f3 , f5 , f7 . The resulting submatrix is

f0 f2 f4 f6

x1 y0 y1 y0 y1

x2 y0 y0 y1 y1
. (5)

As can be seen, this matrix is itself the F-matrix for XG{x1 , x2} and
YG{y0 , y1}, and hence satisfies Lemmas 2.1, 2.2, and Corollary 2.1. That
is, all columns of the submatrix are unique, each y∈Y appears an equal
number of times in each row, and its row sums�averages are all the same.
Moreover, we can easily see that the submatrix also satisfies Corollary 2.2.



JOTA: VOL. 115, NO. 3, DECEMBER 2002554

In particular, if we now eliminate x2 and all columns for which fj (x2) ≠ y0 ,
we get the F-matrix

f0 f2

x1 y0 y1 . (6)

To formally prove the result, it is clear that the submatrix will have �X �A1
rows and �Y ��X �A1 columns, since by Lemma 2.2 each y∈Y appears �Y ��X �A1

times in each column of the original F-matrix. All that remains is to show
that the submatrix is a fundamental matrix. Doing this requires showing
that its columns are unique. Recalling the proof of Lemma 2.2, this follows
immediately from the fact that the columns of the original F-matrix from
which the submatrix was formed are unique. �

While other properties can be established for the fundamental matrices,
those established above are sufficient for our purposes in this paper, and we
are now in a position to present the no-free-lunch theorems of optimization.

3. No-Free-Lunch Theorems

The fundamental matrix, the counting lemma, and its corollaries estab-
lished in Section 2 are at the heart of simple and intuitive proofs and expla-
nations of the NFLTs of optimization. The essential idea is the following.
Let x be an optimization variable, f a performance function, and yGf (x)
the performance of x on f. Assume a finite world and construct the associ-
ated fundamental matrix F. Then, averaged over all possible performance
functions (columns of F), the performance is choice (row of F) independent
(since all row averages of F are equal). In other words, ‘‘no choice is univer-
sally better than any other.’’ This is the NFLT in a nutshell. Different
interpretations of the elements of sets X and Y and utilization of the proper-
ties of the fundamental matrices lead to more specific NFLTs, some of
which we develop next.

3.1. Optimal Strategy Selection. In its broadest interpretation, the x’s
(rows of F) are strategies, the f ’s (columns of F) are all possible optimization
problems, and f (x)∈Y is the performance of strategy x on problem f. In
this context, a strategy is a mapping from the space of available information
to a control variable or decision space. Strategies include methods and algo-
rithms involving search, adaptation, learning, voting, feedback, dynamic
programming, evolution, randomization, auctions, games, and even humans
in the loop. In short, the concept of strategy is any process that converts



JOTA: VOL. 115, NO. 3, DECEMBER 2002 555

available information into decisions. Nothing can be more general or more
inclusive.

For a finite information space I of size �I � and a finite decision space D
of size �D�, there are �D��I � possible strategies, typically a huge number, but
still finite. Thus, if we let X be a strategy space, then

�X �G�D��I �,

in which case there are

�F �G�Y ��X �G�Y ��D��I �

possible problems! In this case, the fundamental matrix is impossibly huge
for all but the simplest toy problems. Nevertheless, we know that its row
averages are all equal, which leads immediately to the conclusion that

‘‘there is no strategy of any kind that outperforms all others on
all problems.’’

In this sense, the NFLT is an impossibility theorem suggesting that

‘‘universal optimizers are impossible.’’

3.2. Search Algorithms. A more specific and familiar problem
involves function optimization, e.g.,

min
x∈X

f (x), (7)

where the x’s are vectors of input parameters, the y’s are the costs associated
with the different input vectors, and the f ’s are different (deterministic) cost
functions. Typically, we solve such problems by searching the space X for
the element that give the best (e.g., least) cost. Now, since a search algorithm
is simply a strategy for solving an optimization problem, we can immedi-
ately conclude from Section 3.1 that5

‘‘there can be no search algorithm that outperforms all others on
all problems.’’

But this does not provide any intuition. A proof that explicitly considers
the search process is much more insightful.

5In the context of Section 3.1, since the number of search algorithms that run in finite time on
a digital computer with finite memory is finite, we take each search algorithm as a different
strategy (row of F), each column as a different optimization problem, and each element of Y
as the performance of algorithm x on optimization problem f.



JOTA: VOL. 115, NO. 3, DECEMBER 2002556

Such a proof for search algorithms that stop after picking m distinct
samples from X was developed by Wolpert and Macready (see Refs. 5, 9,
10). Their proof is based on statistical arguments, and is complicated by the
fact that it must be established for all possible search algorithms, including
those that learn and adapt based on the performances which they observe
as they sample. The concept of the fundamental matrix leads to an alterna-
tive proof that we believe is more straightforward and intuitive.

