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SUMMARY 
 
Kalman filtering (KF) techniques have been applied in numerous scientific investigations and 
engineering applications. Most tracking systems, such as GPS, radar, sonar, optical, infrared 
sensor systems, use Kalman filters to smooth information acquired from corrupted data reported 
from sensors and simultaneously compensate for the motion involved during the 
measurements.  Kalman filter is also used in many systems involving multi-sensor fusion, 
feedback control and prediction (forecast) schemes.  These applications have led to many 
successful commercial and military applications. 
 
The basic idea behind Kalman filtering is to combine a system model (the differential or 
difference equation that describes the dynamical motion of the system being investigated) and 
the measurement model (the observations made of the variables of the system) in an optimum 
manner, to compute the best estimate of the present state of the system. In certain cases, the 
KF can also be used to predict future states with reasonable accuracy. 
 
Since 1960, a large number of articles have been published in conferences, journals and books, 
with regards to Kalman filtering, algorithms and its applications.  The vast literature often 
focuses on advanced variations of the subject that can sometimes be vague to uninitiated 
readers.  In this seminar, the underlying principles of Kalman filter will be explained in depth and 
made simple and clear with illustrative examples. Practical examples of KF application to state 
estimation, tracking, control and sensor fusion systems will be presented. 
 
The topics to be covered include: Essential algebraic and differential math; essential statistics; 
system models; measurement models; observer theory; optimal estimation (derivation of KF); 
forms of KF (analog & discrete); KF algorithms; extended KF; practical aspects of KF; KF 
trackers; and applications. Application examples will involve demonstration with Matlab 
simulation and animation of tracking systems with GPS, radar and/or sonar, and with an 
actual inertial stabilization platform control system.   
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1. RANDOM SIGNALS & VARIABLES 
 

1.1. Random Scalar Variable 
 

1.1.1. Means, Covariance and Standard 
Deviation  

 
 
 
 
 
 
 
 
 
 
 
 
     

[ ]

[ ]

0 1 2 3 4 5 6 7 8 9 10

69.72 59.46 68.05 59.02 66.09 66.57 53.32 57.87 60.41 64.36 61.38

Z

X

=

= 
 
Sample mean (a.k.a. average or expectation):        
 

( )1 ( ) 69.72 + 59.46 +            + 64.36 + 61.38 60.08
11

X mean X= = = ...  

 
Sample covariance:   
 

( )

2

2 2 2 2

cov( )
1 (69.72 - )  + (59.46 - )  +      + (64.36 - )  + (61.38 - ) 38.5991

11

q X

x x x x

σ= =

= = ... 
 

 
Sample standard deviation:   

  ( )1/ 2 1/ 2cov( ) 6.21X qσ = = =
 
 
In general, a random scalar variable can be characterized by the following statistics 
 

1 2 1 2

2 1

1 1

1 1 ( )

p p

p p

i i
i i

Z z z z X x x x

x x q x x
p p

σ
= =

   = =   

 
= = − 

 
∑ ∑ / 2q=
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1.1.2. Histogram and Distribution Function  
 
n = 50 points of random data and its histogram/distribution  
 

 
 
 
 
500 points of random data and its histogram/distribution 
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1.1.3. Central Limit Theorem: 
 
The histogram/distribution of a noisy process is approximately a Gaussian function given by 
 

( )2 2(2 )( ) x x
Xf x e σ− −=  

 
500 points of random data, histogram/distribution & Gaussian function 

 

( ) * max( ( ))Xf x Histo x

 
5000 points of random data, histogram/distribution & Gaussian function 

 

( ) * max( ( ))Xf x Histo x
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1.1.4. Probability Density Function (PDF) 
 
The probability distribution function of noise is the normalized histogram of the data.  Following are 
examples of various statistical pdf’s  
 
 
Gaussian Distribution. 
 
 
 

( )2 2(2 )( ) x x
Xf x e σ− −=  

 
 
 
 
 
 
 ( )2 2(2 )( ) 0 & 1x x

Xf x e with xσ σ− −= = = 
 
 
 
Uniform Distribution. 
 
 
 

1, 0 1
( )

0,X

x
f x

otherwise
≤ ≤

= 


 

 
 
 
 
 
Rayleigh Distribution, etc. 

Distribution of arrival
a friend’s pa
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Distribution of arrivals at  
a movie  s at

rty

 

Bottom Line:  A random variable is associated with a mean, a covariace, a
std dev and a pdf.   
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1.2. Time Series Statistics versus Event Ensemble Statistics    
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[ ]

( )

( ) ( , ) Expectation of at Noon,Any Day
1 ( , ) ( , ) ( , )
7

T Noon T Noon Day T

T Noon Mon T Noon Tue T Noon Sun

= Ε =

= + + +

( )

( )

( )
1 (0, ) (1, ) (24, )
24

Average T Tuesday

T Tue T Tue T Tue= + + +

 
An example:  A 24/7 record of temperatures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Time series statistics is based on the data 

collected over a continual period.  
E.g.  The average temperature of the day is 70oF. 

 
 

Event ensemble statistics is based on a
collection of data for an event.  
E.g. The expected temperature at 12 noon

over the week is 82oF.   
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1.3. Time Series of Scalar Random Variables  
 
If we superpose the T(k, Day) where Day = Mon, Tue, …, Sun, we’d have 

 
 
T(k) would be a scalar random variable and has a non-predictable single value at each k. We associate it 
with event ensemble statistics 
 

[ ]

( )

( ) ( )2 2
( )

22
( )

( )

( ) ( ) 2

( ) ( ) expectation of ( ) = mean of ( )

cov( ( )) ( ) ( )

= std dev( ( )) = cov( ( ))

( ) pdf of ( ) E.g., ( )  if ( ) is GaussianT k

T k

T k

T k T k
T T

T k T k T k T k

T k T k T k

T k T k

f t T k f t e T k
σ

σ

σ

− −

= Ε =

 = = Ε −  

= =

 

 

Bottom Line:  
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A random variable, such as T(k), at each instance k is
associated with a mean, a covariace, a std dev and a pdf.   
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1.4. Time Series of Random Vector Variables    
 
Example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let’s define the random vector variable     
 

1

2

( )
( )

( )
X k

k
X k
 

=  
 

X .   

 
The means of X(k) is denoted as    
 

[ ] 1 1

2 2

( ) [ ( )]
( ) ( )

( ) [ ( )]
X k X k

k k
X k X k
  Ε

= Ε = Ε =  Ε  
X X





 

 
The covariance of X(k) is denoted as  
 

( )( ) ( )( )( )

( )( )( )

'
1 1 1 1 1 1

1 1 2 2
2 2 2 2 2 2

2

1 1 1 1 2 2

2 2 1 1 2

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) (

X k X k X k X k X k X k
k X k X k X k X k

X k X k X k X k X k X k

X k X k X k X k X k X k

X k X k X k X k X k

        − − −
   = Ε = Ε − −        − − −          

Ε − Ε − −
=

Ε − − Ε

Q

( )( )2

2

11 12

21 22

) ( )X k

q q
q q

 
 
 
 −  
 

=  
 
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1.5.  Dependency of Random Vector Variables    
 
The noise in signals can be unrelated to or independent of each other, if they are generated from different 
sources.   Examples of independent noise can be found in different sensors; for example, potentiometer 
tachogenerator, accelerometers, angular rate sensors, radar, sonar, etc. 
 
 

If the two random variables in 1

2

( )
( )

( )
X k

k
X k
 

=  
 

X are independent, then their covariance is a diagonal 

matrix; i.e., 
 

( )( ) ( )( )( )

( )( )( ) ( )( )

2

1 1 1 1 2 2

2

2 2 1 1 2 2

11

22

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

0
0

X k X k X k X k X k X k
k

X k X k X k X k X k X k

q
q

 Ε − Ε − − 
=  
 Ε − − Ε −  
 

=  
 

Q
 

 
 
This property extends to a n-th dimensional X(k).   
 
 
 

1.6. Summary of Stochastic Signals 
 
Random signals are statistical in nature and can be associated with expectation, such as mean, 
covariance, standard deviation, probability density distribution, etc. 
 
 
 
 
 
What time shall we break for lunch?  Around noon, give or take five minutes.   …  
There you go…  Human behavior is often stochastic in nature, 
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2. MODELS OF DYNAMIC SYSTEMS  
 
 
A story about Newton 
 

Differential-integral calculus is a tool developed to describe physics of dynamic systems.  
An apple fell on top of Isaac Newton’s and he said “Man, that was painful.”  I touched his 
head and felt a bump. “I wonder how many Newton of force acted on to produce the 
bump on my head.”   So he decided to calculate the forces involved.   That’s how we end 
up with Newtonian law of physics for describing motions of dynamic systems.   
 

