AC OPERATING CONDITIONS

TEST CONDITIONS (Test Load and Test Input/Output Reference)

Input pulse level: 0.8 to 2.4V
Input rising and falling time: 5ns
Input and output reference voltage: 1.5V
Output load (See right): CL=100pF+1TTL
CL=50pF+1TTL

1. Including scope and jig capacitance

AC CHARACTERISTICS (Vcc=4.5~5.5V, K6T0808C1D-L Family:Ta=0 to 70°C, K6T0808C1D-P Family:Ta=-40 to 85°C)

Parameter List		Symbol					
			55¹)ns		70ns		Units
			Min	Max	Min	Max	
Read	Read cycle time	trc	55	-	70	-	ns
	Address access time	taa	-	55	-	70	ns
	Chip select to output	tco	-	55	-	70	ns
	Output enable to valid output	toE	-	25	-	35	ns
	Chip select to low-Z output	tLZ	10	-	10	-	ns
	Output enable to low-Z output	toLz	5	-	5	-	ns
	Chip disable to high-Z output	tHZ	0	20	0	30	ns
	Output disable to high-Z output	tonz	0	20	0	30	ns
	Output hold from address change	tон	10	-	10	-	ns
Write	Write cycle time	twc	55	-	70	-	ns
	Chip select to end of write	tcw	45	-	60	-	ns
	Address set-up time	tas	0	-	0	-	ns
	Address valid to end of write	taw	45	-	60	-	ns
	Write pulse width	twp	40	-	50	-	ns
	Write recovery time	twr	0	-	0	-	ns
	Write to output high-Z	twnz	0	20	0	25	ns
	Data to write time overlap	tow	25	-	30	-	ns
	Data hold from write time	tрн	0	-	0	-	ns
	End write to output low-Z	tow	5	-	5	-	ns

^{1.} The parameter is tested with 50pF test load.

DATA RETENTION CHARACTERISTICS

Item	Symbol	Test Condition		Min	Тур	Max	Unit
Vcc for data retention VDR CS≥Vcc-0.2V			2.0	ı	5.5	V	
Data retention current	IDR	Vcc=3.0V, CS≥Vcc-0.2V	L-Ver	-	1	15	- μΑ
Data retention current			LL-Ver	-	0.2	3	
Data retention set-up time	tsdr	See data retention waveform		0	-	-	ms
Recovery time	trdr			5	-	-	

TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)

TIMING WAVEFORM OF WRITE CYCLE(2) (CS Controlled)

NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap of a low $\overline{\text{CS}}$ and a low $\overline{\text{WE}}$. A write begins at the latest transition among $\overline{\text{CS}}$ going Low and $\overline{\text{WE}}$ going low: A write end at the earliest transition among $\overline{\text{CS}}$ going high and $\overline{\text{WE}}$ going high, $\overline{\text{twp}}$ is measured from the begining of write to the end of write.
- 2. tcw is measured from the CS going low to end of write.
- 3. tAS is measured from the address valid to the beginning of write.
- 4. twn is measured from the end of write to the address change. twn applied in case a write ends as $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going high.

DATA RETENTION WAVE FORM