In order to compare search algorithm performance, two things are
required. First,

‘‘the algorithms must use the same information.’’

In Wolpert and Macready, this is the requirement that the search algorithm
halt after collecting m⁄ �X � distinct samples of the x’s in X. Each sample
improves the chances of getting a good solution, so algorithms can only be
fairly compared if they take the same number of samples. Moreover, since
the f ’s are assumed deterministic, nothing is gained by resampling a pre-
vious x, so the samples collected should be distinct. Second,

‘‘the algorithms must use the information rationally.’’

This means that, if the goal is minimization, the algorithm must return the
sample x (from the m samples collected) that gives the smallest cost f(x).
No other choice makes rational sense.

With the above in mind, assume that the sets X and Y are discrete and
finite, in which case the set FG{ f:X→Y} is also discrete and finite. Con-
struct the fundamental matrix, letting the rows be the elements of X and the
columns the elements of F. Following Wolpert and Macready, assume that
we have no prior knowledge about which cost function (column) f∈F we
are working on—it could equally likely be any one of them. In this case,
the maximal amount of information available to guide a search algorithm
is the history of the x’s sampled and their associated cost values f(x). By
sampling different x∈X and observing their costs, a search algorithm tries
to learn about which f∈F it is working on so as to locate the optimum with
as few (distinct) samples as possible. Under these assumptions, Corollaries
2.1 and 2.2 can be used to rigorously establish that

‘‘no search algorithm, no matter how sophisticated, should a
priori be expected to give better performance than any other.’’

We illustrate the idea of the proof via a simple example. Specifically,
let XG{x0 , x1 , x2} and YG{0, 1} (e.g., 0Ggood, 1Gbad), in which case



JOTA: VOL. 115, NO. 3, DECEMBER 2002 557

the F matrix is

f0 f1 f2 f3 f4 f5 f6 f7

x0 0 1 0 1 0 1 0 1

x1 0 0 1 1 0 0 1 1 . (8)

x2 0 0 0 0 1 1 1 1

Now, if we knew which column of (8) we were working on, then an algo-
rithm could be developed that immediately returns the optimal row. But,
since we assume no prior knowledge about the column we are working on,
we can only sample the space X to try to determine the column and the
optimal row. Let us consider the performance we can expect after each
sample.

Sample mG1. When all columns are equally likely, then clearly no
matter how a search algorithm picks its first sample, the expected perform-
ance is the same since all row averages are equal (Corollary 1).

Sample mG2. Now, after sampling some xi and observing its cost
yGf (xi), some information is gained and we can eliminate certain columns
from further consideration. In particular, suppose that we sample x0 and
observe the cost f (x0)G1 (then, unless we are working on column f7 , we
have not found the optimal and must continue searching). Eliminating from
(8) row x0 and all columns fj such that fj (x0) ≠ 1 gives6

f1 f3 f5 f7

x1 0 1 0 1

x2 0 0 1 1
. (9)

But the submatrix that remains after elimination is itself an F matrix (Cor-
ollary 2.2). Moreover, by our assumption of no prior knowledge, the col-
umn that we are working on is likely to be any of those that remain. Hence,
rows x1 and x2 have the same expected performance (Corollary 2.1). In
other words, while a history of previously sampled x’s and their associated
costs f(x) does provide information about which columns we are not
working on, the history does not help to tell us which of those that remain
we are working on. No information is gained from the sampling process
that can help guide the search process, and the expected performance of the
next sample is the same regardless of how that sample is generated.7

6In general, after each sample, we can eliminate from further consideration �Y ��X �A1 columns
(Lemma 2.2).

7This includes deterministic and stochastic sampling schemes.



JOTA: VOL. 115, NO. 3, DECEMBER 2002558

In general, after 0⁄m⁄ �X � samples from X are evaluated, if one more
distinct sample x is allowed, the cost f(x) associated with this new sample,
no matter how sophisticated the scheme used to generate it, is the same on
average. Consequently,

‘‘absent any prior assumptions about the cost function being
worked on, all search algorithms have the same expected
performance.’’ �

The NFLT for search leads to some interesting and counterintuitive
conclusions (see also Refs. 5, 9, 10). One interesting conclusion is that,
unless we can make some prior assumptions about the cost function we are
working on, no search algorithm can a priori be expected to perform any
better than blind random pick. The risk that we take is that our algorithm
might actually perform worse than random on the specific problem we are
trying to solve! This is generally unacceptable since blind random pick is
particularly inefficient. In particular, assuming that all f∈F are equally
likely, then since each y∈Y appears an equal number of times in each row
(Lemma 2.2), the probability that any sample x∈X returns the optimal
y∈Y is pG1��Y �. Thus, the probability of finding the optimal after n inde-
pendent random samples is given by the geometric distribution,
p(1Ap)nA1, in which case the expected number of random samples needed
to locate the optimal is 1�pG�Y �. Since �Y � is generally very large, the num-
ber of samples required by random search can be enormous. For example,
if we discretize the output space to only 32 bits (a relatively crude discretiz-
ation), then on average random search requires �Y �G232≈109 samples to
find the optimal.8

Another way of stating the NFLT for search is that

‘‘averaged over all cost functions, all search algorithms give the
same performance.’’

A counterintuitive conclusion of this is that on average hill climbing per-
forms the same as hill descending, even when the goal is function minimiz-
ation! Hill climbing in a finite one-dimensional input space would compare
f (xi) to f (xiC1) and proceed to xiC1 if f (xi)⁄ f (xiC1); otherwise, it would
proceed to xiA1 . Hill descending would do exactly the opposite. In both
cases some rule would be needed to ensure the x’s are distinct, e.g., when
the algorithm reaches a local maximum (in the case of hill climbing) or a

8Here, we have assumed sampling with replacement, i.e., the x’s are not required to be distinct.
Even for the case where the x’s are distinct, sampling with replacement is a reasonable assump-
tion when n[�X �. When n is on the order of �X �, the probability of finding the optimal after
n distinct samples depends both on �Y � and on �X �.



JOTA: VOL. 115, NO. 3, DECEMBER 2002 559

Fig. 1. Example where hill climbing outperforms hill descending on a minimization problem.

local minimum (in the case of hill descending), some scheme would be
needed to jump to an x that has not already been tried. Suppose that the
two algorithms always begin from the same x∈X and use exactly the same
scheme for ensuring distinct x’s. In this case, then clearly on monotonic
functions [i.e., those such that f (xi)⁄ f (xiC1) for all iG0, 1, . . . , �X �A1], hill
descending would find better solutions. For flat functions [i.e., f (xi)G
f (xiC1)], the two would give equal performance. But over many jagged
functions, hill climbing may actually find better solutions than hill
descending, such as for the example in Fig. 1.9 Notice in the figure that we
have tried to make the total distance traversed by the two search algorithms
the same to suggest that they stop after the same number of distinct samples.

3.3. Encodings and Neighborhood Structures. It is well known that the
performance of certain search algorithms (e.g., genetic algorithms) are sensi-
tive to the encoding or representation (Ref. 6). One way to view an encoding
is as a specific indexing of the elements of the input space X (recall that we
are free to assign integer labels to the elements of the input space in any way
we wish). Different encodings lead to different neighborhood structures.
Neighborhood structure describes the relationship between the cost of xi

and its neighbors xiA1 and xiC1 in the one-dimensional case. Even when
discretized into a finite world, real-variable functions with properties like

9Recall that a search algorithm has two parts: the part that chooses the next distinct sample
and the part that returns the sample giving the best cost value. Here, we are assuming only
that the sampling part is different; both algorithms return the sample giving the minimum
cost value.



JOTA: VOL. 115, NO. 3, DECEMBER 2002560

continuity, convexity, and differentiability naturally impose nice neighbor-
hood structure on the search space in the sense that the neighbors of xi

generally give similar cost. This can make it easy for an algorithm like hill-
descent to search the solution space. Combinatorial problems, like the
traveling salesman problem, on the other hand, rarely seem to have such
nice neighborhood structures. In any case, it should be clear that, for any
specific mapping f∈F, a proper labeling of the elements of the input set X
can produce any desired neighborhood structure (e.g., convexity or
monotonicity). Thus, for a given search algorithm, like hill descent, different
encodings will give different performance. One can imagine then fixing the
search algorithm and looking for the encoding that gives the neighborhood
structure that is best matched to the search algorithm. However, since there
are many more ways to index the elements of X than there are elements of
X (�X �! vs. �X �), searching the space of possible encodings is an even a more
daunting task than exhaustive enumeration of the entire input space. More-
over, using the properties of fundamental matrices we can immediately
establish the following lemma.

Lemma 3.1. NFLT for Encodings. For a given search algorithm, and
absent any prior information about which f∈F we are working on, no
encoding can be expected to result in better performance than any other.