 
Fact about an apple 
 

A force of one Newton is what you feel when you hold up a small Mackintosh apple in 
your palm.  Calculations:  10 Mackintosh apples weight approximately 1Kg, which is 1Kg 
* 9.81m/s2 = 9.81N.  Therefore, 1 apple exerts approx 1N under gravity in static 
condition. 

 
 
 
 =  0.1 Kg       ~ =     1 N Mackintosh  
 
 
 
Quote of the day: 
 
Lord Kelvin (the Kelvinator guy) once said:    
 

If you can describe a technical or scientific concept with math and numbers, then 
you can understand the idea in a rigorous manner   If not, you cannot precisely 
explain the notion.     
 
 

Since we owe much of founding ideas on refrigeration, air conditioning and heating to Lord 
Kelvin, I think we can trust him. 
 
 
1st question of the day:   
 

Can animal count?  If so, up to how many? 
 
2nd question of the day:     
 

I think having 10 fingers is a nature’s freak.  What do you think? 
I think we should have 8 fingers, because then the octal system is more natural. 
2, 4, 8, 16, 32,    1/2 , 1/4 , 1/8, 1/16     Binary, Octal, Hex, …  
 

Joke of the day:     
 

There are three kinds of people in the world.  Those who can count, and those who can’t. 
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2.1. Alpha- Beta Model  
 

2.1.1. Brownian Motion  
 
A 2nd-order Brownian motion is simply a motion that accelerates with sparing spurious impulses. That is  

 
, ~ (0, )    y w w q= . 

 
  is a sparse random noise with zero mean and covariance qw .    
 
In 2-D it produces movement that may look like this  
 
 
 
 
 
 
This type of characteristics is used to loosely or approximately describe motions of systems that move 
slowly and whose dynamics are not known or too complicated to model.  For example 
 
 
 
 
 
 
 
 
 
 w  
 
 
 
 
 
 
The motion can be expre
 

 
 

2.1.2. Continuous-
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Slow moving system
with unknown or
complex dynamics
 

y z≈

1
s

1
s

y w=
y y 

t 

ssed in state-space representation as 

[ ]

1 1

2 2

1

2

0 1 0
0 0 1

1 0

x x
w

x x

x
y

x

     
= +   


   
     

 
=  

 

  

time α β−  model. 

 2 of 8     J
t

z

z

t 
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In literature on estimation and tracking of targets, this model is referred to as an α β−  type dynamics. To 
represent a more stochastic (random) motion, the model is often subjected to influence of output 
measurement noise and process noise as follows: 
 
 

  

[ ]

1 1

2 2

1

2

0 1 1 0
0 0 0 1

1 0

1

2

x x w
x x w

x
y v

x

        
= +        

      
 

= + 
 

   

 
 

2.1.3. Discrete-time model.   
 
A discrete-time description of the α β−  model is given by 
 

     

[ ]

1 1

2 21

1

2

1 0
0 1 0

1 0

k k

k k
k

x xT T
x x T

x
y v

x

+

        
= +        

      

 
= + 

 

1

2 k

w
w

 
 
 
Such model has proven to be very useful for approximating behavior of slow moving system with 
unknown or complex dynamics.   Examples are found in the solutions to many radar applications, 
prediction and tracking problems. 
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2.1.4. Simulink demonstration of a α−β dynamic model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Noise w2

Noise w1

Noise y 
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Measured position  y 

   4 of 8    
Rate  x2 

Position  x1 
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Simulink demonstration of a 2-D Brownian motion with two independent α−β model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V
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2.2. Physics-Based Model 
 
Physics-based models are equations derived from applying fundamental principles of science or 
physical laws to describe the systems at hand.  An example below illustrates this. 
 

2.2.1. Math Model for Permanent Magnet DC Motor  
 

2.2.2. Physical components 

      
 
 
 
 
 
 
 
 
 

 

  

 

 

Figure 1. Physical setup of a permanent magnet dc motor driven by a voltage input 

 

DC permanent 
magnet motor 
with geared 
load output 

DC Motor 
Va

 

Ia 

τ gin  
Gear

θ θa a,  

θ θg g,  

τ gout

externally applied at the load shaft τ ext  

 

Load

 

2.2.3. Variables & Parameters 

Parameters
K
K
R
L
N

J

J
D
D

b

t

a

a

g

a

g

a

g

     
     
     
     
    

     

     
     
     

back emf coefficient [V.s / rad]

torque coefficient [N. m / A]

resistance of armature circuit [ ]

inductance of armature circuit [H]

gear ratio [rad / rad]

moment of inertia of armature [kg m ]

moment of inertia of gear / load [kg m ]

coefficient of viscous friction at armature [N m s / rad]

coefficient of viscous friction at gear [N m s / rad]

2

2

Ω

 

 

Variables
v
i

a

a

a

gin

gout

ext

a

g

s

s

       
        
        

      
     to

      
        
        

armature voltage [V]

armature current [A]

torque produced by armature [N. m]

torque applied at gear input [N. m]

rque produced at gear output [N. m]

external torque acting at gear shaft [N. m]

speed of a

τ
τ

τ

τ

θ

θ

/

/

rmature shaft [rad ]

speed of gear shaf [rad. ]
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2.2.4. Fundamental principles or physical laws 
 
Armature circuit: (Kirchoff voltage law)

     a
a a a b a

diL R i v v
dt

= − − +
 

 
Back emf  (Electromechanical property)                   
     v Kb b a= θ

 

Ra La

θa

+
vb

ia τa 

τ gin  

Ja aθ   

τ sticka  

Da aθ  

+
va

-

 
Armature torque:  (Electromechanical property)
     τ a t aK i=

 

 

τstickg 

τgin Armature motion:  (Newton' s law)
     J Da a a a a sticka ginθ θ τ τ= − + − − τ

 

 
Gear ratio                   
        θ θa g gN=

 

 
Gear torque:  Conservation of power (work done)          
        τ θ τ θ τ θgin a gout g stickg g= +

 

 
Gear shaft motion   
          g g g g gout stickl extJ Dθ θ τ τ τ= − + − −

 

 
 
 
 
 
 
 
Equivalent lumped equation of motion 
 
( ) ( )2 2

g a g g g a g g g t a stickl g sticka stickJ J N D D N N K i Nθ θ τ τ τ+ = − + + − − −
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Gear
box
τgout 
θg

θg

τgout

Load
τ stickl

Da 

Jg

τ ext

g extτ−  
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2.2.5. Lumped Parameter Dynamics State Equations 
 
We can show that the above physical relationships can be lumped (combined) into an equivalent 
dynamics state equations given by: 
 

 
 
 
 
 
 
 
 
 
 

2.2.6. Block

 
 

2.2.7. State 
 
A state space mo
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

2 2

         

where
           

                              

 

  

 

 
eq g a g eq g a g

beq b g teq eq t sti

eq g eq g teq a stickeq

ckeq g sticka stick

ext

g

J J J N D D D N

K K N K N K N

J D K i

τ

θ τ

τ τ

θ τ

= + = +

= − +

= = = +

− −

sticklτ

          a
a a a beq g a

diL R i K v
dt

θ= − − +

+

av

di
d

θ



s   

 diagram representation of the dynamics. 

space equati

del can be expres

E

K R− −

1

aL
 

aR

1 gθ gθ gθadi
dt ai

extτstickeqτ

a
beq a

a

eq teq

g
eq eq

a

D K
J J

t
L L

 
 
 
 
 
 

−



8 of 8     

on 

sed as  

quivalent dynamic state diagram 

∫ teqK

beqK

eqD

eqJ

( )
0

1
1

0a
a

a

stickeq ext
g v

i L
τ

θ
τ

 
  −  + + +          
∫ ∫
Jan 12-
16, 200
4 
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3. DISCRETE-TIME KALMAN FILTERS FOR LINEAR 
SYSTEMS 

3.1. 1st Order Systems 
 

3.1.1. Problem Statement:  
 
Consider a dynamic system whose behavior can be approximately modeled by a stochastic 1st order 
difference equation  

1Dynamics equation          

Measurement equation                     

k k k k

k k k

x ax bu gw

z cx v

+ = + +

= +
 

where  
scalar state of the system 

 = scalar control input to the system
 = scalar random noise input 
 = scalar measured output of the system
 = scalar random noise in the measurement 

k

k

k

k

k

x
u
w
z
v

=

 

= characteristic parameter of the system
 = input gain parameter 
 = noise gain parameter 

c = output gain parameter 

a
b
g

 

 
 
 
 
 
 
 
 
 
 
 
We assume that we know the statistics for the noise wk & vk, and initial condition x0 , which are as 
follows: 
 

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

2

2

2
0 0 0 0 0 0 0 0

Mean of : 0 Cov of : cov 0

Mean of : 0 Cov of : cov 0

Mean of : Cov of : cov 0

k k k k k k k

k k k k k k k

w w E w w q w E w w

v v E v v r v E v v

x x E x x p x E x x

= = = = − ≥

= = = = − >

= = = − >

 

 
The random variables  wk ,  vk, & x0  are assumed to be independent. 
 
