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SUMMARY

Kalman filtering (KF) techniques have been applied in numerous scientific investigations and
engineering applications. Most tracking systems, such as GPS, radar, sonar, optical, infrared
sensor systems, use Kalman filters to smooth information acquired from corrupted data reported
from sensors and simultaneously compensate for the motion involved during the
measurements. Kalman filter is also used in many systems involving multi-sensor fusion,
feedback control and prediction (forecast) schemes. These applications have led to many
successful commercial and military applications.

The basic idea behind Kalman filtering is to combine a system model (the differential or
difference equation that describes the dynamical motion of the system being investigated) and
the measurement model (the observations made of the variables of the system) in an optimum
manner, to compute the best estimate of the present state of the system. In certain cases, the
KF can also be used to predict future states with reasonable accuracy.

Since 1960, a large number of articles have been published in conferences, journals and books,
with regards to Kalman filtering, algorithms and its applications. The vast literature often
focuses on advanced variations of the subject that can sometimes be vague to uninitiated
readers. In this seminar, the underlying principles of Kalman filter will be explained in depth and
made simple and clear with illustrative examples. Practical examples of KF application to state
estimation, tracking, control and sensor fusion systems will be presented.

The topics to be covered include: Essential algebraic and differential math; essential statistics;
system models; measurement models; observer theory; optimal estimation (derivation of KF);
forms of KF (analog & discrete); KF algorithms; extended KF; practical aspects of KF; KF
trackers; and applications. Application examples will involve demonstration with Matlab
simulation and animation of tracking systems with GPS, radar and/or sonar, and with an
actual inertial stabilization platform control system.
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1. RANDOM SIGNALS & VARIABLES

1.1. Random Scalar Variable

100 T T T T
1.1.1. Means, Covariance and Standard
Deviation ] e S S

o) ESSLIONE S SRR SRS SO

s ST S

Sample value X

71 S R .

Index Z

Z=[01 23 456 7 8 9 10]

X=[69.72 59.46 68.05 59.02 66.09 66.57 5332 57.87 60.41 64.36 61.38]

Sample mean (a.k.a. average or expectation):

X =mean(X) =%(69.72 +5946+ .. +64.36 + 61.38) = 60.08

Sample covariance:
g =cov(X)= o’

- %((69.72 SE) (5946 -F) + . +(64.36-X) +(61.38-%)) =38.5991

Sample standard deviation:
1/2

o =(cov(X))' " =4"? =621

In general, a random scalar variable can be characterized by the following statistics

Zz[z1 Z, e Zp:' Xz[xl X, e xp]
f:lix‘ q:l(i(x'_ffj G:ql/z
P iz [ P\i= :
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1.1.2. Histogram and Distribution Function

n = 50 points of random data and its histogram/distribution
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Index Z Histogram of X

500 points of random data and its histogram/distribution
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1.1.3. Central Limit Theorem:

Ka C Cheok

The histogram/distribution of a noisy process is approximately a Gaussian function given by

fo(w)= et

500 points of random data, histogram/distribution & Gaussian function

100

Sample value X

20 f------ Rk SRR EREEE

100 200 300 400 A0O
Index 7

Sample value X

100

80}

BO |

401

201

S (x)* max(Histo(x)) |

a0 100
Histogram of X

5000 points of random data, histogram/distribution & Gaussian function

Sample value X

VIS 1 Random Variables
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1.1.4. Probability Density Function (PDF)

The probability distribution function of noise is the normalized histogram of the data. Following are
examples of various statistical pdf’s

-

Gaussian Distribution.

fo(w) = et

Gaussian PDF
0O o o o o o o o o
- ha w B m m =~ o Lin]

fo)=e N i 20 & o=1

Uniform Distribution.

1, 0<x<l1

fr(x)= 0

Uniform PDF
o 0o D o o o0 oo
M [0 B m i =) a o -

,  Otherwise

o
i

=)

Rayleigh Distribution, etc.

Distribution of arrivals at

Distribution of arrivals at a movie

a friend’s party

Bottom Line: A random variable is associated with a mean, a covariace, a

std dev and a pdf.
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1.2. Time Series Statistics versus Event Ensemble Statistics

An example: A 24/7 record of temperatures
]
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= GOt g
1]
1] 3 10 15 pur]
so} . K
a0 . . . - . ) ) o _
Mon  Tue  Wed  Thu Fri Sat  Sun Time series statistics is based on the data
Day of Week

collected over a continual period.

o E.g. The average temperature of the day is 70°F.
Event ensemble statistics is based on a

collection of data for an event. Average (T (Tuesday))
E.g. The expected temperature at 12 noon 1
over the week is 82°F. = Q(T(O, Tue)+T(1,Tue) + -+ + T(24,Tue))

T (Noon) =E[T(Noon, Day)] = Expectation of T at Noon,Any Day

Noon, Mon) + T (Noon, Tgtg)g—l— -+« + T(Noon, Sun))

=—(T
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1.3. Time Series of Scalar Random Variables

If we superpose the T(k, Day) where Day = Mon, Tue, ..., Sun, we’d have

[xa] T T T T
[l = -
L - m
= - ! - s : .
.!, &* = k3 i ¥ t -
= wl - - + T % L d t - ]
= HER L -
- 1 % L * ; H
L 2
wml # ¥ t ¥ .f".
[ 3
a0 - -
in 1 1 1 1
o E 10 15 el
K-th Hour of Day

T(k) would be a scalar random variable and has a non-predictable single value at each k. We associate it
with event ensemble statistics

T (k) =E[T (k)] = expectation of T(k) = mean of T (k)
0%y = coMT (k) =E| (T =T ()’ |
Ory = std dev(T'(k)) = yJcov(T (k))

©O=pdtof T()  Egafry=e T

if T(k) is Gaussian

100 T T T T
@0 |- _
=l o E -
&
= ol - « 5 - - -
—_ - L L 3
$ .18 " i T
& - - & & .L“
=0 -
0 1 1 1 1
o = T 15 o

k-th Hour of Day

Bottom Line: A random variable, such as T(k), at each instance k is
associated with a mean, a covariace, a std dev and a pdf.
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1.4. Time Series of Random Vector Variables

Example:
1080
=1 - f &
- TR
= ., -~ % e s 8.
= & E -
=t atdet LE P
e E m = =
1000
o b
_ a0 = £ ¥ s B st
%70#:&:* ‘H‘ii‘ # 3
e . = i ] * =y
=r bl 3 i
5:' I 1
ml:I :i-l [u] 1= :::l
k-th Hour of Day
Let’s define the random vector variable
X, (k
X(k):[ 1 ( )]
X, (k)
The means of X(k) is denoted as
_ X, (k E[ X, (k
X, (k)| [E[X, (k)]
The covariance of X(K) is denoted as
X, (k)= X, (k) || X,(k)- X, (k) X, (k)= X, (k)

Q(k)

I

E((X1 (k)—)_(l(k))z)

X, (k)= X, (k) || X, (k) - X, (k)

E((X, (k) X, (0)))( X, (k) - X, (k))

91 }

9

9,
92

|
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1.5. Dependency of Random Vector Variables

The noise in signals can be unrelated to or independent of each other, if they are generated from different
sources. Examples of independent noise can be found in different sensors; for example, potentiometer
tachogenerator, accelerometers, angular rate sensors, radar, sonar, etc.

If the two random variables in X(k)z{j((1 El;ﬂ are independent, then their covariance is a diagonal
matrix; i.e.,
B w-x) ] E((4,(0) - X,(0)) ) (X, (0) - X, ()
Q(k) = 2
E((X, (0 - X, (0))(X, () - X, () E((x: (0~ %,(0)'|
_ _qll 0
- L0 gy

This property extends to a n-th dimensional X(k).

1.6. Summary of Stochastic Signals

Random signals are statistical in nature and can be associated with expectation, such as mean,
covariance, standard deviation, probability density distribution, etc.