Proof. Suppose that we introduce another input space X ′, which is
one-to-one related to X. Now, consider the composite mapping
X ′→X→Y and the associated composite function space FG{f ′:X ′→Y}.
The effect of the new encoding X ′ is simply to reindex the original f ’s (i.e.,
interchange the columns of the F-matrix). Hence, the counting lemma
(Lemma 2.2) still applies and the result follows immediately. �

3.4. Stochastic Optimization. Sometimes, we cannot evaluate the cost
function in (7) exactly, but rather we have zGl (x,ω ), where x is a candidate
solution, z is a cost value, and ω∈Ω is a random quantity reflecting error
in our ability to evaluate the x’s performance. This leads to the stochastic
optimization problem,

min
x∈X

EΩ[l (x,ω )], (10)

where E is the expectation operator. Now, if we let

yGf (x)GEΩ[l (x,ω )],



JOTA: VOL. 115, NO. 3, DECEMBER 2002 561

where x∈X and y∈Y, then conceptually a stochastic optimization problem
is identical to a deterministic one.10 Consequently, we can appeal to our
previous results to say that

‘‘there is no universal strategy for stochastic optimization
problems.’’

That is, if we know nothing about the function l or the distribution Ω, then
we should not expect one strategy to outperform any other.

4. Insights from the F-Matrix

The framework of the fundamental matrix can be used to explain cer-
tain laws and limitations encountered in solving optimization problems.

4.1. Conservation of Performance. Consider an F-matrix whose rows
are strategies and whose columns are problems. According to Corollary 2.1,
if a strategy gives the better average performance over some subset of prob-
lems (columns of F), then there must be another subset of problems where
its performance is worse than average. In other words,

‘‘average performance is always conserved.’’

Conservation of average performance, however, does not preclude the
possibility of a strategy that performs well above average on some problems
and only slightly below average on the rest. Such strategy would be desirable
when we know little about the problem (column) we are working on and
want to minimize the probability of bad performance. What rules out this
strategy is the counting lemma (Lemma 2.2), because every performance
value (the very best as well as the very worst) must appear exactly the same
number of times in each row of F. In fact, the counting lemma leads
immediately to the following performance conservation law.

Lemma 4.1. Conservation of Performance. For any pair of strategies
xi and xj , if xi beats xj badly on some subset of problems, then there must
be another equally large subset where the opposite is true. This holds

10Of course, in practice solving stochastic optimization problems is usually much harder than
solving deterministic ones since to discover the best solution we not only need to explore the
input space X but we also need to evaluate (estimate) the expectation of each candidate
x∈X we explore. In general, efficient stochastic optimization involves a tradeoff between a
breadth component to explore X and a depth component to obtain increasingly more accurate
estimates of the expectation of the performance of the candidates examined (see Ref. 12).



JOTA: VOL. 115, NO. 3, DECEMBER 2002562

regardless of the criteria used to compare the strategies (e.g., average cost,
best observed cost, worst observed cost, etc.).

4.2. Conservation of Robustness. Closely related to performance con-
servation is the conservation of robustness. In an engineering sense, a strat-
egy is robust if it guarantees a certain level of performance over a range of
problems. For instance, suppose that,

YG�1, good performance,

0, bad performance.

Then, by the counting lemma (Lemma 2.2), all strategies give good perform-
ance for �Y ��X �A1��Y ��X �G1��Y � of the problems (columns of F). For the
example above, all strategies give good performance over 1�2 of the prob-
lems and bad performance over the other half. Every strategy is robust and
yet fragile in this way, and we have the following lemma.

Lemma 4.2. Conservation of Robustness. No strategy is universally
more robust than any other.

4.3. Prior Knowledge/Assumptions. The problems encountered in
practice are usually restricted (e.g., by the laws of physics) to subsets of the
columns of F. Over subsets of the columns, the row sums are not generally
equal, in which case some row choices (strategies) will give better perform-
ance than others. Thus, if something is known about which column f comes
from, the choice of row can be specialized to this knowledge.

Conceptually, our prior knowledge�assumptions about the problem we
are working on can be expressed as a distribution over the columns of F.
At one end of the knowledge�assumptions spectrum, we know nothing
about the problem f∈F we are working on. This is equivalent to a uniform
distribution over the columns of F (making all f∈F equally likely). At the
other end of the spectrum, we know exactly which column f we are working
on.11 In practice, our knowledge�assumptions is usually a distribution that
lies somewhere between these two extremes.12

11Knowing f, however, does not mean that we know its solution (we may still have to search
over the rows of F). It only means that we are certain about the structure of the problem
(e.g., it is strictly convex).

12The NFLTs in Sections 3.1–3.3 are for the case where the distribution is uniform over the
columns of F. The NFLT in Section 3.4 includes the case where all priors over the columns
of F are equally likely.