The system is assumed to be observable and controllable; i.e., 0  & c 0b ≠ ≠ .  
 
We would like to derive and formulate a discrete-time Kalman filter to estimate the state xk from 
knowing from the noisy measurement yk and the control input u(k). 

System Dynamics 
 

1k k k kx ax bu gw+ = + +

Measurements 
 

k k kz cx v= +  

ku  

kw  

kx

kv

kz  
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3.1.2. Derivation of DTKF: 
 
Let 

|

1| 1

| 1

a current estimate of  based on info available up till time k

a predicted estimate of  based on info available up till time k

a current estimate of  based on info available up

k k k

k k k

k k k

x x

x x

x x
+ +

−

�

�

� till time k-1

 

 
Using the above measurement equation and dynamic equation, the formulation of a DTKF is as follows: 
 

( )| | 1 | 1

1| |

Measurement update:

Dynamics update:
k k k k k k k k

k k k k k

x x K z cx

x ax bu
− −

+

= + −

= +
 

 
where Kk is yet to be determined.   To find Kk, we consider the errors and their covariance between the 
estimates ( | 1| | 1, ,k k k k k kx x x+ −  ) and the true state ( kx )  
 

| |

1| 1 1|

| 1 | 1

k k k k k

k k k k k

k k k k k

x x x

x x x

x x x
+ + +

− −

−

−

−

% �

% �

% �

   

2
| |

2
1| 1|

2
| 1 | 1

E

E

E

k k k k

k k k k

k k k k

p x

p x

p x

+ +

− −

  
  
  

%�

%�

%�

 

 
We would like to find a Kk such that these errors will approach zero.   We observe that the predicted error 
behave according to 
 

( ) ( )
( ) ( )( )( )
( ) ( )( )( )( )
( ) ( )
( )

1| 1 1|

|

| 1 | 1

| 1 | 1

| 1 | 1

| 11

k k k k k

k k k k k k

k k k k k k k k k k

k k k k k k k k k k k

k k k k k k k k k k

k k k k k k

x x x

ax bu gw ax bu

ax bu gw a x K z cx bu

ax bu gw a x K cx v cx bu

a x x gw aK c x x aK v

a K c x gw aK v

+ + +

− −

− −

− −

−

−

= + + − +

= + + − + − +

= + + − + + − +

= − + − − −

= − + −

% �

%

 

 
If we square the predicted error, we’d get 
 

( ) ( )( ) ( ) ( )

( ) ( )
( ) ( )

2 2
1| | 1 | 1 | 1

2
| 1

2
| 1

1 1 1

1

1

k k k k k k k k k k k k k k

k k k k k k k k

k k k k k k k k k k

x a K c x a K c x gw a K c x aK v

gw a K c x gw gw aK v

aK v a K c x aK v gw aK v

+ − − −

−

−

= − + − − −

+ − + −

− − − +

% % % %

%

%
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Note that an expectation operation on this equation will yield covariance for the prediction estimation 
error.   Also if the variables are independent, then the expectation operation yields a zero cross 
covariance.  The result would be 
 

( )( ) ( )( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )

( )( ) ( ) ( )( )

2 2
1| | 1 | 1 | 1

2
| 1

2
| 1

E E 1 E 1 E 1

E 1 E E

E 1 E E

k k k k k k k k k k k k k k

k k k k k k k k

k k k k k k k k k k

x a K c x a K c x gw a K c x aK v

gw a K c x gw gw aK v

aK v a K c x aK v gw aK v

+ − − −

−

−

= − + − − −

+ − + −

− − − +

% % % %

%

%

 

 
Removing cross-covariance of independent variables yields  
 

( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )2 22 2 2 22
1| | 1E 1 E E Ek k k k k k k kx a K c x g w aK v+ −= − + +% %  

 
In terms of defined covariance, this remaining terms leads to  
 

( )( ) ( )2 22
1| | 11k k k k k kp a K c p g q aK r+ −= − + +  

 
 
We see that there is an opportunity to choose Kk   such that the error covariance pk+1|k  is minimized.  The 
calculus calls for taking the derivative of pk+1|k with respect to Kk  , and setting the derivative to zero.   
 

( )( )( ) ( )

( )( )

1|
| 1

| 1 | 1

2 1 2

2

0

k k
k k k k

k

k k k k k

dp
a K c ac p aK ar

dK

aa cp ccp r K

+
−

− −

= − − +

= − + +

=

 

 
This yields the so-called Kalman gain 
 
 

| 1
2

| 1

k k
k

k k

cp
K

c p r
−

−

=
+

 

 
 

It minimizes the covariance of the prediction estimate error  ( )22
1| 1| 1 1|= E Ek k k k k k kp x x x+ + + +

   = −    
% . 

 
Note that the quadratic (having square terms) nature of the problem ensures that the result is a minimum.  
This can be verified by checking that the second derivative of pk+1|k  with respect to Kk   is positive.  
Indeed,   

( )
2

1|
| 12 2 0k k

k k
k

d p
aa ccp r

dK
+

−= + >  

 
We have just derived a Kalman filter formula for the 1st order discrete-time system.  (Hurray!) 
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3.1.3. Time-Varying Kalman Filter for a 1st Order System 
 
An algorithm for programming the KF, based on the above derivation, is as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

1st order Kalman Filter Algorithm with Time Varying Kalman Gain 
 

Step 1. Set the initial conditions:       0| 1 0 0| 1 0&x x p p− −= = .   

Compute the initial Kalman gain    0| 1
0 2

0| 1

cp
K

c p r
−

−

=
+

 

Set the index k = 0 
  
Step 2. Measure  zk  & compute the current estimate (measurement update)   ( )| | 1 | 1k k k k k k k kx x K z cx− −= + −  

 
Step 3. Sample  uk  and compute the prediction estimate (dynamics update)   1| |k k k k kx ax bu+ = +  
 
Step 4. Compute the prediction estimate covariance       ( )( ) ( )2 22

1| | 11k k k k k kp a K c p g q aK r+ −= − + +  
 

Step 5. Compute the next Kalman gain   1|
1 2

1|

k k
k

k k

cp
K

c p r
+

+
+

=
+

 

 
Step 6. Set k to k +1, and repeat from Step 2. 

 

System Dynamics 
 

1k k k kx ax bu gw+ = + +

Measurements 
 

k k kz cx v= +  

ku  

kw

kx

kv

kz  

Computer Realization of Kalman Filter 
 

1st order Kalman filter algorithm with time-
varying gain  

|

1|

current estimate

one-step prediction estimate
k k

k k

x
x +
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3.1.4. Constant Gain Kalman Filter for a 1st Order System 
 
In the case where the system parameters and statistics of random variables have constant parameters, the 
Kalman filter gain is also a constant parameter.  That is, becomeskK K  which is solved from the steady 
state discrete-time Riccati equation.  There is no longer a need to compute the covariance 1|k kp + .  This 
leads to a very simple KF algorithm 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

System Dynamics 
 

1k k k kx ax bu gw+ = + +

Measurements 
 

k k kz cx v= +  

ku  

kw

kx

kv

kz  

Computer Realization of Kalman Filter 
 

 
( )| | 1 | 1

1| |

k k k k k k k

k k k k k

x x K z cx

x ax bu
− −

+

= + −

= +
 

|

1|

current estimate

one-step prediction estimate
k k

k k

x
x +

 

1st order Kalman Filter Algorithm with Constant Kalman Gain 
 

Step 1. Calculate the constant Kalman gain K by solving for p & K from the nonlinear equations 
 

( )( ) ( )2 22

2

1p a Kc p g q aK r

cpK
c p r

= − + +

=
+

 

 
Step 2. Measure  zk  & compute the current estimate (measurement update)   ( )| | 1 | 1k k k k k k kx x K z cx− −= + −  

 
Step 3. Sample  uk  and compute the prediction estimate (dynamics update)   1| |k k k k kx ax bu+ = +  

 
Step 4. Set k to k +1, and repeat from Step 2. 

