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Abstract

Autonomous space vehicles need adaptive control strategies that can accommodate
unanticipated environmental conditions. Although it is not difficult to construct alter-
native control strategies, a proper evaluation frequently can only be done by actually
trying them out in the real physical environment. It therefore becomes imperative that
any candidate control strategy be deemed safe—i.e., it won’t damage any systems—
prior to being tested online. How to do this has been a challenging problem.

We propose a solution to this problem. Our approach uses an evolutionary algo-
rithm to intrinsically evolve new control strategies. All candidate strategies will be
checked for safety using formal methods. More specifically, an evolutionary algorithm
will evolve a series of finite state machines, each of which encodes a unique control
strategy. Model checking will guarantee whether all safety properties are satisfied in

the strategy. A numerical example is included to illustrate our approach.
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1 Introduction

In October 1997 NASA launched the Cassini spacecraft to explore Saturn and its moons. Due
to arrive at Saturn in 2004, the spacecraft will eventually establish an orbit around the moon
Titan and then launch a probe, called Huygen, into the moon’s atmosphere. Atmospheric
data is relayed from Huygen to the Cassini spacecraft and then transmitted back to earth.
Engineers discovered last year that communications between the Huygen probe and the
Cassini spacecraft would fail due to unanticipated Doppler effects, which could lead to a
total loss of data on Titan’s atmosphere. Fortunately, this problem was discovered in time
and flight plan changes are being implemented to compensate for the Doppler effect [1].

But there is an even more important issue to consider: adaptive control strategies for
autonomous spacecraft. Control strategies are critical ingredients of a space mission because
they indicate what actions are to be taken by the spacecraft in response to environmental
conditions. The Doppler problem on the Cassini spacecraft would only cause loss of data.
Although such a loss is not to be taken lightly, it is inconsequential when compared to the
loss of the spacecraft itself, which is entirely possible if the system is trying to adapt to an
unanticipated environmental condition by switching to a new—and presently undefined—
control strategy.

Reconfiguration was able to correct the Cassini spacecraft problem, and it may well prove
to be the key to handling a whole host of such problems. More specifically, reconfigurable
circuitry which can adopt different functionality can help to compensate for unanticipated
environmental conditions. Reconfigurable circuitry or systems are also beneficial for fixing
failures because it eliminates the need for redundant hardware—which consumes precious
space and weight—Dby simply reconfiguring the existing hardware to compensate for the
failure. But, despite the enormous advantages of reconfiguration, there remains a very

important question:

Question 1 If new reconfiguration information must originate from Farth, will il arrive in



time to do any good?

Communications between Farth and Mars takes around 10 minutes, which means the
likelihood of receiving new configuration information for deep space missions—in a timely
manner—is not good. Consequently, we must answer Question 1 in the negative.

The solution to the problem raised by Question 1 may lie with adaptive systems—i.e.,
systems capable of reconfiguring themselves in response to faults or a changing operational
environment. Of particular interest is whether this adaption can be performed in-situ (in
place), which removes any reliance upon Earth-bound resources for new configuration in-
formation. Stoica et. al [2] points out that much of the previous work on adaptive systems
has been restricted to sensors and signal-conditioning circuitry because of the dire conse-
quences of evolving an unsafe control strategy. Nevertheless, the ability to adaptively control
spacecraft—without requiring human intervention—is still an area of enormous research in-
terest [3].

We believe our approach is the first step towards solving this problem. Specifically, we
have developed a method for adapting control strategies in ways that are guaranteed to be
disaster-free during the reconfiguration process. This paper documents the key elements of

our method.

2 Overview of our approach

Our basic approach is to evolve a series of deterministic finite state machines (FSMs), each
which encodes a potentially new control strategy. The efficacy of each strategy will be
assessed by actually trying it in the real physical environment. However, this will only be
done with control strategies certified as being safe. The problem is formulated in such a
way the formal verification techniques can guarantee whether or not the safety properties
are met in the control strategy.

A FSM is a digraph that completely describes a control strategy. Each state is a stable



system condition and transitions between states occur based on new input information. The
outputs associated with each state are command signals issued to the system being controlled.
A hallmark of FSMs is the processing of inputs depends on the current state of the system.
In other words, the same input applied at two different times may not illicit the same output
response because the system may have been in different states at those two time periods.