What time shall we break for lunch? Around noon, give or take five minutes.
There you go... Human behavior is often stochastic in nature,

VIS 1 Random Variables 8 of 8 Jan 12-16, 2004



VI Workshop U.S. Army TACOM, Warren, MI Ka C Cheok

2. MODELS OF DYNAMIC SYSTEMS

A story about Newton

Differential-integral calculus is a tool developed to describe physics of dynamic systems.
An apple fell on top of Isaac Newton’s and he said “Man, that was painful.” | touched his
head and felt a bump. “I wonder how many Newton of force acted on to produce the
bump on my head.” So he decided to calculate the forces involved. That's how we end
up with Newtonian law of physics for describing motions of dynamic systems.

Fact about an apple

A force of one Newton is what you feel when you hold up a small Mackintosh apple in
your palm. Calculations: 10 Mackintosh apples weight approximately 1Kg, which is 1Kg
* 9.81m/s® = 9.81N. Therefore, 1 apple exerts approx 1N under gravity in static
condition.

Mackintosh = 0.1 Kg ~= 1N

Quote of the day:

Lord Kelvin (the Kelvinator guy) once said:
If you can describe a technical or scientific concept with math and numbers, then

you can understand the idea in a rigorous manner If not, you cannot precisely
explain the notion.

Since we owe much of founding ideas on refrigeration, air conditioning and heating to Lord
Kelvin, | think we can trust him.

15! question of the day:

Can animal count? If so, up to how many?

2"¢ question of the day:

I think having 10 fingers is a nature’s freak. What do you think?
I think we should have 8 fingers, because then the octal system is more natural.
2,4,8,16,32, 1/2,1/4,1/8,1/16 Binary, Octal, Hex, ...

Joke of the day:

There are three kinds of people in the world. Those who can count, and those who can’t.
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2.1. Alpha- Beta Model

2.1.1. Brownian Motion
A 2"-order Brownian motion is simply a motion that accelerates with sparing spurious impulses. That is
y=w, w~(0,9)
w is a sparse random noise with zero mean and covariance q .

In 2-D it produces movement that may look like this

This type of characteristics is used to loosely or approximately describe motions of systems that move
slowly and whose dynamics are not known or too complicated to model. For example

z
Slow moving system | #
with  unknown or > >

complex dynamics

5 :

@ | —

\ 4
=)

The motion can be expressed in state-space representation as
X, 0 1{ x 0
= + w
X, 0 0f x, 1

ool

2.1.2. Continuous-time o - 4 model.
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In literature on estimation and tracking of targets, this model is referred to as an « — 8 type dynamics. To

represent a more stochastic (random) motion, the model is often subjected to influence of output
measurement noise and process noise as follows:

HERINEEH N

y=[1 0][;j+v

2.1.3. Discrete-time model.

A discrete-time description of the & — f model is given by

MIRE R,

Such model has proven to be very useful for approximating behavior of slow moving system with
unknown or complex dynamics. Examples are found in the solutions to many radar applications,
prediction and tracking problems.
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2.1.4. Simulink demonstration of a a—§ dynamic model

mnlphaBetaMndel ;IEI il
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Ka C Cheok
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Simulink demonstration of a 2-D Brownian motion with two independent a— model.
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2.2. Physics-Based Model

Physics-based models are equations derived from applying fundamental principles of science or
physical laws to describe the systems at hand. An example below illustrates this.

2.2.1. Math Model for Permanent Magnet DC Motor

2.2.2. Physical components

DC permanent
magnet motor
with geared
load output

DC Motor

‘) T ot externally applied at the load shaft

Load

Figure 1. Physical setup of a permanent magnet dc motor driven by a voltage input

2.2.3. Variables & Parameters

Variables Parameters

v, armature voltage [V] K,  back emf coefficient [V.s/ rad]

i armature current [A] K, torque coefficient [N.m/ A]

z, torque produced by armature [N. m] R,  resistance of armature circuit [Q]

Ty,  torque applied at gear input [N.m] L, inductance of armature circuit [H]

T tOrque produced at gear output [N. m] N ¢ gearratio [rad/rad]

Tt external torque acting at gear shaft [N. m] J, moment of inertia of armature [kg m? ]

0, speed of armature shaft [rad / s] J,  moment of inertia of gear / load [kg m?]

Z g speed of gear shaf [rad./s] D, coefficient of viscous friction at armature [N m s/ rad]
Dg coefficient of viscous friction at gear [N m s / rad]
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2.2.4. Fundamental principles or physical laws
Armature circuit: (Kirchoff voltage law)

di,
“dt

L

=—Ri —-v,+v,

Back emf (Electromechanical property)
v, =K, 9(1

Armature torque: (Electromechanical property)

7, =K,

Armature motion: (Newton's law)

J,6,=-D,6, +1, -1 T

sticka — * gin

Gear ratio

0,=N,0,

Gear torque: Conservation of power (work done)

Tgout
Tgin 9(1 = Tgout Hg + Tstickgg \/

Gear shaft motion

Jgﬁg = —DgHg +7

gout z-slickl -

T

g
ext -/ T sticki

(éé// T oxt

Equivalent lumped equation of motion

T

ext

(/o +J.N; )0, ==(D, + DN} )0, + N K, = Ty = N Ty = T

stickl g " sticka stickg ~
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2.2.5. Lumped Parameter Dynamics State Equations

We can show that the above physical relationships can be lumped (combined) into an equivalent
dynamics state equations given by:

di .
La d: = _Ra iu - Kbeq 91.; + Va
J(’q eg = _Deqeg + Kteqla - Tstickeq “Tou
where
— 2 _ 2
Joy=J,+J,N D, =D, +D,N’
Kbeq = KbN g Kteq =N, qut Tstickeq =N, g Tsticka + Tstickg + Txtickl

2.2.6. Block diagram representation of the dynamics.

Csti ckeq

K

beq

¢

Equivalent dynamic state diagram

2.2.7. State space equation

A state space model can be expressed as

. ey Kteq 0
o, Jy ey ||6, -1
dia i + i va + O (Tstickeq + Text)
dt e e RS
La a
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3. DISCRETE-TIME KALMAN FILTERS FOR LINEAR
SYSTEMS

3.1. 1% Order Systems

3.1.1. Problem Statement:

Consider a dynamic system whose behavior can be approximately modeled by a stochastic 1% order
difference equation
Dynamics equation X, = ax, +bu, +gw,

Measurement equation zZ, =cx, v,

where

x, =scalar state of the system o
. a = characteristic parameter of the system
u, = scalar control input to the system . .
L b = input gain parameter
w, = scalar random noise input . .
g = noise gain parameter
z, = scalar measured output of the system )
o ¢ = output gain parameter
v, = scalar random noise in the measurement

Wy V,
L l ---------- [}
1 X 1
u, : y ] k 1 Z

. System Dynamics Measurements I

1 ’ >
1

! [}

L X =ax, +bu, + gw, zZ, =cx, + v, X

! |

! 1

! 1

We assume that we know the statistics for the noise w; & v, and initial condition x, , which are as
follows:

Mean of w,: v_vsz(wk)=0 Cov of w;: q=COV(Wk)=E((Wk_V_"k)2) 20
Meanof v,;: v, =E(v,)=0 Cov of v, : r:cov(vk):E((vk —Vk)z) >0
Mean of x;: X, =E(x,) Cov of x,: pOZCOV(xo):E((xo_fo)z) >0

The random variables wy, vy, & x, are assumed to be independent.

The system is assumed to be observable and controllable; i.e., b0 & ¢ #0.

We would like to derive and formulate a discrete-time Kalman filter to estimate the state x; from
knowing from the noisy measurement y; and the control input u(k).