Bottom Line:  To apply a KF, formulate the systems model with random variables  in the 
configuration shown, and specify the parameters a, b, c, q & r.  The constant KF algorithm is 
very straightforward.  The time-varying KF is slightly more sophisticated as it requires 
additional computation of the error covariance.  
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3.2.   2nd  Order Systems 
 

Before we consider the n-th order case, we present the case of a 2nd order system to illustrate a matrix & 
vector calculus for the DTKF.   
 

3.2.1. Problem Statement:  
 
Consider a 1-input 1-output 2nd discrete-time order system: 
 

[ ]

1, 1 1, 1,11 12 1

2, 1 2, 2,21 22 2

1,
1 2

2,

Dynamics equation          

Measurement equation                          

k k k
k

k k k

k
k k

k

x x wa a b
u

x x wa a b

x
z c c v

x

+

+

        
= + +        
        

 
= + 

 

 

where 
 

( )

( )

( )

1, 1, 1, 11

2, 2, 2, 22

1,0 1,0 1,0 11
0 0 0 0

2,0 2,0 2,0 22 0

00
~ , E cov 0

00

~ , 0 0

0
~ , cov 0

0

k k k
k k

k k k

k k k

w w w q
w w

w w w q

v v r v r

x x x p
x x E

x x x p

         
= = = = ≥                    

= >

          
= = = >                       

Q Q

P P

 

 
 
The random variables are assumed to be independent of each other. 
 
The system is assumed to be observable and controllable.  
 
Formulate a discrete-time Kalman filter to estimate the state xk from knowing from the noisy 
measurement zk and the control input u(k). 
 

3.2.2. Derivation of DTKF: 
 
Let 

1, | 1,

2, | 2,

1, 1| 1,

2, 1| 2,

1, |

a current estimate of  based on info available up till time k

a predicted estimate of  based on info available up till time k

k k k

k k k

k k k

k k k

k k

x x
x x

x x
x x

x

+

+

   
   

  
   
   

  

�

�

1 1,

2, | 1 2,
a current estimate of  based on info available up till time k-1k

k k k

x
x x

−

−

   
   

  
�
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Using the above measurement equation and dynamic equation, the formulation of a DTKF is as follows: 
 

[ ]1, | 1, | 1 1, | 11,
1 2

2, | 2, | 1 2, | 12,

1, 1| 1, |11 21 1

2, 1| 2, |12 22 2

Measurement update:

Dynamics update:

k k k k k kk
k

k k k k k kk

k k k k
k

k k k k

x x xK
z c c

x x xK

x xa a b
u

x xa a b

− −

− −

+

+

       
= + −                

      
= +      
      

 

 

where 1,

2,

k

k

K
K
 
 
 

  is yet to be determined.   Define the errors and their covariance between the estimates and 

the true state as 
 

1, | 1, |1,

2, | 2, |2,

1, 1| 1, 1|1, 1

2, 1| 2, 1|2, 1

1, | 1 1, | 11,

2, | 1 2, | 12,

k k k kk

k k k kk

k k k kk

k k k kk

k k k kk

k k k kk

x xx
x xx

x xx
x xx

x xx
x xx

+ ++

+ ++

− −

− −

    
−    

    
    

−    
    

    
−    

    

%
�

%

%
�

%

%
�

%

   

'
11, | 12, | 1, | 1, |

21, | 22, | 2, | 2, |

'
11, 1| 12, 1| 1, 1| 1, 1|

21, 1| 22, 1| 2, 1| 2, 1|

11, | 1 12,

E

E

k k k k k k k k

k k k k k k k k

k k k k k k k k

k k k k k k k k

k k k

p p x x
p p x x

p p x x
p p x x

p p

+ + + +

+ + + +

−

      
      
       
      
      
       

% %
�

% %

% %
�

% %

'
| 1 1, | 1 1, | 1

21, | 1 22, | 1 2, | 1 2, | 1
Ek k k k k

k k k k k k k k

x x
p p x x

− − −

− − − −

      
      
       

% %
�

% %

 

 
We would like to find a Kk such that these errors will approach zero.   It can be shown that the predicted 
error behave according to 
 
 

1, 1| 1, 1|1, 1

2, 1| 2, 1|2, 1

1, |1, 1,11 12 1 11 21 1

2, |2, 2,21 22 2 12 22 2

1,11 12

21 22

k k k kk

k k k kk

k kk k
k k

k kk k

k

x xx
x xx

xx wa a b a a b
u u

xx wa a b a a b

xa a
a a

+ ++

+ ++

    
−    

    
           

= + + − −           
            

 
=  
 

%
�

%

[ ]1, | 1 1, | 11, 1,11 21
1 2

2, | 1 2, | 12, 2, 1,12 22

1, | 11, 1,11 12

2, | 12, 2,21 22

k k k kk k
k

k k k kk k k

k kk k

k kk k

x xw Ka a
z c c

x xx w Ka a

xx wa a
xx wa a

− −

− −

−

−

           
+ − + −                          

     
= − +    
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[ ] [ ]

[ ]
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k kk k
k

k kk k

k kk k

k k

xK xa a
c c v c c

xK xa a

xK xa a a a
c c

xK xa a a a

−

−

−

          
 − + −                         

       
= − −       
         

[ ]
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| 1 2, 1,12 22

1, | 11, 1, 1,11 12 11 21
1 2

2, | 11, 2, 2,21 22 12 22

1 0
0 1

k k
k

k k k k

k kk k k

k kk k k

w Ka a
v

w Ka a

xK x wa a a a
c c

xK x wa a a a

−

−

−

       
+ −       

        
            

= − − + −            
               

1,

1,

k
k

k

K
v

K
 
  
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[ ]

1, 1| 1, 1|1, 1

2, 1| 2, 1|2, 1

1, | 11, 1, 1,11 12 11 21
1 2

2, | 11, 2, 1,21 22 12 22

1 0
0 1

k k k kk

k k k kk

k kk k k
k

k kk k k

x xx
x xx

xK w Ka a a a
c c v

xK w Ka a a a

+ ++

+ ++

−

−

    
−    

    
            

= − + −            
            

%
�

%

%

%

 

  
Eliminating the cross covariance of independent variables, it can be shown that the covariance of 

1, 1|

2, 1|

k k

k k

x
x

+

+

 
 
 

%

%
 is given by 
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1, 1| 1, 1|
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'
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1 2
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1 2
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        
                  + +                                    

 

 
 
That is the prediction estimation error covariance is given by 
 

[ ] [ ]

11, 1| 12, 1|

21, 1| 22, 1|

11, | 1 12, | 11, 1,11 12 11 12
1 2 1 2

21, | 1 22, | 11, 1,21 22 21 22

1 0 1 0
0 1 0 1

k k k k

k k k k

k k k kk k

k k k kk k

p p
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p pK Ka a a a
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p pK Ka a a a

+ +

+ +

− −
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 

              
= − −                             

[ ]

'

'
1, 1,11 12 11 21 11 21

1, 1,21 22 12 22 12 22

k k

k k

K KQ Q a a a a
r

K KQ Q a a a a




           
+ +                        

 

 

Again we see that there is an opportunity to choose 1,

1,

k

k

K
K
 
 
 

, such that some measure of the error 

covariance 11, 1| 12, 1|

21, 1| 22, 1|

k k k k

k k k k

p p
p p

+ +

+ +

 
 
 

  is minimized.  We can use the trace of 11, 1| 12, 1|

21, 1| 22, 1|

k k k k

k k k k

p p
p p

+ +

+ +

 
 
 

 as a measure.  

The calculus for taking the derivative of trace 11, 1| 12, 1|

21, 1| 22, 1|

k k k k

k k k k

p p
p p

+ +

+ +

 
 
 

 with respect to a vector 1,

1,

k

k

K
K
 
 
 

 requires 

background in gradient matrices and vectors.  It can be shown that  
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[ ] [ ] [ ]

11, 1| 12, 1|

21, 1| 22, 1|

1,

1,

'

11, | 1 12, | 1 1, 1,11 12
1 2 1 2

21, | 1 22, | 1 1, 1,21 22

1 0
2 2

0 1

k k k k

k k k k

k

k

k k k k k k

k k k k k k

p p
d trace

p p

K
d

K

p p K Ka a
c c c c r

p p K Ka a

+ +

+ +

− −

− −

  
     

 
 
 

          
= − − +                     

[ ] [ ] [ ]

' '
11 21

12 22

'
11, | 1 12, | 1 11, | 1 12, | 11,11 12 1 11 21

1 2 1 2
21, | 1 22, | 1 21, | 1 22, | 11,21 22 2

2 k k k k k k k kk

k k k k k k k kk

a a
a a

p p p pKa a c a a
c c r c c

p p p pKa a c a
− − − −

− − − −

              
          = + −                    

'

12 22a
 
 
 

 

 
 