FSM design requires completing several tasks: (i) define the number of states, (¢1) define
the outputs in each state, and (i21) define the transitions conditions between states. In
many instances a design engineer could hand-code the FSM, but this can be tedious if the
control strategy is complex. The solution space of all FSMs that apply to the problem of
interest is often extremely large. This means a complete enumeration and evaluation of all
solutions is impractical. Even deterministic searches through the solution space may simply
take too long. Thus, in practice, only a stochastic search algorithm is likely to be successful
in identifying an acceptable FSM.

Researchers have found much of the FSM design effort can be alleviated by using evolu-
tionary algorithms (EAs). These are an extremely powerful class of stochastic search algo-
rithms that use the principles of Darwinian evolution found in Nature to conduct searches.
More specifically, a population of solutions undergoes stochastic modification to create new
candidate solutions. Each solution is assigned a fitness value that reflects the quality of
the solution. A survival of the fittest criteria—i.e., those solutions with the highest fitness
value—determines which solutions survive to reproduce in future generations. Done prop-
erly, the entire population evolves towards regions of the search space that contains optimal
solutions. With respect to the problem of interest, each solution in the population is a FSM
and its fitness measures the acceptability of its encoded control strategy—i.e., the better the
control strategy performs, the higher its fitness value. New control strategies are created
from existing strategies by any stochastic modification to a FSM. For instance, randomly
adding or deleting a state, changing a state’s output, or changing the position of an arc

would create a new control strategy.



There are two ways of determining if an evolved control strategy is acceptable: an extrin-
sic evolution where the strategy is simulated first and only the one best strategy is actually
implemented, or an intrinsic evolution where every candidate strategy is downloaded into
the system and exercised in the real physical environment. Evolutionary algorithms can
work with either type, but the extrinsic evolution may be problematic. EAs typically have
some closed-form objective function that assigns fitness values. Unfortunately, it may not
always be possible to define an appropriate objective function for a needed control strategy.
This means the only way of analyzing a control strategy may be to actually try it out in
the real physical environment. In other words, in many cases intrinsic evolution may be the
only thing that makes sense. It is therefore absolutely essential that the control strategy be
safe—i.e., it does no harm to the controller itself nor to any other system—while it is being

tested for suitability. This presents what heretofore has been an open challenge:

Question 2 Since an EA creates new FSMs randomly, is there some way to know if the

encoded control straleqy is safe before il is tested in the real physical environment?

We believe our approach answers Question 2 in the affirmative. We will use an EA that
searches for the optimal control strategy by creating candidate FSMs. However, only control
strategies that pass a safety check will be downloaded for evaluation. We will borrow auto-
matic formal verification methods to assess this safety. These methods use mathematically
provable techniques to characterize a system without conducting exhaustive simulation or
testing. Specifically, we will rely on model checking techniques [4] to verify the safety of
candidate FSMs generated by the EA. Although model checking has been extensively used
in hardware design and software verification, to the best of our knowledge no prior research
effort in formal methods has attempted the problem we consider here. Figure 1 shows the

control strategy development environment.



Y
evolutionary
algorithm
(FSM)
Y
model (CTL) safety
checker property

evaluate
FSM

discard

» ¢ Okay
FSM ?

y v

new control strategy
Figure 1: Conceptual diagram showing how to evolve safe control strategies. Fach candidate
control strategy evolved by the evolutionary algorithm is described by a finite state ma-
chine (FSM). All safety properties are stated as computational tree logic (CTL) expressions.
The Model Checker uses formal verification techniques to determine if the evolved control
strategy is safe. Safe control strategies are evaluated in the physical environment whereas

unsafe strategies are immediately discarded and a replacement strategy is evolved. Once an
acceptable new control strategy is found, it replaces the current control strategy.

3 Background

3.1 Finite State Machines

A (deterministic) finite state machine M is defined by a 6-tuple
M = (1,0,5,6,7,5°)

where



1 is the set of inputs

0 is the set of outputs

S is the set of states

0: 1 xS —S is the state transition function
v:I xS — O isthe output mapping function

S° is the initial state

For a FSM that encodes a control strategy, the states are fixed conditions of the system
under control, the inputs are measurements of the physical environment, the outputs are
commands to the system, and § defines the next system states based on the current input
and the current state. We will illustrate in Section 4 how a control strategy is completely
described by a FSM. We will also show how its safety can be verified.