VIS 3 Kalman Filters.doc 1of16 Jan 12-16,
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3.1.2. Derivation of DTKF:

Let
X, [ @ current estimate of x, based on info available up till time k

Xy U a predicted estimate of x;,, based on info available up till time k

X1 Ll a current estimate of x; based on info available up till time k-1

Using the above measurement equation and dynamic equation, the formulation of a DTKF is as follows:

Measurement update: Xpp = Xpp T K, (zk - ka\m)

Dynamics update: Xy = axy, +bu,

where Kj is yet to be determined. To find K}, we consider the errors and their covariance between the
estimates ( X, X, .y, » X;;, ) and the true state (x; )

-2
: _ DE[%, ]
X X =X Pk klk
- )
X1k U X ~ Xhrk Prik O E[ k+1\k]
Oy _
R Py U E| Xy

We would like to find a K such that these errors will approach zero. We observe that the predicted error
behave according to

X U X = X
=(ax, +bu, + gwk)—(axk‘k +bu,()
=(ax, +bu, + ng)_(a(xk\k—l +K, (Zk _cxk\k—l))+buk)
=(ax, +bu, + gw,()—(ar(x,d,ﬁl +K, ((cxk +Vk)_cxk\k—l))+buk)
=a(x, —x )+ gw —aK,c(x, —x,, ) - aK,v,
=a(l-K,c)X,_ +gw, —aKv,

If we square the predicted error, we’d get

~ 2 ~ ~ ~
(xk“‘k) = (a(l—ch)kaf1 )2 + a(l—ch)xk‘kflgwk _a(l_ch)xldk—laKka
+nga(1 _ch))zk\k—l + (ng )2 —gwak, v,
—aKkvka(l—ch)ik“H —aK, v, gw, +(aKkvk )2

VIS 3 Kalman Filters.doc 20f 16 Jan 12-16,
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Note that an expectation operation on this equation will yield covariance for the prediction estimation
error.  Also if the variables are independent, then the expectation operation yields a zero cross
covariance. The result would be

E((fckﬂlk ) ) _ E((a(l ~K,)E ) ) +E(a(1-K,e) %y o, ) ~E(a(1- K €)%, aK,v, )
+E(gwa(1-K,) %y )+ E((gw,)") - E(gwak,v,)

—E(aKkvka (1- ch)fcklk_l ) —E(aKv,.gw, )+ E((aKkvk )2 )
Removing cross-covariance of independent variables yields
~ 2 - 2
E((xmv( ) ) = (a(l - K,(c))2 E((xk‘H) ) + ng((wk )2 ) + (aK,( )2 E((vk )2)

In terms of defined covariance, this remaining terms leads to

Proag = (a(l - ch))2 P t gq+ (aKk )2 r

We see that there is an opportunity to choose K such that the error covariance py.;x is minimized. The
calculus calls for taking the derivative of py.;x with respect to K , and setting the derivative to zero.

dpkﬂ\k

IK, = 2(0(1 - K,L,c))(—ac)pklkf1 + 2(aKk )ar

= Zaa(—cpk‘k_1 + (CCPk|k-1 + r)Kk)
=0

This yields the so-called Kalman gain

Pk

K, = >
C P T

o . _ . ~ 2
It minimizes the covariance of the prediction estimate error p, ., =E[x,f+” . ] = E[(xk X +l\k) J .

Note that the quadratic (having square terms) nature of the problem ensures that the result is a minimum.
This can be verified by checking that the second derivative of py;r  Wwith respect to K is positive.
Indeed,
d 2pk 1
+1]k
TR = 2aa(ccpkvH + r) >0
k
We have just derived a Kalman filter formula for the 1* order discrete-time system. (Hurray!)
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3.1.3. Time-Varying Kalman Filter for a 1 Order System

An algorithm for programming the KF, based on the above derivation, is as follows:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

1°! order Kalman Filter Algorithm with Time Varying Kalman Gain

Set the initial conditions: Xoo =Xy & Py =Dy

CPo-1

Compute the initial Kalman gain Ky=—"—
C Py tr

Set the index k=0

Measure z; & compute the current estimate (measurement update) x,, = x;,, + K, (zk - ka\m)

Sample u; and compute the prediction estimate (dynamics update) x;,,, =ax,, +bu,
. . . 2
Compute the prediction estimate covariance  p,.,, =(a(1-K,c)) pys + &g +(ak, ) r

Pk

2
C P t7

Compute the next Kalman gain K, =

Set k to k +1, and repeat from Step 2.

System Dynamics Measurements

v

X, =ax, +bu, +gw, zZ, =cx, + v,

Computer Realization of Kalman Filter

A 4

1% order Kalman filter algorithm with time-  [%
varying gain

l Xk current estimate

X one-step prediction estimate
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3.1.4. Constant Gain Kalman Filter for a 1°' Order System

Ka C Cheok

In the case where the system parameters and statistics of random variables have constant parameters, the
Kalman filter gain is also a constant parameter. That is, K, becomes K which is solved from the steady

state discrete-time Riccati equation. There is no longer a need to compute the covariance p;,,,. This

leads to a very simple KF algorithm

1°! order Kalman Filter Algorithm with Constant Kalman Gain

Step 1. Calculate the constant Kalman gain K by solving for p & K from the nonlinear equations

p =(a(1—Kc))2 ergqur(aK)2 r

K:

Ep+r

Step 2. Measure z; & compute the current estimate (measurement update) x;, =x,,, + K (zk - ka\k—l)

Step 3. Sample u; and compute the prediction estimate (dynamics update) x,.,, = ax;, +bu,
Step 4. Set & to k£ +1, and repeat from Step 2.
w, v
SR S Soa
1 X 1
U ) k 12
' System Dynamics Measurements ! R
1 \ v
1
VX, =ax + bu, + gw, Z, =cx, +V, '
- |
! I
! I
Computer Realization of Kalman Filter
Xk = X T K(Zk — X1 )
Xpie = Xy + bu,
l Xy current estimate

ane-sten nrediction estimate

Bottom Line: To apply a KF, formulate the systems model with random variables in the
configuration shown, and specify the parameters a, b, ¢, ¢ & r. The constant KF algorithm is
very straightforward. The time-varying KF is slightly more sophisticated as it requires
additional computation of the error covariance.
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3.2. 2" Order Systems

Before we consider the n-th order case, we present the case of a 2™ order system to illustrate a matrix &
vector calculus for the DTKF.

3.2.1. Problem Statement:

Consider a 1-input 1-output 2™ discrete-time order system:
X, a,  ap, || Xk b w
Dynamics equation RARR [ e } Lk j{ ! }”k I
X2 k41 y Ay || Yok b, Wak

X,
. Lk
Measurement equation zZ=[a o ][ } +v,

where

The random variables are assumed to be independent of each other.
The system is assumed to be observable and controllable.

Formulate a discrete-time Kalman filter to estimate the state x; from knowing from the noisy
measurement z; and the control input u(k).

3.2.2. Derivation of DTKF:

Let
X X
Y10 a current estimate of | " | based on info available up till time k
X2 ke | Xok
x { ] . . x . . . .
PR predicted estimate of "1 based on info available up till time k
X2 k+ilk | Yok
x — ] . x . . . .
Y10 a current estimate of | | based on info available up till time k-1
X2 k-1 | X2k
VIS 3 Kalman Filters.doc 60f 16 Jan 12-16,
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Ka C Cheok

Using the above measurement equation and dynamic equation, the formulation of a DTKF is as follows:

X1 Kk
Measurement update:
X2 ik |
X
. 1,k+1|k
Dynamics update: '
X2 ke+1k |

1Lk

where is yet to be determined.

2,k

the true state as

XLklk 0 Xk X1 ki
Yok | | Kok X2 ki
X1 ks 1k 0 X k1 X ks 1k
Kokt | | X2kl X2 ke ilk
X1 k-1 0 Xk X k-1
Xok-t | | Kok X k-1

X1 k-1 K,

RN _Kz,k
A Gy || K

[ G1n Gy || Xokik |

Priwi
Po1

Prigs
| P21 ek

Prigi—

| P21kik-1

. [c c ] X1 k-1
I | 2
X2 klk-1

Dok
Pk |

Pk
P ik |

P12k

P2 ki1 |

We would like to find a K} such that these errors will approach zero.

error behave according to

Define the errors and their covariance between the estimates and

X X
Lkl || Xk
JE|| \ - \
RENTH RN
X X i
Lk+1k 1Lk+1k
JE|| \ - |
| X2tk || X2kerik |
X X i
L=t || Xkle-1
TE|| \ B \
| %21 || X2kt |