To find an extremum, we set the derivative to a null vector of appropriate dimension: 
 

[ ] [ ] [ ] [ ]

[ ]

'
11, | 1 12, | 1 11, | 1 12, | 11,1

1 2 1 2
21, | 1 22, | 1 21, | 1 22, | 11,2

'
11, | 1 12, | 11, 1

1 2
21, | 1 22, | 11, 2

0 0k k k k k k k kk

k k k k k k k kk

k k k kk

k k k kk

p p p pKc
c c r c c

p p p pKc

or

p pK c
c c

p pK c

− − − −

− − − −

− −

− −

      
+ − =              

   
=   

   
[ ] [ ]

1
11, | 1 12, | 1

1 2
21, | 1 22, | 1

k k k k

k k k k

p p
r c c

p p

−

− −

− −

   
+         

 

 
 
We again have arrived at the Kalman gain, this time for a second order system: 
 

[ ] [ ]
1

11, | 1 12, | 1 11, | 1 12, | 11, 1 1
1 2

21, | 1 22, | 1 21, | 1 22, | 11, 2 2

k k k k k k k kk

k k k k k k k kk

p p p pK c c
c c r

p p p pK c c

−

− − − −

− − − −

         
= +                   
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3.2.3. Time-Varying Kalman filter for a 2nd order system 
 

2nd order Kalman Filter Algorithm with Time Varying Kalman Gain 
 

Step 1. Set the initial conditions:      1,0| 1 11,0| 1 12,0| 11,0 11,0 12,0

2,0| 1 21,0| 1 22,0| 12,0 21,0 22,0
&

x p px p p
x p px p p

− − −

− − −

      
= =      
      

.   

Compute the initial Kalman gain   
[ ]

[ ]

11,0| 1 12,0| 1
1 2

21,0| 1 22,0| 11,0

2,0 11,0| 1 12,0| 1 1
1 2

21,0| 1 22,0| 1 2

p p
c c

p pK
K p p c

c c r
p p c

− −

− −

− −

− −

 
    =       +   

  

 

Set the index k = 0 
 

Step 2. Measure  zk  & compute the current estimate (measurement update)  
 

[ ]1, | 1, | 1 1, | 11,
1 2

2, | 2, | 1 2, | 12,

k k k k k kk
k

k k k k k kk

x x xK
z c c

x x xK
− −

− −

       
= + −                

 

 
Step 3. Sample  uk  and compute the prediction estimate (dynamics update)    
 

1, 1| 1, |11 21 1

2, 1| 2, |12 22 2

k k k k
k

k k k k

x xa a b
u

x xa a b
+

+

      
= +      
      

 

 
Step 4. Compute the prediction estimate covariance        
 

[ ] [ ]

11, 1| 12, 1|

21, 1| 22, 1|

11, | 1 12, | 11, 1,11 12 11 12
1 2 1 2

21, | 1 22, | 11, 1,21 22 21 22

1 0 1 0
0 1 0 1

k k k k

k k k k

k k k kk k

k k k kk k

p p
p p

p pK Ka a a a
c c c c

p pK Ka a a a

+ +

+ +

− −

− −

 
 
 

              
= − −                             

[ ]

'

'
1, 1,11 12 11 21 11 21

1, 1,21 22 12 22 12 22

k k

k k

K KQ Q a a a a
r

K KQ Q a a a a




           
+ +                        

 

 
Step 5. Compute the next Kalman gain             CHANGE k to k+1 
 

[ ] [ ]
1

11, | 1 12, | 1 11, | 1 12, | 11, 1 1
1 2

21, | 1 22, | 1 21, | 1 22, | 11, 2 2

k k k k k k k kk

k k k k k k k kk

p p p pK c c
c c r

p p p pK c c

−

− − − −

− − − −

         
= +                   

 

 
Step 6. Set k to k +1, and repeat from Step 2. 
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3.2.4. Constant Gain Kalman Filter for a 2nd O 
In the case of time-invariant systems, the 2nd order constant gain Kalman filter simplifies to 

Computer Realization of Kalman Filter 
 

2nd order Kalman filter algorithm with time-varying gain

1, |

2, |

1, 1|

2, 1|

current estimate

one-step prediction estimate

k k

k k

k k

k k

x
x

x
x

+

+

 
 
 
 
 
 

 

System Dynamics 
 

1, 1 1, 1,11 12 1

2, 1 2, 2,21 22 2

k k k
k

k k k

x x wa a b
u

x x wa a b
+

+

        
= + +        
        

 

Measurements 
 

[ ] 1,
1 2

2,

k
k k

k

x
z c c v

x
 

= + 
 

 

1,

2,

k

k

w
w
 
 
 

Computer Realization of  
Constant gain Kalman Filter 

 

[ ]1, | 1, | 1 1, | 11
1 2

2, | 2, | 1 2, | 12

1, 1| 1, |11 21 1

2, 1| 2, |12 22 2

k k k k k k
k

k k k k k k

k k k k
k

k k k k

x x xK
z c c

x x xK

x xa a b
u

x xa a b

− −

− −

+

+

       
= + −                

      
= +      
      

 1, |

2, |

1, 1|

2, 1|

current estimate

one-step prediction estimate

k k

k k

k k

k k

x
x

x
x

+

+

 
 
 
 
 
 

System Dynamics 
 

1, 1 1, 1,11 12 1

2, 1 2, 2,21 22 2

k k k
k

k k k

x x wa a b
u

x x wa a b
+

+

        
= + +        
        

 

Measurements 
 

[ ] 1,
1 2

2,

k
k k

k

x
z c c v

x
 

= + 
 

 



VI Workshop U.S. Army TACOM, Warren, MI                      Ka C Cheok 
 

VIS 3 Kalman Filters.doc     12 of 16     Jan 12-16, 
2004 
 
 

 

3.3.   nth Order Systems 
 

3.3.1. Problem Statement:  
 
A system that can be modeled as a linear n-th order discrete-time system with r-inputs and m-outputs can 
be expressed similarly in the preceding sections as  
 

1Dynamics equation          

Measurement equation                          

k k

k k k

+ = + +

= +

k kx Ax Bu w

z Cx v
 

 
where 

( )
( )
( ) ( )0 0 0 0 0 0

~ , 0

~ , 0 0

~ , 0

k k k

k k k

E

= ≥

= >

= >

w w Q w 0 Q

v v R v R

x x P x x P

 

 
The dimensions of the variables and parameters are: 
 

1

1

1

n
k

r

n

×

×

×

∈

∈

∈
k

k

x

u

w

�

�

�

  
1

1

m
k

m
k

×

×

∈

∈

z

v

�

�
  

n n

n r

m n

×

×

×

∈

∈

∈

A

B

C

�

�

�

  

0

n n

m m

n n

×

×

×

∈

∈

∈

Q

R

P

�

�

�

 

 
The random variables are assumed to be independent of each other. 
 
The system is assumed to be observable and controllable.  
 
 
Formulate a discrete-time Kalman filter to estimate the state xk from knowing from the noisy 
measurement zk and the control input uk. 
 

3.3.2. Formulation of DTKF: 
 
Let 

|

1|

| 1

a current estimate of  based on info available up till time k

a predicted estimate of  based on info available up till time k

a current estimate of  based on info available up t

k k k

k k k

k k k

+

−

x x

x x

x x

�

�

� ill time k-1

 

 
Using the above measurement equation and dynamic equation, the formulation of a DTKF is as follows: 
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( )| | 1 | 1

1| |

Measurement update:

Dynamics update:

k k k k k k k k

k k k k ku

− −

+

= + −

= +

x x K z Cx

x Ax B
 

 
where kK  is yet to be determined.   Define the errors and their covariance between the estimates and the 
true state as 
 

| |

1| 1 1|

| 1 | 1

k k k k k

k k k k k

k k k k k

+ + +

− −

= −

= −

= −

x x x
x x x

x x x

%

%

%

   

( )( )

( )( )

( )( )

'
| | |

'
1| 1| 1|

'
| 1 | 1 | 1

E

E

E

k k k k k k

k k k k k k

k k k k k k

+ + +

− − −

 
  
 
  
 
  

P x x

P x x

P x x

% %�

% %�

% %�

 

 
 
We would like to find a Kk such that these errors will approach zero.   It can be shown that the predicted 
error behave according to 
 
 

[ ]1| | 1k k k k k k k+ −= + −x A I - KC] x w AK v% %  
 
  
Eliminating the cross covariance of independent variables, it can be shown that the prediction estimation 
error covariance is given by 
 

'
1| | 1[ ] [ ] ' ' 'k k k k k k k k+ −= − − + −P A I K C P I K C A Q AK RK A  

 
We can choose Kk, such that the trace of the error covariance Pk  is minimized.  It can be shown that  
 

( )
[ ] [ ]1| ' '

| 1 | 1 | 12 ' 2 ' 2 [ ' ] '
k k

k k k k k k k k k
k

d trace

d
+

− − −

      = − + = + −   
P

A CP I - K C RK A A CP C R K CP A
K

 

 
 
To find an extremum, we set the derivation to a null vector of appropriate dimension, which then yields 
the Kalman gain 

 
1

| 1 | 1' 'k k k k k
−

− − = + K P C CP C R  
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3.3.3. Time-Varying Kalman filter for a nth order system 

 
 
 

nth order Kalman Filter Algorithm with Time Varying Kalman Gain 
 

Step 1. Set the initial conditions:      0| 1 0 0| 1 0&− −= =x x P P .   