As a side comment, our method requires a data structure that satisfies two criteria: (1) it
completely encodes all aspects of the control strategy, and (2) it is compatible with existing
model checkers. We have chosen a FSM as the data structure. It is true that FSMs can be
converted to logic circuits—but that does not mean we are solving a logic synthesis problem.
We are not designing a digital circuit. We are trying to evolve a control strategy. In principle

our method can use any data structure so long as it satisfies the above two criteria.

3.2 Evolutionary Algorithms

Evolutionary algorithms (EAs) are a class of search, learning, and optimization methods
based on analogies to Darwin’s theory of natural selection. The genetic algorithm(GA) [5, 6]
is the most widely known form of EA and they have been applied to a number of scientific
and technical problems. Fogel, et al. [7] independently developed an evolutionary algorithm
called evolutionary programming (EP) that evolves finite state machines to induce sequential
patterns and make predictions. Still another EA called an evolutionary strategy (ES) was

independently developed by Rechenberg [8]. All EAs share the same basic organization:



iterations of competitive selection and random variation. Unlike traditional methods, every
EA processes a population of potential solutions in parallel rather than just a single solution.
However, it has been shown that no one type of EA—or for that matter any other kind of
non-EA algorithm-—performs optimally over all problem classes [9].

The GA is arguably the most widely known EA, and it is almost exclusively used by the
evolvable hardware community (e.g, see [10]). However, we have decided not to use a GA but
to instead adopt a variant of the EP algorithm. The most compelling reason for not using
GAs is they are not well suited for evolving structures—which is precisely what we want our
EA to do! (See [11] for a discussion on generating structures with GAs.) Conversely, EP is
ideally suited for such applications. In fact, its very first application was designing FSMs
[7]. It is for these reasons we have decided to use an EA similar to an EP to evolve our
FSM structure. Our EA differs from the pure EP in two ways: tournament selection is not
used to rank the entire population, and adaptive mutation strengths are not used. Our EA

is described in Figure 2.

1. randomly create an initial population of p FSMs
2. evaluate all FSMs (see Section 4.2)

3. create u new FSMs by repeating the following two steps:

(7) conduct a binary tournament to select a parent FSM
from the current population

(77) randomly mutate the parent 'SM to create a new

offspring FSM

4. evaluate the combined population of p parent FSMs and
u offspring FSMs. rank them according to fitness.

5. save the p best ranked FSMs and discard the others.

6. exit if termination criteria is met. otherwise, go to step 3.

Figure 2: EA for creating FSMs. Note that the algorithm as shown does not make any safety
checks. See Section 4.3 for details on modifying the algorithm to add the necessary safety
checks.



The initial population was randomly generated and its safety can be assured by a variety
of offline methods—including exhaustive testing. But the offspring are randomly generated
on-the-fly and extensive testing to verify safety takes too long to be practical. We will
use symbolic model checking techniques to verify the control strategy safety. This is a well
established formal verification technique that quickly verifies if a proposed control strategy
satisfies the necessary safety properties. In the next section we will discuss the safety checking

in depth. Specific details for implementing the EA are differed until Section 4.

3.3 Model Checking

Our goal is to check that the control strategy satisfies critical behavioral properties to ensure
reliable and correct functioning. Model checking (MC) is an advanced formal method which
has potential to help us achieve that goal [12].

There are three methods of functional verification: simulation, emulation, and formal
verification [13]. Simulation and emulation are widely used, but they do have one inherent
problem: they are good at proving the presence of unsafe conditions, but they are not so
good at proving the absence of unsafe conditions.

Formal verification methods do not rely on running test inputs through a system to
determine its behavior. Rather, these methods use mathematical techniques to examine
the entire solution space for a specified design property [13]. There is no need to construct
test vectors or patterns. Moreover, the results are guaranteed—i.e., if formal verification
says a property is verified, then it exists under all conditions. What makes this possible
is formal verification methods employ mathematical logic and can theoretically account for
every possible situation.

MC is a formal method that verifies if a system, modelled as a FSM, adheres to a specified
property. The properties of interest are encoded as temporal logic expressions. Temporal
logic is just a formal way of expressing properties that change over time [14]. There are

many different kinds of temporal logic but computation tree logic (CTL) is the most widely



used with model checkers. The basic idea is that we start with ordinary Boolean logic, and
then add special temporal operators for describing future events. For example, in CTL, the
operator AX means “for all possible input observations, in the next state,...”, the operator
EX means “there exists an input such that in the next state,...”, the operator AG means
“for all possible input observations, it will always be true that,...”, the operator EF means
“there exists a sequence of input observations such that eventually...”, and so forth. The
temporal operators can nest, so for example, AGEF (reset) says that it is always possible
to find a path back to reset, and AG(req) = AF(ack) says that every request is always
eventually followed by an acknowledgment. It is also possible to express properties using
propositional connectives. For example, if f and g are CTL formulas, so are =f, f A g, and
fVg.