It can be shown that the predicted

X k+1jk 0 X ka1 X1 kv 1k
Xkt | 2,441 X k1
ay Ay || X b Wik A Ay || Xk b,
= + uk + - uk
LG Gy || X2k b, Wk Ay Ay || X2k b,
ay Ay || X Wik a, a4y X1 k-1 K, X1 k=1
= + - z—[e ¢
L% Gy || X2k Wk Ay Ay || | X2,k K, X2 klk-1
a,; ap Xk XLklk-1 Wik a,;  ay K, X1k X k-1
= - [c1 cz] +v, |- [cl ¢,
L9 Axn ||| X2k X k-1 W)k a, ay, ||| Ky 2k X klk-1
a, 4ap a;,, 4y 1k X1k X k-1 Wik ay  ay || Kix
= - [c1 cz] + - v,
K X X \ a a K
L% dx a4 Ay 1k 2,k 2,1 2k 12 dx Lk
a,  ap 10 K Xk X1 k-1 Wik a,  ay || K
= o 11 1x [¢ o] + - %
KT S Lk Xk X2 klk-1 Wok a4y Lk
VIS 3 Kalman Filters.doc 7 of 16 Jan 12-16,
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X vtk 0 Kiksr || Xiksik
X k+1lk Xy ke X kelk
lay an |||l 0 K X k-1 Wik ay  ay || Ky
- o 1 |x, @ elle | - K, |
@y A4y 1k X2 k-1 Wak ap Ay Lk
Eliminating the cross covariance of independent variables, it can be shown that the covariance of

X
{f’kﬂlk } is given by

X ke+lk
E ~1,k+l\k ~1,/(+1|/f
Xokrtlk || X2 krk
a, 4y 1 0 K, Xrae-1 || Xrae-1 || A Gin 10 K,
UE % [cl cz] % [c1 cz]
a, ay |0 1 1k Xyt || Yo | [ @ Gy || 101 Lk
+E Wik || Wik +E |:a11 a21:| K v, {an a21:| K, v,
Wak || Wak | ay  ay || K a, Ay || Kk
That is the prediction estimation error covariance is given by
P Pk
Poriaye P2k
|4y ap 10 Kl,k Prisi-1 Pk a4y 10 Kl,k
= “l [ o] Tk [ ]
ay Ay 0 1 Lk Porr—1 Pk a, dapy 0 1 Lk
+{Q11}{Q]2i|+{an a21}|:K1,k:|[r] |:a11 a21i||:K1,k:|
O |1 On a4, dap Kl,k a, ay || Ky

K,
Again we see that there is an opportunity to choose { I’A}, such that some measure of the error
Lk

P Prog Pripae Pk

covariance { } is minimized. We can use the trace of { } as a measure.

Porjpe Pokrk Porjpe Pk

Prigse Pk

K
The calculus for taking the derivative of trace{ } with respect to a vector {Kl’k} requires
1,k

Porjye Pk
background in gradient matrices and vectors. It can be shown that

VIS 3 Kalman Filters.doc 8of 16 Jan 12-16,
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P Progpk
d| trace A Al
Dotk Pk

d K,
K’
a, ap, _pll,kV{—l plz,k|k—1_ 1 0 Kl,k Kl,k _a1 a, '
:{ ! } ¢ o | [e, o]||+2[r] X : :
ay Ay | Povkr P [\ |01 Lk Lk la,  ay,
a, a, _pll,k\k—l plz,k\k—l_ ¢ Kl,k Pk p12,k|k—1_ ap, 021‘
=2{ } [c1 cz] +[r] % —[cl cz]
a, a | P2ikik-1 - P [ Ca Lk Pogp—r Pogi-1 | J[G2 G
To find an extremum, we set the derivative to a null vector of appropriate dimension:
_pll,k\k—l Puiika || G K, Piigg—1 Pk
o < MG R o
| Porie-t Pojr-1 |G Lk Poijp-1 Pk
or
_ , -1
K, _ Pkt P || G Prikiar Pragi-
Kk |- [ ] +[r]| [a <l
RV Porji-1 Poi-1 || G2 Porjk-1 Paokji-

We again have arrived at the Kalman gain, this time for a second order system:

-1
Ky _| Pkt Prai- |:C]:| [c c ] Piiii-1 Progp- |:cl:|+[r]
K, Pori-1 Poi-1 || 62 b Poiyet Pogpi-1 |G

1,k
_2[

&)

22

VIS 3 Kalman Filters.doc 9of 16 Jan 12-16,
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3.2.3. Time-Varying Kalman filter for a 2" order system

2nd order Kalman Filter Algorithm with Time Varying Kalman Gain

B X, N _
Step 1. Set the initial conditions: +0 1}:{_1,0} & {pu,o 1 P 1}:{19”"0 plz"o]

| X2.01-1 X520 DPrio-1 Pao-1 Pro  Pno
Prio-1 P
K [Cl C, » »
Compute the initial Kalman gain Kl’o} = 2ot T
| K20

Pro-1 P |:CI:|
[¢, o] +r
Poio1 Pao-1 |G
Step 2. Measure z; & compute the current estimate (measurement update)
X klk X1 kjk-1 K, X kjk-1
= + P z, —[c1 cz]
X klk X2 klk-1 2.k X k-1
Step 3. Sample u; and compute the prediction estimate (dynamics update)
X1 ks 1k :{au a21:| X1 kik +[bl}/tk
X k+lk Ay Gy || Xoki b,
Step 4. Compute the prediction estimate covariance
DPiikar  Projgsip
Porjiye Pk
|9 9 L0 K, Piiii-t Py a, a, Lo K,
= |k [¢, o] Tk [ o]
a) Ay 0 1 Lk Poiit P ay 4y 0 1 Lk
O, || On a, ay || K, a,  ay || K
Step 5. Compute the next Kalman gain CHANGE k to k+1
-1
Kl,k | Prge—r Pk || G P Pk || €
Kk | [a <] +[r]
Lk Porjp-1 Pogr-1 || G2 P11 Pogr-1 || 62

Step 6. Set k to k +1, and repeat from Step 2.

Set the index k=0

VIS 3 Kalman Filters.doc 10 of 16 Jan 12-16,
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1

1

1

1

1

1

—> X || G
! =

i X2 k1 a5
1

1

1

a Xk b Wik
12} ) +{ | o+
Ay || X2k b, Wy k

Ka C Cheok

Measurements

X
4 = [Cl Cz]{xl’k } +V
2k

\4

Computer Realization of Kalman Filter

2" order Kalman filter algorithm with time-varying gain

X1 ki .
’ current estimate
X klk

X ke e )
one-step prediction estimate
X ke lk

3.2.4. Constant Gain Kalman Filter fora 2™ O

In the case of time-invariant systems, the 2" order constant gain Kalman filter simplifies to

a X1k b Wik
12 kO T
Ay || Xok b, Wak

v
1
“N>< =
b End
£ &
[EE—

Il
[ —
Q
2=

v

Computer Realization of
Constant gain Kalman Filter

X1 ke X1 k-1 K,
= o |7 [¢, o]
X2 kik X2 k-1 2
X ks1lk @y Ay || Xk b
= + 1y,
X klk Ay Ay || Xakik b,

X klk-1

X k-1

J

A

—>

X1 kik )
current estimate
X2 klk

X ek

VIS 3 Kalman Filters.doc
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3.3. n™ Order Systems

3.3.1. Problem Statement:

A system that can be modeled as a linear n-th order discrete-time system with r-inputs and m-outputs can
be expressed similarly in the preceding sections as

Dynamics equation X,,, = Ax, +Bu, +w,
Measurement equation z, =Cx, +v,
where
w,~ (W,,Q) w, =0 Q>0
v, ~(V,, R) v, =0 R>0
X, ~ (X, Py) X, =E(x,) P,>0

The dimensions of the variables and parameters are:

nxl nxn nxn
x, €l A el Qel
mx1
u el rx1 Z, & O B ell™ R e ]™™
k vV, € D mx1
nxl k mxn nxn
w, €l Cell P, el

The random variables are assumed to be independent of each other.

The system is assumed to be observable and controllable.

Formulate a discrete-time Kalman filter to estimate the state x;, from knowing from the noisy
measurement z; and the control input uy.