Compute the initial Kalman gain   
1

0 0| 1 0| 1' '
−

− − = + K P C CP C R  

Set the index k = 0 
 

Step 2. Measure  zk  & compute the current estimate (measurement update)  
 

( )| | 1 | 1k k k k k k k k− −= + −x x K z Cx  

 
Step 3. Sample  uk  and compute the prediction estimate (dynamics update)    
 

1| |k k k k ku+ = +x Ax B  
 
Step 4. Compute the prediction estimate covariance        
 

'
1| | 1[ ] [ ]' ' 'k k k k k k k k+ −= − − + −P A I K C P I K C A Q AK RK A  

 
Step 5. Compute the next Kalman gain    
 

1
| 1 | 1' 'k k k k k

−

− − = + K P C CP C R  

 
Step 6. Set k to k +1, and repeat from Step 2. 

 

Computer Realization of Kalman Filter
 

nth order Kalman filter algorithm with 
 time-varying gain 

|

1|

current estimate

one-step prediction estimate
k k

k k+

x

x

System Dynamics 
 

1k k+ = + +k kx Ax Bu w  
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3.3.4. Constant Gain Kalman filter for a nth order system 
 
 
 
In the case of time-invariant systems, the constant gain Kalman filter simplifies  to 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Computer Realization of Kalman Filter 
 
( )| | 1 | 1

1| |

k k k k k k k

k k k k ku
− −

+

= + −

= +

x x K z Cx

x Ax B
 

 
where K is solved from 

 

[ ] 1

[ ] [ ]' ' ' '

' ' −

= − − + −

= +

P A I KC P I KC A Q AKRK A

K PC CPC R
 

|

1|

current estimate

one-step prediction estimate
k k

k k+

x

x

System Dynamics 
 

1k k+ = + +k kx Ax Bu w  
Measurements 

 
k k k= +z Cx v  
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Summary of Discrete-Time Kalman Filter  

 
 
 
 
Note:  Vectors and matrices are a compact means to represent nth order systems and signals. 
 
 
 

 
 
 
 
 
 

System Model: 
 

1Dynamics equation          

Measurement equation                          

k k

k k k

+ = + +

= +

k kx Ax Bu w

z Cx v
 

 
Kalman Filter Equations: 

 
( )

[ ]

| | 1 | 1

1| |

1

'
1| | 1

Measurement update:

Dynamics update:

Kalman gain: ' '

Prediction error covariance: [ ] [ ]' ' '

k k k k k k k k

k k k k k

k k k

k k k k k k k k

u

− −

+

−

+ −

= + −

= +

= +

= − − + −

x x K z Cx

x Ax B

K P C CP C R

P A I K C P I K C A Q AK RK A

 

 

Bottom Line:  To apply a KF,  
 

1. Formulate the systems model with random variables as shown 
2.  Specify the parameters A, B, C, Q, R, x0, P0.   
3.  Implement the KF algorithm 
 
The constant KF algorithm is very straightforward  
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4. EXAMPLE APPLICATIONS OF KALMAN FILTER 
 

When sophisticated system theories are correctly and successfully 
applied to control complex systems behavior, the resulting 
performance can be very impressive.   

 

4.1.  Application of Kalman filter as an Alpha-Beta Tracker  
 

4.1.1. Objective 
 
Apply Kalman filtering to track and filter an incoming noisy signal.  The resultant KF-based Alpha-Beta 
tracker is compared to conventional low-pass filter using Simulink. 
 

4.1.2. Formulation of Alpha-Beta Tracker 
 
A discrete-time α β−  model is given by 
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Using the constant gain KF formulation in Section 3, the equations for an α β−  tracker is given by 
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 be solved from the steady state solution of the Kalman gain and presiction error 

tlab, we can solve the Kalman gain using a function called   dlqe.m.     >>help dlqe 
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4.1.3. Application of Kalman Filter & comparison to signal filter 
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IS 4 - 1 KF as a Alpha-Beta Tracker  
Measured 
noisy 
signal 

 

Original 
clean 
signal 

 

Lowpass 
filtered 
signal 

 

 

Alpha-
beta 
tracker 
signal 
(1st state)
 2 of 4     
Original signal 
rate 

 

Rate from 
differentiating  
noisy signal 

 

Rate from 
differenting 
lowpass 
filtered signal

 

Rate 
produced 
from Alpha-
beta tracker  
(2nd state) 
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Implementation of Kalman filter 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

function [Out] = AlphaBetaTrackerAlgorithm (In); 

 

 

Y
p

VIS 
 
 

ou may tun
erformance,

4 - 1 KF as a Al
Double click 
e the g
 even th

pha-Beta
Right click & 
select 
Look under 
mask 
 

Right click & 
select 
Edit mask 
 
global A B C D Q %R 
 
Yk = In(1); 
Uk = In(2); 
q11 = In(3); 
q22 =In(4); 
R = In(5); 
Xkkm1 = [In(6); In(7)]; 
p11 = In(8); 
p12 = In(9); 
p22 = In(10); 
 
Q = [q11  0;  0  q22]; 
 
Pkkm1 = [p11 p12; p12 p22]; 
Kk = Pkkm1*C'/(C*Pkkm1*C'+R); 
Ykkm1 = C*Xkkm1; 
Xkk = Xkkm1 + Kk*(Yk-C*Xkkm1); 
 
Xkp1k = A*Xkk + B*Uk ; 
Pkk = (eye(2) - Kk*C )*Pkkm1; 
Pkp1k = A'*Pkk*A + Q; 
 
Out = [Xkk ; Xkp1k; Pkp1k(1,1); Pkp1k(1,2); Pkp1k(2,2)]; 

% AUTOMATIC INITIALIZATION 
% Kalman Filter Matrices for Alpha Beta Tracker 
 
global A B C D Q R T 
 
T = 0.01; 
A = [1 T;0 1]; 
B = [0 0]'; 
C = [1 0]; 
D = 0; 
Q = [0.01 0;0 0.0001]; 
R = 10; 
 

ains for the Kalman filter by adjusting covariance Q & R, to improve its
ough they are supposed to represent covariance of the variables. 
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4.2. Application of KF to a Stabilization Platform 
 

4.2.1.  Objective 
 
The configuration of a self-leveling stabilized platform system is shown in Figure 1 below.  The control 
objective is to automatically level the top platform (parallel to the horizontal) and keep it horizontal in the 
presence of base motion.   
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Top Platform to be 
self-leveled and 
stabilized 

 
 
 
 
 
 Base Platform motion 

causes disturbance to 
Top Platform 

 
 DC Motor 
 
 
 
 
 
 

DC Motor  
 
 
 Figure 1. Hardware/Software Development Configuration for Self-Leveling 

Stabilized Platform System Experiment with Embedded SH2 Microcontroller   
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4.2.2. Mechatronics Components 
 

Actuation. Referring to Figure 1, the Top
Platform (TP) is connected to three posts;
one post is attached to the top platform via
a universal joint and fixed in length, and the
other two posts via ball joints and can be
actuated (raised or lowered) by two dc
motors (A1 & A2). Hence, the TP can pitch
and roll.  
 
Sensing. Two tilt sensors (MEMS
accelerometers) are employed to yield
information about the roll and pitch angles
of the platform. In addition, two rate gyros
(MEMS rate transducers) are used to
measure roll and pitch angular rates. The
accelerators and rate gyros complements
each other very well to remove noise and
bias that are inherent to the sensors. (See
section on Sensor Fusion below) 
 
Input Interface: The accelerators provide
TTL PWM (pulse width modulation)
signals which are fed directly to the TPU
(time processing units) of the SH2
Microcontroller, while the rate gyros
generates analog voltage for the A/D
channels.    
 
Output Interface. The Microcontroller
outputs   PWM control signals to H-bridge
drivers (LM18200), which, in turn, actuate
the dc motors. 
 