JOTA: VOL. 115, NO. 3, DECEMBER 2002 563

4.4. Performance/Sensitivity Tradeoff. With prior knowledge�assump-
tions expressed as a distribution over the columns of F, our goal is to choose
the strategy (row of F) that optimizes the expected performance over this
assumed distribution. The optimal strategy is clearly one that concentrates
good outcomes under the high probability columns and bad outcomes under
the low probability columns.

Focusing only on optimizing performance, however, can lead to a solu-
tion that is sensitive to catastrophe. Intuitively, there are two ways this can
happen. In the first case, since every y∈Y—the best as well as the worst—
appears an equal number of times in each row (Lemma 2.2), if our knowl-
edge�assumptions about the distribution over the columns is ever wrong,
then the performance of our optimal solution can be arbitrarily poor. In the
second case, the solution giving the best expected performance for the
assumed distribution over the columns may allow occasional catastrophes
as long as they are more than offset by generally good performance.
Specifically, since each outcome y∈Y appears an equal number of times in
each row, there may not be a row that can assign every bad outcome to a
low probability column (in particular, if the assumed distribution gives non-
zero probability to a very large fraction of the columns). An example of the
first case is the automobile airbag. While airbags have reduced the prob-
ability of injury for adult males, small women, children, and child seats pose
a sensitivity not considered by the original design assumptions. Examples
of the second case are fighter aircraft. These give high performance over a
wide range of flight conditions, but any structural damage almost inevitably
results in disaster. It is hard to choose a design that has both high perform-
ance and robustness against failures. The only hope is that the high perform-
ance minimizes the likelihood of structural damage.

4.5. Performance/Robustness Tradeoff. As described above, highly
optimized designs can be very sensitive to the assumed distribution over the
columns of F. A robust design attempts to overcome this sensitivity. The
tradeoff is that a robust design must generally give up some performance.
To illustrate, suppose that our prior assumptions give equal probability to
every column in some subset F1. Now, if we are unsure about our prior
assumptions, we should be conservative and select a strategy that gives good
performance over a larger subset of the columns F2 , where F1⊂ F2 . Let the
highly optimized solution x1 be the row that gives the best average perform-
ance over F1. Assume a uniform distribution over F2 , and let the robust
solution x2 be the row that gives the best average performance over F2. Note
that the rows x1 and x2 are not generally the same. Moreover, if rows x1
and x2 are not the same and they are both unique, then the performance of
x1 over F1 is always better than the performance of x2 over F1. In other



JOTA: VOL. 115, NO. 3, DECEMBER 2002564

words,

‘‘a robust solution must generally give up some performance in
return for reduced sensitivity to errors in the prior knowledge�
assumptions.’’

4.6. Complexity/Fragility Tradeoff. There appears to be a funda-
mental tradeoff between the complexity of a design and its fragility (i.e., its
sensitivity to catastrophic failure). In the context of the F-matrix, this can
be understood as follows. Conceptually, the complexity of a design can be
viewed as an increase in the number of design choices �X �. In choosing our
final design (row of F) only a polynomial amount of computation is poss-
ible, which means that we can only optimize against a polynomial number
of the columns. These are the planned for columns. Now, as the number of
design choices increases, the number of times the best performance value
y∈Y appears in each row increases exponentially fast according to �Y ��X �A1

(Lemma 2.2). As a result, as design complexity increases, the possibility that
there exists a solution x∈X that gives the best performance for all of the
planned for columns rapidly increases. Thus, assuming that the number of
columns that we have to optimize against grows slowly with increasing
design complexity (slower than �Y ��X �A1), then up to a certain point, increas-
ing complexity can result in improved performance.

The downside of increased design complexity is that it can make a
system increasing fragile and sensitive to failure (poor performance). The
idea here is this. Because the total number of columns �F �G�Y ��X � increases
exponentially fast as design complexity increases, the probability that a
design will face an unplanned for column also rapidly increases. Moreover,
since our design will try to concentrate bad performances under the
unplanned for columns, the occurrence of any unplanned for column will
tend to give bad performance. Consequently, as design complexity continues
to increase, the probability of catastrophic bad outcomes increases. There
is no avoiding this; systems become increasingly fragile as their complexity
increases.

5. Applications

The framework of the fundamental matrix can also be used to explain
the behavior of certain optimization techniques and also gives some limited
insights into computational complexity.