3.3.2. Formulation of DTKF:

Let
X, [ a current estimate of x; based on info available up till time k

X, [ a predicted estimate of x, based on info available up till time k

X, [ a current estimate of x, based on info available up till time k-1

Using the above measurement equation and dynamic equation, the formulation of a DTKF is as follows:

VIS 3 Kalman Filters.doc 12 of 16 Jan 12-16,
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Measurement update: X =X T K, (z » —Cxy k—l)

Dynamics update: Xpp = AXyy + By

where K, is yet to be determined. Define the errors and their covariance between the estimates and the
true state as

P DE (ik\k)(ik\k )}

Xop =X — X -

Xeae = X — X P UE (an\k)(xmuk) J

Xpr-1 = X — X

P UE

1
—
(el
=
B
iR
~—
—_—~
(ol
=
T
~——
| I

We would like to find a K; such that these errors will approach zero. It can be shown that the predicted
error behave according to

ikﬂ\k = A[I - KC]] ik|k—1 +w, —AK,v,

Eliminating the cross covariance of independent variables, it can be shown that the prediction estimation
error covariance is given by
P, =Al-K,C]P, [I-K,C]'A+ Q- AK,RK A"

We can choose K}, such that the trace of the error covariance P, is minimized. It can be shown that

d(trace[PkH‘k
d[K,]

J) = A[_chk\k—l [I - KkC]'+ ZRK}{ J A'= ZA[[CPH/HC'"' R]K}c - CPka-l :I A’

To find an extremum, we set the derivation to a null vector of appropriate dimension, which then yields
the Kalman gain

-1
K, =P, C[CP, C+R]

VIS 3 Kalman Filters.doc 13 of 16 Jan 12-16,
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3.3.3. Time-Varying Kalman filter for a n™ order system

n' order Kalman Filter Algorithm with Time Varying Kalman Gain

Step 1. Set the initial conditions: X=X, & Py =P

Compute the initial Kalman gain K| = PO‘_IC'[CPO‘_IC# R]fl
Set the index k=0

Step 2. Measure z; & compute the current estimate (measurement update)
Xpk =X T K, (Zk - ka\k—l)

Step 3. Sample u; and compute the prediction estimate (dynamics update)

Xk = Axk\k +Bu,
Step 4. Compute the prediction estimate covariance
P =All-K,CIP, [I-K,C]'A'+Q - AK,RK,A'
Step 5. Compute the next Kalman gain
' ' -1
K, =P, C[CP, C+R]

Step 6. Set k to k£ +1, and repeat from Step 2.

1

1 .

! System Dynamics
1

1

X,, =Ax, +Bu, +w,

Computer Realization of Kalman Filter
' n" order Kalman filter algorithm with
time-varying gain —>
X current estimate
X,.x one-step prediction estimate
VIS 3 Kalman Filters.doc 14 of 16 Jan 12-16,
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3.3.4. Constant Gain Kalman filter for a n" order system

In the case of time-invariant systems, the constant gain Kalman filter simplifies to

1
1
| System Dynamics
: y y Measurements
1
1

X,, = Ax, +Bu, +w,

Computer Realization of Kalman Filter

X = Xppear K(Zk - ka\k—l)
—
Xk = Axk|k +Bu,

X, current estimate

where K is solved from . .
X One-step prediction estimate

P = All-KCJP[I-KC]'A'+ Q- AKRK'A'
K=PC'[CPC'+R]"
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Summary of Discrete-Time Kalman Filter

Ka C Cheok

System Model:

Dynamics equation X,, = Ax, +Bu, +w,

Measurement equation z, =Cx, +v,

Kalman Filter Equations:

Measurement update: X = Xppy + K, (Zk — ka\k—l)
Dynamics update: X = AXy, +Buy
Kalman gain: K, =P,C'[CP,C'+ R]’l

Prediction error covariance: P =All-K,C]P, [I-K,CI'A+Q- AK,RK,A'

Note: Vectors and matrices are a compact means to represent n" order systems and signals.

Bottom Line: To apply a KF,
1. Formulate the systems model with random variables as shown
2. Specify the parameters A, B, C, Q, R, x,, P,.
3. Implement the KF algorithm

The constant KF algorithm is very straightforward
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4. EXAMPLE APPLICATIONS OF KALMAN FILTER

When sophisticated system theories are correctly and successfully
applied to control complex systems behavior, the resulting
performance can be very impressive.

4.1. Application of Kalman filter as an Alpha-Beta Tracker

4.1.1. Objective

Apply Kalman filtering to track and filter an incoming noisy signal. The resultant KF-based Alpha-Beta
tracker is compared to conventional low-pass filter using Simulink.

4.1.2. Formulation of Alpha-Beta Tracker

A discrete-time o — £ model is given by

MR HE R
v =[1 0][2 l v,

Using the constant gain KF formulation in Section 3, the equations for an o — f tracker is given by

X, X K X o \
Lk || Xkt —i{ 1} ¥, _[1 0] 1,klk—1
X2 klk X2 k-1 K, Xokik-1 )
X k+1jk :[1 T} XLklk
X e+1lk 0 1| X

} can be solved from the steady state solution of the Kalman gain and presiction error

Kl
where

KZ
covariance. In Matlab, we can solve the Kalman gain using a function called dlge.m. >>help dlqe
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4.1.3. Application of Kalman Filter & comparison to signal filter

=] alphaBetaTrackerSimulation 10l =|
File Edit Wiew Simulation Format Tools Help

DEE&E| $2@d |9 REL ®|» = |vom |

RandomDead Zone1 Slider
Gain

RandomDead ZoneZ Slider
Number2 Zain2

Random Dead Zone  Slider
Numbert Gaint

Integratar Integratort

Zero-Order

Repeating Hold
Sequence? |:|
39.48 r T
2+5 G86+30 48
2nd order lowp ass
w cut-off freq = 1Hz v &
filtery's
dufdt - |:|
Drerivative >
Derivative > it &
filter dfdt
vk Posfoho) xik b
Pe{ub i) w2kl ——
Kalman
Alpha-Beta
TRadker
Ready [1o02 |odes v
J ¥ & filter ¥'s
o 2p & =
Measured Original signal
noisy rate
signal
Rate from
Original differentiating
clean noisy signal
signal
Rate from
Lowpass differenting
filtered lowpass
signal filtered signal
Rate
r
Alpha- produced
from Alpha-
beta beta tracker
tracker (2" state)
signal
(1st state)
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Implementation of Kalman filter

=] alphaBetaTrackersimulation/Kalman Alpha-Beta -8l x|
. . Eile Edit Yiew Simulation Formak Tools Help
Right click &
W[yl Posfadxlbbl, select D|@H§|$E|DQ|HE®|> IINormaI 'I
Beluk i) amk —+— Look under A
mask > :I _
alman " o ek
lphaBata | |
TRadur
uk
214 AlphaBefaTrackerAlgaorithm
Constant 1_ 4 Plt 11k el
a2z oz vl'
Right click & Constantt nit pela A1
Sel,eCt Double click R = - o
Edit mask et L |
Ready [1o02 [ [ |odes v
|
Block Parameters: Kalman Alpha-Beta TR K function [Out] = AlphaBetaTrackerAlgorithm (In);
K.alman Filker [mazk]
|7 global AB C D Q %R
Par
Time Step T Yk = In(1);
oot Uk = In(2);
Process Noige 1 Cov 011 q;; =I|r1£13));
qzz =In(4);
{0007 R = In(5):
Process Noise 2 Cow (122 Xkkm1 = [In(6); In(7)];
{01 p11 =In(8);
Measurement Moise Cov B p12=1n(9);
p22 =In(10);
05
Q=[q11 0; 0 q22];
0k I Cancel Help | Apply |
Pkkm1 = [p11 p12; p12 p22];
Kk = Pkkm1*C'/(C*Pkkm1*C'+R);
Ykkm1 = C*Xkkm1;
<} Mask Editor: AlphaBetaTrackerSimulati P ] 3 Xkk = Xkkm1 + Kk*(Yk_C*kam.] )’
Icon | Initialization | Documentation
Xkp1k = A*Xkk + B*Uk ;
Mask type: I Kalman Filter Pkk = (eye(2) - Kk*C )*Pkkm1;
) Pkp1k = A"Pkk*A + Q;
Prompt Type ‘Y ariable
e | T Out = [Xkk ; Xkp1k; Pkp1k(1,1); Pkp1k(1,2); Pkp1k(2,2)];
Delete | Process Noise 2 Cow Q22 edit nzz
Measurement Noise Cowv R edit R o/ AUTOMATIC |N|T|AL|ZAT|ON
u end o arameter lis °
D—p= weend of fer et _|;| % Kalman Filter Matrices for Alpha Beta Tracker
1] K | | »
Prompt: ITime Step T Control type: IEdit - global ABCDQRT
Wariable: I T Azsignment; IEvaIuate - ///TZOO'I ;
Fopup stings: | - A= [1 T;O 1];
Initialization commands: B= [0 0]';
AlphabetaT rackerParameters C= [1 0],
D=0;
Q = [0.01 0;0 0.0001];
R=10;
Ok | Cancel | Unmagk | Help | Apply |

You may tune the gains for the Kalman filter by adjusting covariance Q & R, to improve its
performance, even though they are supposed to represent covariance of the variables.
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4.2. Application of KF to a Stabilization Platform

4.2.1. Objective

The configuration of a self-leveling stabilized platform system is shown in Figure 1 below. The control
objective is to automatically level the top platform (parallel to the horizontal) and keep it horizontal in the
presence of base motion.