Software. Estimation and control scheme
for the platform is shown in Figure 2. The
tilt and rate sensors are fused using Kalman
filtering technique to remove unwanted
noise and bias, and estimate the pitch and
roll angles, and its rates.  The estimates then
feed the PID controllers that drive
actuators. 

 
 

System  

Top Platform 

Bottom Platform

Actuator

Sensor Fusion 

Control 

Sensors 

 
 
 
 
 
 
 

Computer Realization

External disturbances 

Figure 2.  Overview of self-leveling and
stabilizing platform control scheme 
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4.2.3. Modeling  
Figure 3 shows the coordinate system and force/torque vectors for the platform.  For precise reference to 
frames, objects, points and operation, we have adopted the following nomenclature for matrices and 
vectors: 
 

  [ ] [ ]Frame of Reference Operation on the Vector Frame of Reference Operation

From Point or Of Object To  Point Of Object To Frame
Vector Matrix

 
 
 

0 0,
BO Bf t

0 0,
TO Tf t

Actuator A2 Actuator A1 

O0 

Y0 X0Z0 

OT

YT XTZT

OB

YB XBZB

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3.  Coordinate system and force/torque vectors for platform 
 
 
Kinematics and dynamics of Top Platform: Let  an inertial frame and  represents the 
coordinate frame attached to the center of gravity of the top platform.   The displacement kinematics can be written 
as  [1] 

0 0 0 0O X Y Z T T T TO X Y Z

 
0

0 0 0 0 0; ; ; 
T T

T

T

T T
p O T p O T p

O p

x c c s c c s s s s c s c x
y s c c c s s s c s s s c
z s c s c c

ψ θ ψ φ ψ θ φ ψ φ ψ θ φ
ψ θ ψ φ ψ θ φ ψ φ ψ θ φ
θ θ φ θ φ

− + +     
     = + = = + − + =     
     −     

r r R r r R r y
z

    (1.1) 

 
where x, y & z are translation displacements and , &ψ θ φ

E

are yaw, pitch & roll (Euler) angles of the top platform.  
The angular velocity kinematics is given by 
 

 
1 0 sin
0 cos sin cos
0 sin cos cos

T

T T T

T

O
x

O O O E
y

O
z

ω θ φ
ϖ ω φ φ θ θ

ω φ φ θ ψ

   − 
    = =     
    −    

N ϖ  (1.2) 

 
where Eϖ φ θ ψ= 

'
  are the Euler angle rates and TO

x y zϖ ω ω ω =  
'
 are the angular rates projected onto 

the T T TX Y Z  axis.  It can be shown that the translation dynamics of the platform is described by  
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       (1.3) 

 
where  is the net forces acting on the center of gravity of the top platform and is a diagonal matrix of the 

mass  of the platform.  Similarly, the rotation dynamics for the platform can be shown to be 

0
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Tm
TM
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where  is the net torque acting on the center and 0

Tt BI  is a diagonal matrix with principal moments of inertia 
, &xx y zy zI I I . 

 
Dynamics of Bottom Platform: Similarly, let B B B BO X Y Z  represents the coordinate frame attached to the bottom 
platform.  The dynamics of the bottom platform is given by 
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 (1.5) 

 
where the matrices and vectors are define similarly as for the top platform. 

 
Force and torque.  The bottom platform is subjected to 0 0 0

B B BO D O A O= +f f f  & 0 0 0
B D B A B= +t t t , where 0 0&

BD O Df tB  

are external and internal forces & and torque, and  are actuator (dc motor) forces & torques.   Similarly, 

the top platform is subjected to & , where 

0
BA O

0
A O+ f

0& A Bf t

T

0 0 0
T D T A T= +t t t0 0

T TO D O=f f 0 0&
TD O Df Tt , and are 

external and actuator forces and torques.  Note that the forces and torques due to the actuators are equal and 
opposite:  & .   The actuator forces and torques acting on the platform are given by 

0 0&
TA O A Tf t

0 0
T BA O A O= −f f 0

A T = −t 0
A Bt
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where point pi is the location where the post i joins the top platform, 0
ipr  points to pi  and 0

ipf  is the force vector 

along the post i acting on pi, index i =1,2.  1 2 1, , & 2α α β β  are geometrical dimensions of the platform, and 

1
&A 2Af f  are forces generated by motion of Actuators A1 and A2.   

 
Actuator dynamics and joint forces. The two individual identical motor (A1 & A2) actuations are accountable by 
the following equations: 

          

            
i

a
a a a b g gi a

eq gi eq gi g t a stickeq A

di
L R i K N v

dt
J D N K i

θ

θ θ τ

= − − +

= − + − − f
    (1.7) 

 
where 
 

geared output shaft angle for motor , 1, 2;  =armature current;   =voltage applied to armature 

equivalent momentof inertia           equivalent viscous damping;       =gear ratio

a

gi a a

eq eq g

a

i i i v

J D N

R

θ = =

= =

= rmature resistance       armature inductance     back emf constant      torque constant
equivalent stick friction torque       external torque acting against the motor 

i

a b t

stickeq A

L K K
f iτ

= = =

= =

 

 
The joint interaction force

iAf  between the top platform and the geared motor is given by 

 
[ ]( ) [ ]( )0 0 0 0sin( ) 0 0 1 cos( ) 0 0 1

i i i i i i iA s g p s g g i p s g g g pf K K r L D rθ θ θ= − ≅ + − + −r r r r
i

 (1.8) 

 
for small values of θ .  0

igr  is the tip of the geared arm and Li is the nominal length for post i, and; i = 1,2.  Ks and 

Ds are the elastic and damping coefficients for the metal posts.    
 
Constraint motion.  Because of the fixed rigid post (labeled as post 3), the point p3 at the top platform is constrained 
to move with the bottom plate according to 
 

3

0 0
B

O B
3p O B= +r r R rp        (1.9) 
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4.2.4. Formulation of Kalman filter 
 
Sensors.  Two tilt angle sensors (MEMS accelerometers) and two angular rate sensors (MEMS gyros) were used; 
see Figure 4.  They provide measurements: 
 

 = pitch angle measurement           = roll angle measurement

 = pitch rate measurement             = roll rate measurement 
m m

m m

θ φ

θ φ
 
When the top platform is balanced (leveled and stabilized), the 
pitch and roll angles can be treated as slow moving small 
amplitude signals.  Hence, the signals’ movements can be 
approximated using &α αβ  shaping dynamics.  In the case of 
pitch movement, the dynamics of the pitch, pitch rate and a bias 
can be expressed as 

Figure 4. Tilt angle sensor (accelerometer) 
and angular rate sensor  
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The pitch and pitch rate measurements can then be written as  
 

1

2

1 0 0
; ; ; measurement noise

0 1 1
m

m

v
y v

vθ θ θ θ θ θ θ

θ
θ
    

= + = = = =    
    

C x y C v       (1.11) 

 
A state estimator or observer for filtering the noise is given by [2] 
 

( ) ˆ ˆˆˆ ˆ ˆ estimate of sensor statesbθ θ θ θ θ θ θθ θ = + − = =  

'

x Ax L y C x x   (1.12) 

 
where L is a estimator gain matrix. The 3x2 L matrix can be designed using pole-placement technique.  In 
the case of the platform, L was determined using Kalman-Bucy filter equation as follows: 
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   (1.13) 

 
where Q & R are approximation of the covariance of θw  & θv .    Using a sampling interval T , the 
digital implementation of the pitch estimator is given by 

0.01sec=
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where  represents sample indices.   The discrete-time estimator yields the current state estimate 

and one-step ahead prediction 

= 0, 1, 2, ...k

| |k k k k bθ θ, | |k k k kθ =
'

x  , 1| 1| 1| 1|k k k k k k k kbθ θ θ+ + + + =  
'

x

, | | | |k k k k k k k kbφ φ

.  A estimator for roll, roll 

rate and roll bias can be similarly synthesized to yield φ  =  
'

, 1φxx and . | 1| 1| 1|k k k k k k k kbφ φ+ + + + =  
'

 
Controllers.   The self-leveling and stabilizing controllers incorporates PID actions based on the estimated states 
[3]: 
 

| |( ) P k k D k k I k ku z K K K dtθ θ θ θθ θ θ= − − + ∫ | |  and   | |( ) P k k D k k I k ku z K K K dtφ φ φ φφ φ φ= − − + ∫ .  (1.15) 
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4.2.5. Near-Zero Hand-Coding Development Environment for Embedded 
Controller  

The Hitachi WorkBench 
software combine C-source 
codes from TargetLink and 
MakeApp, to form a main C-
program.   