JOTA: VOL. 115, NO. 3, DECEMBER 2002 565

5.1. Random Restarts. In search problems, it is often observed that
randomly restarting the search from several randomly selected initial points
can be a useful way to improve an algorithm’s performance. The funda-
mental matrix provides an easy explanation for this. For a specific search
algorithm, let us take a fixed number of samples starting from some specific
initial point x∈X. Let us say that we know very little about the cost function
we are working on, which means that it could be any f∈F. In the F-matrix,
let the rows X represent the set of possible starting points. The set of poss-
ible cost functions are the columns of the matrix. Let the entries of the
matrix be the performance of the algorithm when applied to the (unknown)
cost function from the initial point x∈X. Now, depending on the problem
f∈F, some rows will return more favorable results than others. Let the prob-
ability that a row (an initial starting point) results in a good return be p.
Then, the probability that n random restarts will result in a good return is
given by 1A(1Ap)n≈np; an n-fold increase in success probability is achieved
by n random restarts! Similar statements apply if we change the rows from
representing different initial starting points to representing different stra-
tegies (i.e., random application of several different solution strategies
improves success probability).

5.2. Ordinal Optimization. As mentioned previously, many search
problems have an input space whose size �X � is exponential in the problem
size (e.g., the dimension of a discretized real-variable problem or the number
of cities in a TSP). For other problems, the search space may not be so
large, but evaluating performances f(x) can be very computationally inten-
sive (e.g., requiring long simulation runs). For the very hardest problems,
�X � is huge and f(x) is hard to evaluate. For such problems, practical limits
on time and computing budget may necessitate that we soften our goals
from an insistence on the best for sure to being satisfied with a solution that
is good enough with high probability. This is the essential idea behind Ordi-
nal Optimization (Ref. 11). How, OO works is clear when couched in terms
of the F-matrix. Specifically, OO is based on two fundamental tenets:

5.2.1. Goal Softening Decreases the Computational Burden. With goal
softening, we no longer insist that our solution x∈X give the very best
y∈Y. Instead, we accept as good enough any solution that gives perform-
ance that ranks among the top n% of the performances in Y. Since each
y∈Y appears �Y ��X �A1 times in each row of F (Lemma 2.1), each additional
value of Y that we accept as good enough adds �Y ��X �A1 more columns (prob-
lems) for which a given x∈X provides an acceptable solution. In this way,
the number of samples needed to guarantee a certain success probability is
greatly reduced. In particular, suppose that we have no prior knowledge



JOTA: VOL. 115, NO. 3, DECEMBER 2002566

about which f∈F we are working on, in which case we must assume that
each f∈F is equally likely. When all f∈F are equally likely, then each x∈X
has a 1��Y � probability of returning any specific y∈Y. Suppose �Y �G106

and consider a search algorithm that stops after collecting mG100 indepen-
dent samples. Then, the probability that this search algorithm finds a solu-
tion that gives the best y∈Y is 1A(1A1��Y �)mG0.0001, whereas the
probability that the search algorithm finds a solution that gives a perform-
ance ranked among the top 10% is 1A(1A0.1)mG1. Thus, with goal soften-
ing, we go from virtual failure to virtual certainty!

5.2.2. Performance Order is Easier to Determine than Performance
Value. The idea is that, to separate good solutions from bad, all we need
to know is whether or not f (xi)Hf (xj), we do not need to know how much
better f (xi) is than f (xj), i.e., we do not need to calculate the difference
f (xi)Af (xj). It turns out that determining performance order generally
requires much less computational effort than determining performance
value (Ref. 13).13 Moreover, with performance order rather than perform-
ance value, the number of possible functions (columns in the F-matrix) is
�X ��X � rather than �Y ��X �. That is, with order, we replace the performance
value space {y0 , y1 , . . . , y�Y �A1} with the performance order space
{1, 2, . . . , �X �}, and the f map each input {x0 , x1 , . . . , x�X �A1} to its perform-
ance order in {1, 2, . . . , �X �}. When �Y �H�X �, this represents an exponential
reduction in the universe of possible problem instances.

5.3. Optimization against Adversaries. Another way to look at opti-
mization is as a two-player, zero-sum matrix game with the F-matrix play-
ing the role of the payoff matrix. So far, we have assumed that nature
is choosing the columns (problem instances) according to some assumed
stationary distribution over the columns and our goal is to choose the row
(strategy) that optimizes the expected payoff. Now, imagine instead that we
face an adversary who follows our choice of strategy by deliberately trying
to pick a problem instance (column) that returns the worst possible payoff
(bad for us, good for the adversary). This is precisely the sort of challenge
faced by information technology administrators in trying to secure a com-
puter networks against cyberattack.

Examining the F-matrix makes clear why optimization against adver-
saries is particularly hard. Because each y∈Y appears an equal number of
times in every row (counting lemma), it is always possible for an adversary
to pick a column (cyberattack) that returns what from our point of view is

13For example, take two boxes. It is much easier to decide which box is heavier than it is to
decide precisely how much heavier.