B5232 connection
to download
Lzsemb Iy code

R5232 connection
to cornrauricate

with Ivlatlab
i

Hitachi SH2 microcontroller

4,| Kalman Estimatar |

| PID controller |

L

| Py generator (timer) |

5

Ivlotor Ditver
(PWI)

Ivlotor Dirver
(PWI)

-

Top Platform to be

self-leveled and \

stabilized

Base Platform motion
causes disturbance to

Top Platform
DC Motor

DC Motor

Figure 1. Hardware/Software Development Configuration for Self-Leveling
Stabilized Platform System Experiment with Embedded SH2 Microcontroller
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4.2.2. Mechatronics Components

Actuation. Referring to Figure 1, the Top

Platform (TP) is connected to three posts; System

one post is attached to the top platform via

a universal joint and fixed in length, and the Sensors

other two posts via ball joints and can be + v
actuated (raised or lowered) by two dc

motors (Al & A2). Hence, the TP can pitch Top Platform Sensor Fusion

and roll. f *

Sensing. Two tilt sensors (MEMS
accelerometers) are employed to yield
information about the roll and pitch angles f
of the platform. In addition, two rate gyros

Actuator | Control

Computer Realization

Bottom Platform

(MEMS rate transducers) are used to
measure roll and pitch angular rates. The A
accelerators and rate gyros complements
each other very well to remove noise and
bias that are inherent to the sensors. (See
section on Sensor Fusion below)

External disturbances

Figure 2. Overview of self-leveling and
Input Interface: The accelerators provide stabilizing platform control scheme
TTL PWM (pulse width modulation)

signals which are fed directly to the TPU
(time processing units) of the SH2
Microcontroller, while the rate gyros
generates analog voltage for the A/D
channels.

Output Interface. The Microcontroller
outputs PWM control signals to H-bridge
drivers (LM18200), which, in turn, actuate
the dc motors.

Software. Estimation and control scheme
for the platform is shown in Figure 2. The
tilt and rate sensors are fused using Kalman
filtering technique to remove unwanted
noise and bias, and estimate the pitch and
roll angles, and its rates. The estimates then
feed the PID controllers that drive
actuators.
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4.2.3. Modeling

Figure 3 shows the coordinate system and force/torque vectors for the platform. For precise reference to

frames, objects, points and operation, we have adopted the following nomenclature for matrices and
vectors:

Frame of Reference Operation on the Vector Frame of Reference . 1Operation
From Point or Of Object [VeCtor]To Point Of Object [Matrlx]l‘o Frame
Or
Oy
v /\ X,
0 YZ,
Actuator 4, Actuator 4,

Figure 3. Coordinate system and force/torque vectors for platform

Kinematics and dynamics of Top Platform: Let O X Y,Z, an inertial frame and O, X,Y,Z, represents the

coordinate frame attached to the center of gravity of the top platform. The displacement kinematics can be written
as [1]

Ix cycld —sychp+cysOsp sysP+cysdcd Tx
r,="r, +'R;.'r,; ', = |y| 'Ro=|spcld cych+sysOsp —cysp+sysOcpl; v, = |y (1.1
z], —s6 cOs¢ clcg z

P

where x, y & z are translation displacements and , 6 & ¢ are yaw, pitch & roll (Euler) angles of the top platform.
The angular velocity kinematics is given by

%@ | 1 0 —sing || 4
“w=|%w, |=|0 cos¢ singcosd || 6 |% N, ‘@ (1.2)
%@ | |0 —sing cosgcos@ ||y

where ‘@ = [gé 0 1//} are the Euler angle rates and “ @ = [a)x o, a)] are the angular rates projected onto

the X,Y,Z, axis. It can be shown that the translation dynamics of the platform is described by
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0

a("r, ) a("v, ) w000 /:
dt(" ="V, T‘)":M;1 ,; M,=0 m 0 °f,=|f (1.3)
0 0 m £ o

where Ofol is the net forces acting on the center of gravity of the top platform and M, is a diagonal matrix of the

mass m, of the platform. Similarly, the rotation dynamics for the platform can be shown to be

d(*Q
(d T)=EZUT; EZUT:ENOT OTZUT
Of (1.4)
d ZUT)—(I ) (-SL %@, +%t,); Yt =R, t
dt - T T wT T)> T 0 T
cy co sy cb —s6 I, 0
IR, =|-swchp+cysOsp cych+sysOsg  cOsp I,=10 1,
sysp+cysOcp —cysp+sysOchd cOco 0 0 I,
1 singtand cosgtané 0 -0 o
"Ny =0  cosg —sing S=| @ 0 -
0 singsecd cosgsectd -0, o, 0

where ’t, is the net torque acting on the center and I, is a diagonal matrix with principal moments of inertia

I, 1,&I..

Dynamics of Bottom Platform: Similarly, let O,X,Y,Z, represents the coordinate frame attached to the bottom
platform. The dynamics of the bottom platform is given by

d(oroﬁ)_ov d(o OB):M—I of

dt %’ dt B0 (1.5)
d(*Q d(

(dt B):EE_B; A T (d:UB):(IB)1(_SIBonB+OBtB); u¢ = %R, "t,

where the matrices and vectors are define similarly as for the top platform.

Force and torque. The bottom platform is subjected to 'f, = )f, +if, & "t, = jt, + it , where )f, & pt,
are external and internal forces & and torque, and Zfo,, & t, are actuator (dc motor) forces & torques. Similarly,
the top platform is subjected to OfOT = DOfOT + gfo,. & "t = jt, + jt,, where DOfO, & jt,, and Zfol_ & (t, are
external and actuator forces and torques. Note that the forces and torques due to the actuators are equal and

opposite: gfor =- ijB & t, =—It,. The actuator forces and torques acting on the platform are given by

o, ="f, ;[0 0 (oz]fAl +a,f, )}

2 , (1.6)
=20 (r, =", )<t =[(A1,) (B.fy) 0]
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where point p; is the location where the post i joins the top platform, °rpi points to p; and °f ,, s the force vector

along the post i acting on p;, index i =1.2. «,, a,, f, & B, are geometrical dimensions of the platform, and
S, & f, areforces generated by motion of Actuators A and A,.

Actuator dynamics and joint forces. The two individual identical motor (A; & A;) actuations are accountable by
the following equations:
di .
L, U;t =—R,i,~K,N,0, +v,

grgi

(1.7)

Jqugi = _Deqegi + NgKt la = Tstickeq — fA‘.

where

Hgi = geared output shaft angle for motor i, i =1,2; i, =armature current; v,=voltage applied to armature
J .4 = equivalent momentof inertia D,, = equivalent viscous damping; N, =gear ratio
R, = armature resistance L, = armature inductance K, = back emf constant K, = torque constant

Tyickeg = €quivalent stick friction torque  f,, = external torque acting against the motor i

The joint interaction force f, between the top platform and the geared motor is given by

fA, :Ks

8&i

"r, =°r, |2 K, (sin@,)r, + L, [0 0 1]°r, )+ D,(6, cos(d,)r, [0 0 1]°F,)  (1.8)
for small values of 6. Org’ is the tip of the geared arm and L; is the nominal length for post 7, and; i = 1,2. K, and
Dy are the elastic and damping coefficients for the metal posts.