 

 

The dSpace TargetLink 
software uses Simulink blocks
to automatically code the 
Kalman filter algorithm & 
controller 
The microcontroller communicates 
performance of the controlled syste

 

PID controller 

C-so
code

TargetLink Software 
C-code for Kalman filter-

Matlab / Simulink & VRML 
Software 

Simulation & Visualization of Self-
Leveling Stabilized Platform 

Figure 5. Near-zero hand-co
microcontroller EVB.  
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The MakeApp software uses a 
graphical user interface (GUI) to 
generate automatically C-source 
code modules for input & output 
operations of a microcontroller. 
 
with a Simulink on PC thru a serial link for monitoring 
m.  

 
 
 

Hitachi WorkBench Software 
Assembly and Machine codes 

C-source 
codes 

Hitachi WorkBench Software 
Main C-source code program 

Machin
e codes  

C-source 
codes

urce 
s  

MakeApp Software 
C-code for I/O functions 

Standalone SH2-7055 EVB

The auto generated C-source 
codes from TargetLink and 
MakeApp are highly optimized  

ding development environment & process for embedded SH2
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4.2.6. Experimental results 
The standalone SH2 EVB microcontroller and the self-leveling stabilized platform were put to test aboard a mobile 
robot as shown in Figure 6.  Figure 7 compares the output from the pitch sensor, which is a noisy accelerometer, 
with the estimated output from the Kalman filter, as the mobile robot (hence bottom platform) pitches upward and 
downward.  The smoother estimated output was used to level the platform via the PID controller.  The experiment 
demonstrates the effectiveness of the embedded microcontroller.  A video on the performance of the self-leveling 
stabilized platform will be presented at the conference. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 6.  Experiments with the 

self-leveling stabilized platform
aboard a mobile robot 

 
 
 
 
 
 
 

4.2.7. Movie Clip and/or Actual Bench 
Figure 7.  Experimental output from the pitch 
sensor (noisy accelerometer) versus output from the 
Kalman filter, as the mobile robot pitches upward 
   Jan 12-16, 2004 

Demonstration 
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4.3. APPLICATION OF KALMAN FILTER TO NAVIGATION SENSOR FUSION 
 

4.3.1. Objective 
 
Data from positioning systems (such as the GPS, laser systems, etc.) often needs to be complemented by 
other dead reckoning and inertial sensors (such as wheel speed sensor, yaw rate, accelerometers, etc).  
This section presents a Kalman filter approach to the formulation of a sensor fusion for combining the 
data from GPS and wheel speed sensors for a mobile robot.   
 
The same technique has been applied to an autonomous vehicle with a laser-based navigation system.  An 
application to precision self-guided lawn mower will be presented. 
 

4.3.2. Kinematics relationship from velocity to position  
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Fv

x 

ψ

 
Top view of a mobile robot 
and its coordinate system 
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Rate to Position Relationship 
 

 yaw rate of vehicle
 = x-velocity of vehicle 
 = y-velocity of vehicle 
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A state space model for kinematic re
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4.3.3. GPS Data and Measurement Equation  
 
Experimental data 
 

Serial link PC with  
Matlab/Simulink Software  
& Serial driver 

Magellan 
Meridian 
Gold 
GPS 

 
 
 
 
 
 
 
Sample of data received by GPS sitting at a location on the round patio in front of the SEB.  Recorded & 
saved using Simulink. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A typica
longitude
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VIS 4 - 3 KF
 
 

$GPGGA,175006.45,4240.0897,N,08313.2954,W,1,07,2.3,00286,M,, 
$GPGGA,175007.45,4240.0895,N,08313.2954,W,1,07,2.3,00287,M,, 
$GPGGA,175008.46,4240.0894,N,08313.2955,W,1,07,2.4,00288,M,, 
$GPGGA,175009.45,4240.0893,N,08313.2955,W,1,07,2.3,00288,M,, 
$GPGGA,175010.45,4240.0893,N,08313.2956,W,1,07,2.3,00289,M,, 
$GPGGA,175011.46,4240.0892,N,08313.2957,W,1,07,2.3,00290,M,, 
$GPGGA,175012.45,4240.0892,N,08313.2957,W,1,07,2.5,00290,M,, 
$GPGGA,175013.45,4240.0891,N,08313.2958,W,1,07,2.3,00291,M,, 
$GPGGA,175014.46,4240.0891,N,08313.2958,W,1,07,2.3,00292,M,, 
$GPGGA,175015.45,4240.0891,N,08313.2958,W,1,07,2.2,00292,M,, 
$GPGGA,175016.46,4240.0891,N,08313.2958,W,1,07,2.2,00293,M,, 
$GPGGA,175017.46,4240.0891,N,08313.2958,W,1,07,2.2,00293,M,, 
$GPGGA,175018.45,4240.0891,N,08313.2958,W,1,07,2.8,00293,M,, 
$GPGGA,175019.46,4240.0891,N,08313.2958,W,1,07,2.8,00293,M,, 
$GPGGA,175020.46,4240.0891,N,08313.2957,W,1,07,2.8,00293,M,, 
$GPGGA,175021.45,4240.0891,N,08313.2957,W,1,07,2.9,00293,M,, 
$GPGGA,175022.46,4240.0890,N,08313.2957,W,1,07,2.8,00293,M,, 
$GPGGA,175023.46,4240.0890,N,08313.2957,W,1,07,2.8,00293,M,, 
$GPGGA,175024.45,4240.0890,N,08313.2956,W,1,07,2.4,00294,M,, 
$GPGGA,175025.46,4240.0891,N,08313.2957,W,1,07,2.7,00294,M,, 
$GPGGA,175026.46,4240.0891,N,08313.2957,W,1,07,2.8,00294,M,, 
$GPGGA,175027.45,4240.0891,N,08313.2956,W,1,07,2.8,00294,M,, 
l Matlab program to convert ASCII strings to useable numerical arrays of latitudes and 
s: 
 for Navigation   2 of 5     Jan 12-16, 2004 
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A typical Simulink model to display plots of acquired GPS data. 

 

The measurement equation for the GPS is  1 1

2 2

k k

k k

z x v
z y v

+ k

k

   
=   +   

 

 
 

4.3.4. Wheel Speed measurement 
 

speed of right wheel (in m/s) 
speed of left wheel (in m/s)

 = forward speed of vehicle
2

 =  = steer rate of vehicle, W = width of the vehicle 
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=
=
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The measurement from the speed sensors is F
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v
v
 
 
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4.3.5. FUSION OF GPS & WHEEL SPEED 
 
Discretization of state model  
 

1
,

1
,

1

0 0 0 cos 0
0 0 0 sin 0 continuous-tme model
0 0 0 0 1
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0 0 1 0
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       = +                     

        discrete-time model,   = sampling intervalT

 

 
 

0

Formulation of Kalman filter  
 
To apply a Kalman filter to the discrete-time model, we formulate the above relationship as astochastic  
process 
 

1

,

,

1 0 0 cos 0
, ,  0 1 0 , sin

0 0 1 0

k k k k k
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F k

k k k k k
S k
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x Ax B u w

x u A B
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where the noise wk represents in accuracy in the model including wheel slips and speed measurement 
noise. 
 
The GPS data is the true position info corrupted with GPS type noise can be modeled as  

 

1 1

2 2

1 0 0
0 1 0

k k k

k k k
k

k k k

z x v
z y v

= +
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= = =     +     

z Cx v

z C

 

 
We need to specify the mean & covariance of the variables.  That is  
 

( ) ( ) ( )0 0~ 0, ~ 0, ~ 0,k k k kw Q v R x P  
 
Knowing the values of these covariance is a key to how well the KF will perform.  The values can be 
found from experiments, derivation and other observations.  Note that the covariance Qk & Rk may 
change with time.    It is assumed that the stochastic (random) variables are independent. 
 
 
Time-Varying Gain Kalman Filter  
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]

 
A synthesis of time-varying gain Kalman filter for the above is given by 
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u
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     (predictor update) 

 
Note that this is an alternative form of the same time-varying KF algorithm presented in Section 3.  
 
 
Constant Gain Kalman Filter  
 
In the case of time-invariant system, a constant gain version of the Kalman filter is given by 
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This is also an alternative form of the same constant gain KF algorithm presented in Section 3. 
 
Sensor Fusion  
 

Notice how data from GPS  1

2 2

k k
k

k k

z x v
z y v
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= =   +   

z  are blended with the vehicle speeds 
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u    by the Kalman filter.  

 

4.3.6. Application to a Precision Self-guided Lawn Mower 
 
The above formulation has been successfully applied to the navigation of an automatic lawn mower.  
In this project, a laser positioning system (LPS) was used instead of a GPS.  The LPS provide better 
accuracy and faster update rate 
 

4.3.7. Movie Clip 
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