JOTA: VOL. 115, NO. 3, DECEMBER 2002 567

the least desirable outcome.14 In other words,

‘‘against an adversary of unlimited power, all defense strategies
have the same (poor) performance’’;

see also Refs. 1 and 2. Here, unlimited power is in the sense that the adver-
sary knows which row (security strategy) we have chosen and has the ability
to search the F-matrix for the column (cyberattack) that gives the smallest
payoff. It is assumed that, while the adversary is probing our system for
security holes (searching the columns), the security strategy is not changing.
For computer network security, this is often the case, since a security strat-
egy is typically only changed after a successful attack has already taken
place.

Optimization against adversaries makes it clear that

‘‘security is much harder than performance optimization.’’

In optimization, nature picks its problem instances according to some gener-
ally invariant laws. In security, in contrast, the adversary is constantly learn-
ing, adapting, and discovering new attacks. Moreover, the computing power
available to use in carrying out attacks is growing exponentially (Moore’s
law). On the other hand, what the F-matrix hides is the effort in formulating
different attacks; some attacks (columns of F) may be more difficult to
realize than others. Conceptually, what we try to do in security engineering
is to design our system so that only those attacks (columns) we can defend
are achievable. For those we cannot defend, we try for example to guarantee
that it would require a prohibitive amount of computational effort for an
attacker to realize them. This is the idea behind cryptography for instance.

5.4. Computational Complexity. The traveling salesman problem
(TSP) is known to be NP-hard (cf. Ref. 14). This means that there is no
known algorithm that can solve arbitrary instances of TSP problems in an
amount of time that is polynomial in the number of cities to be included in
the tour. A long-standing open problem in computational complexity theory
is whether or not a polynomial time algorithm can ever be found for the
TSP. By letting X be the set of possible tours (for N cities, there are N! of
these) and by letting Y be the set of possible tour lengths, the TSP can be
cast in the framework of the F-matrix.15 Now, it should be clear that, if all
columns of F represent feasible TSP problem instances, then in the worst
case any search algorithm will have to examine all rows x∈X in order to be

14A well-known fact in zero-sum two-person game theory.
15When representing a TSP on a digital computer, the number of possible city configurations

and hence the number of possible tour lengths �Y � is discrete and finite.



JOTA: VOL. 115, NO. 3, DECEMBER 2002568

sure of finding the optimal tour.16 Consequently, if all columns of F are
feasible, the TSP cannot have a polynomial time solution algorithm.

While the TSP does not have a known polynomial-time algorithm, the
similar minimum spanning tree (MST) problem does (Ref. 14). If we let X
be the set of possible spanning trees [for a graph with N vertices there are
(N-1)! of these] and if we let Y be the set of possible tree lengths, the MST
can also be put into the framework of the F-matrix. Now, since the MST
does have a polynomial-time algorithm, it follows that all columns of its F-
matrix cannot be feasible. Only a subset of the columns are feasible, and
the structure of the mappings represented in those columns is such that they
can all be solved with a polynomial time algorithm.

Returning to the TSP, even if all columns are not feasible, that still
does not imply the existence of a polynomial-time algorithm as the following
‘‘needle in a haystack’’ example illustrates.

f3 f5 f6

x1 1 1 0

x2 1 0 1 . (11)

x3 0 1 1

Clearly, if all columns in (11) are possible problem instances, then in the
worst case it would be necessary to check all rows in order to locate the
minimizer. If such a set of columns exists for every �X �, then there cannot
be a polynomial-time solution algorithm.

While the framework of the F-matrix is powerful for making statements
and observations about what is and is not possible over the universe of all
possible problem instances, it provides only limited insights about what one
can expect over subsets of the problem instances. Since computational com-
plexity involves subsets, the framework of the F-matrix is of little help;
see Refs. 1 and 2 for more about the relationship between the NFLT and
computational complexity.

6. Conclusions

In this paper, we developed what we believe is a pedagogically appeal-
ing framework for understanding the NFLTs of optimization and their
implications. Central to our presentation is the finite world assumption in

16If the problem we are working on can be any of the columns of F, then the optimal cost
value may be associated with any row. Thus, in the worst case, we will have to examine every
row in order to locate the one giving the optimal cost.