Constraint motion. Because of the fixed rigid post (labeled as post 3), the point p; at the top platform is constrained
to move with the bottom plate according to

0 _0 0 B
r, =1, + R,r, (1.9)

6 = pitch angle

Motot voltage V,, —pp > @ = pitch rate
Dynamics of Platform
Motion
Motot voltage V,, ——3pp» — ¢ = roll angle
¢ =roll rate

?

External disturbance motion
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4.2.4. Formulation of Kalman filter

Sensors. Two tilt angle sensors (MEMS accelerometers) and two angular rate sensors (MEMS gyros) were used,
see Figure 4. They provide measurements:

6, = pitch angle measurement ¢,, = roll angle measurement

6, = pitch rate measurement ¢,, = roll rate measurement

When the top platform is balanced (leveled and stabilized), the
pitch and roll angles can be treated as slow moving small ™= e o
amplitude signals. Hence, the signals’ movements can be Figure 4. Tilt angle sensor (accelerometer)

approximated using ¢ & af shaping dynamics. In the case of and angular rate sensor

pitch movement, the dynamics of the pitch, pitch rate and a bias
can be expressed as

0 010 0 Wy,
X, =Ax,+wW,; X,=[0 [;A=|0 0 0[; x,=[6 |;w,=|w, |=sparse low-amplitude shaping noise (1.10)
b 000 b,

2 Wo3

The pitch and pitch rate measurements can then be written as

0, 1 00 v .
Yy =C X, +vy; Yo = J ; C, = 01 1 ; V= y = measurement noise (1.11)
2

m

A state estimator or observer for filtering the noise is given by [2]
).29 =A%, +L(y, - C,x,) X, = [é 0 1;9} = estimate of sensor states (1.12)

where L is a estimator gain matrix. The 3x2 L matrix can be designed using pole-placement technique. In
the case of the platform, L. was determined using Kalman-Bucy filter equation as follows:

L=PC'R"'; 0=PA'+AP+Q-PC'R'CP

L 1, by Pn Pi g9, 0 0 r, 0 (1.13)
L=\, 1, P=\p, pPn py| Q=0 4 0 R= 0 r,
Ly L Pz Pxn P 0 0 g on

where Q & R are approximation of the covariance of w, & v,. Using a sampling interval 7 =0.01sec, the
digital implementation of the pitch estimator is given by

Xo sk = Xork1 +L[y9’k —Cﬁg,k‘H] (corrector); Xgpoip = Adxg’k‘k (predictor); A, = (1.14)

S
S~ N
- o o
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where k=0, 1,2, ... represents sample indices. The discrete-time estimator yields the current state estimate

Xoup = [Qk‘k O bus ] and one-step ahead prediction X, ,,,, = [H,HM (T } A estimator for roll, roll

rate and roll bias can be similarly synthesized to yield x,,, = |:¢k\k @M b J and X, ., = |:¢k+1\k @W b J .

Controllers. The self-leveling and stabilizing controllers incorporates PID actions based on the estimated states

[3]:

1y(2) ==K 1Oy = KOy + Ky [ Ot and 1,(2) ==K — Kby + K,y [ Bt (1.15)

External disturbance motion

v

% |0
ug Vag P ya,k - g'm
—»| Control, [—» —p) Tilt >
PWM, Dynamics of Platform Sensors
PO\_Ner Motion é & _| %
U, Prlv? Vs y Rate Yoi J
—p-| Circuits > ) Sensors >

Xy e = Xgpe—1 T L[yqﬁ,k =CX, 1 ]

Xy kel — Adxqﬁ,k\k

Do <

U, (z2)= _K¢P¢k\k - K¢D¢k\k + K¢1 I¢k|kdt

Xg ik = Xoppo1 T L[Ye,k - CXH,klk—]]

Xo ki = Adxa,k\k

gk\k <
o

Uy (2) = —KppOyy — KHDék\k +Ky, _[ Oy dt

Computer Realization of Kalman Filter,
Sensor Fusion and Stabilization Control
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4.2.5. Near-Zero Hand-Coding Development Environment for Embedded

Controller

The dSpace TargetLink
software uses Simulink blocks
to automatically code the
Kalman filter algorithm &
controller

The MakeApp software uses a
graphical user interface (GUI) to
generate automatically C-source
code modules for input & output
operations of a microcontroller.

The Hitachi WorkBench
software combine C-source
codes from TargetLink and
MakeApp, to form a main C-
program.

The microcontroller communicates with a Simulink on PC thru a serial link for monitoring
performance of the controlled system.

Matlab / Simulink & VRML
Software
Simulation & Visualization of Self-
Leveling Stabilized Platform

C-source

TargetLink Software
C-code for Kalman filter-
PID controller

Figure 5. Near-zero hand-coding development environment & process

microcontroller EVB.

VIS 4 - 2 KF for Stab Plat

codes C-source
codes

—_—

The auto generated C-source
codes from TargetLink and
MakeApp are highly optimized

),
C-source
codes

MakeApp Software
C-code for I/0 functions

90f 10

Fin ety o FY ) o L) L

Hitachi WorkBench Software
Main C-source code program

Hitachi WorkBench Software
Assembly and Machine codes

Machin
e codes

for embedded SH2
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4.2.6. Experimental results

The standalone SH2 EVB microcontroller and the self-leveling stabilized platform were put to test aboard a mobile
robot as shown in Figure 6. Figure 7 compares the output from the pitch sensor, which is a noisy accelerometer,
with the estimated output from the Kalman filter, as the mobile robot (hence bottom platform) pitches upward and
downward. The smoother estimated output was used to level the platform via the PID controller. The experiment
demonstrates the effectiveness of the embedded microcontroller. A video on the performance of the self-leveling
stabilized platform will be presented at the conference.

Figure 6. Experiments with the Figure 7. Experimental output from the pitch
self-leveling  stabilized platform sensor (noisy accelerometer) versus output from the
aboard a mobile robot Kalman filter, as the mobile robot pitches upward

4.2.7. Movie Clip and/or Actual Bench Demonstration

VIS 4 - 2 KF for Stab Plat 10 0of 10 Jan 12-16, 2004



VI Workshop U.S. Army TACOM, Warren, MI Ka C Cheok

4.3. APPLICATION OF KALMAN FILTER TO NAVIGATION SENSOR FUSION

4.3.1. Objective

Data from positioning systems (such as the GPS, laser systems, etc.) often needs to be complemented by
other dead reckoning and inertial sensors (such as wheel speed sensor, yaw rate, accelerometers, etc).
This section presents a Kalman filter approach to the formulation of a sensor fusion for combining the
data from GPS and wheel speed sensors for a mobile robot.

The same technique has been applied to an autonomous vehicle with a laser-based navigation system. An
application to precision self-guided lawn mower will be presented.

4.3.2. Kinematics relationship from velocity to position
A

Top view of a mobile robot
Vg and its coordinate system

v, = forward speed of vehicle

vg = steer rate of vehicle

= yaw heading of vehicle

x = x-coordinate of vehicle

y = y-coordinate of vehicle

>
X
Rate to Position Relationship _
(T x > 1
. ) nt [ » = > s>
y = yaw rate of vehicle Forward Vel Product Integrator ot
x =x-velocity of vehicle
y = y-velocity of vehicle P| cos —
Trigonometric » 1
) Function X > < tioztz
YV =Vvs p| sin Product1 Integrator1 :J(
X= Vi cosy Trigonometric
. . Function1
Y= v, siny T s
s [T '
In2 Out3
Steer Vel Integrator2 H
A state space model for kinematic relationship is
b 0 0 Of x cosyy O
. v . .
y|={0 0 Of y|+|siny O { F} continous-time model
A4
vl [0 0 Ofyw 0 1/-°
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4.3.3. GPS Data and Measurement Equation

Experimental data

- PC with
Mag_e!lan Serial link Matlab/Simulink Software
eridian & Serial dri
God AN .
GPS ==

s

il

=

Sample of data received by GPS sitting at a location on the round patio in front of the SEB. Recorded &
saved using Simulink.