JOTA: VOL. 115, NO. 3, DECEMBER 2002 569

which all input and output spaces are discrete and finite in size. This
assumption does not impose any serious loss of generality, since most diffi-
cult optimization problems demand computerized assistance and digital
computers with finite storage can only operate on discrete and finite sets. In
a finite world, the universe of all possible optimization problems can be
summarized by a matrix that we called the fundamental matrix F. In the
most general setting, the rows of F are taken as strategies, the columns as
all possible problems, and the entries as the performances of the strategies
on the problems. That all rows of a fundamental matrix have the same
average is the NFLT in a nutshell, making it clear that

‘‘if anything is possible, then nothing can be expected.’’

The value of the NFLTs is that they render certain assertions and con-
clusions either obvious or problematical. For instance, the statement ‘‘strat-
egy x is good’’ is problematical if you do not specify the class of problems
you intend to apply the strategy to. Over subsets of the columns of F, the
NFLTs do not hold, and there are generally performance differences
between strategies. Thus, the assumptions one can make about the class
of likely problem instances are most important. Unfortunately, general
theories about the nature of likely subsets are lacking. Such theories seem
to be needed to answer questions about the existence of practical algorithms
(e.g., whether or not the TSP has a polynomial-time solution strategy).
Without such theories, the practice of optimization will continue to be prob-
lem driven, involving quantifying our assumptions about the subsets of
mappings that are likely to be encountered, determining what structural
properties these likely mappings have, and choosing strategies that
efficiently exploit the structural properties (see also Refs. 6, 7, 8). The Ric-
cati equation solution to linear quadratic optimization problems is a shining
example of this.

In closing, we remark that, while this paper focused on the NFLTs for
optimization, the framework of the F-matrix can also be used to understand
similar NFLTs for learning (cf. Ref. 3). In both cases, we sample x (rows
of F) and observe yGf (x) in order to determine which mapping f∈F we are
working on. In optimization, this information is used to predict the x* that
optimizes the given f. In learning, we use the information to build a surro-
gate for f, i.e., predict y for any given x. We leave it to the interested reader
to generalize the results developed in this paper to the learning problem.

References

1. CULBERSON, J. C., On the Futility of Blind Search, Technical Report TR 96-18,
Department of Computing Science, University of Alberta, Edmonton, Alberta,
Canada, 1996.



JOTA: VOL. 115, NO. 3, DECEMBER 2002570

2. CULBERSON, J. C., On the Futility of Blind Search: An Algorithmic View of ‘No
Free Lunch’, Evolutionary Computation, Vol. 6, pp. 109–127, 1998.

3. DUDA, R. O., HART, P. E., and STORK, D. G., Pattern Classification, 2nd Edi-
tion, John Wiley and Sons, New York, NY, 2001.

4. HO, Y. C., The No-Free-Lunch Theorem and the Human Machine Interface,
IEEE Control Systems Magazine, Vol. 19, pp. 88–90, 1999.

5. KOPPEN, M., WOLPERT, D. H., and MACREADY, W. G., Remarks on a Recent
Paper on the No-Free-Lunch Theorems, IEEE Transactions on Evolutionary
Computation, Vol. 5, pp. 295–296, 2001.

6. RADCLIFF, N.J., and SURRY, P. D., Fundamental Limitations on Search Algo-
rithms: Eûolutionary Computing in Perspectiûe, Lecture Notes in Computer Sci-
ence, Springer Verlag, New York, NY, Vol. 1000, pp. 275–291, 1995.

7. SHARPE, O., Beyond NFL: A Few Tentatiûe Steps (available online at http:��
www.cogs.susx.ac.uk�users�olivers�).

8. SHARPE, O., Continuing Beyond NFL: Dissecting Real World Problems (avail-
able online at http:��www.cogs.susx.ac.uk�users�olivers�).

9. WOLPERT, D. H., and MACREADY, W. G., No-Free-Lunch Theorems for Optim-
ization, IEEE Transactions on Evolutionary Computation, Vol. 1, pp. 67–82,
1997.

10. WOLPERT, D. H., and MACREADY, W. G., No-Free-Lunch Theorems for Search,
Technical Report SFI-TR-95-02-010, Santa Fe Institute, Santa Fe, New Mexico,
1995.

11. HO, Y. C., An Explanation of Ordinal Optimization: Soft Computing for Hard
Problems, Information Sciences, Vol. 113, pp. 169–192, 1999.

12. LIN, X. C., A New Framework for Discrete Stochastic Optimization, Doctoral
Dissertation, Harvard University, 2000.

13. DAI, L., Conûergence Properties of Ordinal Comparisons in the Simulation of
DEDS, Journal of Optimization Theory and Applications, Vol. 91, pp. 363–
388, 1996.

14. DU, D. Z and KO, K. I., Theory of Computational Complexity, Wiley-Inter-
science, New York, NY, 2000.