$GPGGA,175006.45,4240.0897,N,08313.2954,W,1,07,2.3,00286,M,,
$GPGGA,175007.45,4240.0895,N,08313.2954,W,1,07,2.3,00287,M,,
$GPGGA,175008.46,4240.0894,N,08313.2955,W,1,07,2.4,00288,M,,
$GPGGA,175009.45,4240.0893,N,08313.2955,W,1,07,2.3,00288,M,,
$GPGGA,175010.45,4240.0893,N,08313.2956,W,1,07,2.3,00289,M,,
$GPGGA,175011.46,4240.0892,N,08313.2957,W,1,07,2.3,00290,M,,
$GPGGA,175012.45,4240.0892,N,08313.2957,W,1,07,2.5,00290,M,,
$GPGGA,175013.45,4240.0891,N,08313.2958,W,1,07,2.3,00291,M,,
$GPGGA,175014.46,4240.0891,N,08313.2958,W,1,07,2.3,00292,M,,
$GPGGA,175015.45,4240.0891,N,08313.2958,W,1,07,2.2,00292,M,,
$GPGGA,175016.46,4240.0891,N,08313.2958,W,1,07,2.2,00293,M,,
$GPGGA,175017.46,4240.0891,N,08313.2958,W,1,07,2.2,00293,M,,
$GPGGA,175018.45,4240.0891,N,08313.2958,W,1,07,2.8,00293,M,,
$GPGGA,175019.46,4240.0891,N,08313.2958,W,1,07,2.8,00293,M,,
$GPGGA,175020.46,4240.0891,N,08313.2957,W,1,07,2.8,00293,M,,
$GPGGA,175021.45,4240.0891,N,08313.2957,W,1,07,2.9,00293,M,,
$GPGGA,175022.46,4240.0890,N,08313.2957,W,1,07,2.8,00293,M,,
$GPGGA,175023.46,4240.0890,N,08313.2957,W,1,07,2.8,00293,M,,
$GPGGA,175024.45,4240.0890,N,08313.2956,W,1,07,2.4,00294,M,,
$GPGGA,175025.46,4240.0891,N,08313.2957,W,1,07,2.7,00294,M,,
$GPGGA,175026.46,4240.0891,N,08313.2957,W,1,07,2.8,00294,M,,
$GPGGA,175027.45,4240.0891,N,08313.2956,W,1,07,2.8,00294,M,,

A typical Matlab program to convert ASCII strings to useable numerical arrays of latitudes and
longitudes:

©\Documents and Settings®, cheok. ADMNET My Documents\GPS Data Wayne Jin 5 - |EI|5|
File Edit Wew Text Debug Breakpoinks ‘Web ‘Window Help

DEEES s BR[| 88| BBEBE| s = x|

- lload errordata -

= for entry=1:1:100;

- tlentryl = entry:

= latsi{entry)=111319. 5% (striZnun(datas (entry,18:19) | +strZnun (datas (entry,20: 26) ) /60) -4749000;
longs (entry)=111319. 5% (atr2numidatas (entry, 31: 32) | +atrZnun(datas (entry, 33:39) ) /601 -9264000;
- end

= gampledatasz=transpose([t:lats:longs]);
= gamplelats=transpose([t:lats]):
= gamplelongs=transpose ([t longs]);

| |i»

= L e e B R N T e
I

el

Ready
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A typical Simulink model to display plots of acquired GPS data.

Ka C Cheok

EGPSSan1pIeDataPlots it =101 x| &) C:\Documents and Settings', ] S
File Edit WYiew Simulation Format Tools Help o Gl Lo ﬂ|‘”d°w i ‘ |
DEE&| & BE o o #hH| x
D | =HEHE | & 2 | = Ql = L@ | b= |Nomal h 1| Jfunction [out]=plota(In): B
2|
= 3| lat = In(l)
-7
samplelats o [ _t7 4| Long = In(z)
|..| -1 8| time= In(3)
Fram Ll - i )
Wotespace Latitude/& Longtitude Prad 7| if time < 0.1;
/ - 8 figureil0):
N | / - 9| plotilat,long, '*r'):
- [WaTias | - 10 axis([790 800 180 130 1i:
zamplelongs "*I /:'* MATLAB - " et .
plelong Ll I/' Funetian 12| e10e
From 13
/ Plotéd N
Wit hspaces 110 / Terminater 14| hold on )
/ 15| plotilat,long, '#e') 2 )
Clack / 16| hold off | —
/ 17| end: II |L|
Ready [1ooes [ | [FixedstepDiscrete 4 al } IF
Reary |
L
T
1
T
<} Latitude & Longtitude ) Figure No. 10 : _|ol x|
File Edit View Insett Tools Window Help 1
lozmas/ xa s @ v
190
183 B
188 B
187 B
1G5 | o 1
1858 F B
+
184 B
100 183 | ]
182 B
181 F B
180 . . \ \ \ \ \ . .
Fe0 791 Y92 783 Y84 Y95 Y98 Y97 V8B V89 8O0

Z1k X Vi

The measurement equation for the GPS is
Vi TV

Zoy,

4.3.4. Wheel Speed measurement

v, =speed of right wheel (in m/s)

v, =speed of left wheel (in m/s)
Vp = % = forward speed of vehicle
Vg = 2~V = gteer rate of vehicle, W = width of the vehicle

. v
The measurement from the speed sensors is [ r }
A%

s
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4.3.5. FUSION OF GPS & WHEEL SPEED

Discretization of state model

X 0 0 Of x cosyy O

y(={0 0 O]l y|+|siny O {VF} continuous-tme model

| oo o)yl | o 1t

[x,., 1 0 0} x, Tcosy, O )

Vi =10 1 0|y, |+| Tsiny, O L”} discrete-time model, 7 = sampling interval
R4 0 0 1]y, 0 r]-*

Formulation of Kalman filter

To apply a Kalman filter to the discrete-time model, we formulate the above relationship as astochastic
process

X, =AXx, +B,u, +w,

X, y 1 00 Tcosy, O
X, =y |, 0 —L”}, A=/0 1 0|, B,=|Tsiny, 0
v, Sk 0 0 1 0 T

where the noise w; represents in accuracy in the model including wheel slips and speed measurement
noise.

The GPS data is the true position info corrupted with GPS type noise can be modeled as

z, =Cx, +v,

z, X, + vy, 1 00
Z/( = = C —
Zyy Vi TV 010
We need to specify the mean & covariance of the variables. That is
W, ~(0, Qk) \f ~(0, Rk) x0~(0, PO)
Knowing the values of these covariance is a key to how well the KF will perform. The values can be

found from experiments, derivation and other observations. Note that the covariance Q; & R, may
change with time. It is assumed that the stochastic (random) variables are independent.

Time-Varying Gain Kalman Filter
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A synthesis of time-varying gain Kalman filter for the above is given by

-1

K, =P, C [C P,.C +Rk:|

k =
Xex = X YK [2, —C x4 ] (corrector update)
P=P, —KCP,,

Xk = A X +Buy

. (predictor update)
Pi=AP, A +Q

Note that this is an alternative form of the same time-varying KF algorithm presented in Section 3.

Constant Gain Kalman Filter

In the case of time-invariant system, a constant gain version of the Kalman filter is given by

Xprk = Xpskan +K[Zk _CX/(//(—I]

Xpan = AgXp By
K= PC [CPC +R]
P=APA' - APC' [CPC' + RT CPA' +G,Q,G,
This is also an alternative form of the same constant gain KF algorithm presented in Section 3.

Sensor Fusion

. RETAERE AT . .
Notice how data from GPS 1z, = = are blended with the vehicle speeds

Zok Yie Vo
Ve +V,
Vi 2
u, = { } = by the Kalman filter.
Vs YR ~VL
w

4.3.6. Application to a Precision Self-guided Lawn Mower

The above formulation has been successfully applied to the navigation of an automatic lawn mower.
In this project, a laser positioning system (LPS) was used instead of a GPS. The LPS provide better
accuracy and faster update rate

4.3.7. Movie Clip
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