The FSM states are labeled with the safety properties that hold in that state. We can

now transform the FSM into a Kripke structure M(S, I, R, L) where

S is the set of states

1 is the set of initial states
RC S xS  isthe set of transitions
L:S — 24P s a labeling function

AP is the set of atomic propositions (i.e., safety properties)

A path m = sg,s1,82,... through the control strategy (where s is the initial state and
R(s;,8i4+1) holds for all 7), describes the sequence of actions to be taken by a system in
response to a sequence of observed inputs. The MC problem can then be described as

follows:

Given a Kripke Structure M(S, I, R, L) representing a control strategy, and a safety

property f to be verified, find the set of states that satisfy

{seS[Ms T}
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A graphical representation of the MC algorithm is shown in Figure 3. This algorithm can
be executed in O(|S| + |R]|) time.

/— initial states
@ error states

all states that lead
to error states

Figure 3: A graphical depiction of the model checking algorithm. [ is the set of all initial
states and Y{ is the set of states that violates a safety property. The algorithm recursively
computes Y11 = Pre(Y;)UU VY, for : = 0,1,2,...n — 1 where Pre(Y;) is the preimage of the
set Y;. Y, then represents the set of all states that can reach an error state. The system is
safe if Y, I = ). This check can be done in linear time.

We are concerned with sets of states rather than a single state. These sets can be

represented by their characteristic functions

1 ue A
fa(u) = (1)

0 u¢gA
A Boolean encoding of the states in a Kripke structure makes f4(-) a Boolean function and
any set operations now become Boolean operations. That is, set intersection becomes con-
junction and set union becomes disjunction. Binary decision diagrams (BDDs) are efficient
data structures for Boolean functions. Representing transition relations such as R(z,z’)
makes it possible for MC to verify properties in systems with over 10'%° states—far, far more

states then what is found in realizable control strategies.

Several important issues concerning our use of model checking to check safeness of control

strategies are worth highlighting:
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e Model checking has been widely used to verify hardware and software systems. How-
ever, the large number of states often forces one to use a reduced FSM model, created
via model reduction techniques, in which some details are abstracted out. This has
important consequences: model checking may verify the reduced model is safe with
respect to the operational environment, but this does not necessarily guarantee the

original system is safe.

However, in our approach the evolutionary algorithm renders FSMs which are complete
in the sense that every aspect of the control strategy is explicitly described in the FSM
structure. In other words, no details are abstracted out or reduced. Consequently, in
our application model checking will guarantee whether or not the candidate control

strategy fully satisfies the safety properties.

e Model checkers typically provide trace information to help pinpoint where the safety

property failed.

We will not use this feature. Indeed, we treat the entire safety issue as a decision
problem—i.e., either the strategy is safe or it is not. Unsafe control strategies are

immediately discarded, so there is no need to know why it is unsafe.

e Model checkers are used to verify functional specifications and other properties, e.g.,

liveness.

In our approach model checking only verifies safety, which is simpler than trying to
verify liveness. Any other performance criteria will be assessed by trying out the control
strategy in its operational environment. This has an important consequence: AG(-)

is the only form of CTL operator we will ever need.

e In practice, control strategies tend to have orders of magnitude less states than what
has been described above. Since model checking algorithm complexity is linear in the

size of the FSM and in the length of the CTL expression [12], the safety of a control

12



strategy can be quickly verified.

There are several very good model checkers available free from universities. Among
these are SMV from Carnegie-Mellon University [15] and VIS [16, 17] from the University of

California at Berkeley.

4 Implementation Details

This section provides detailed guidance on how to implement our method for evolving safe

control strategies. An example problem is included to illustrate our approach.

4.1 A Test Problem

The easiest way to understand how to implement our approach is to explain it within the
context of a problem. We will use a modified form of the Santa Fe Trail Problem. The
unmodified Santa Fe Trail Problem, which is fully described in [18], involves placing an
artificial Ant on a 32x32 grid. The Ant starts out facing east. At each time step the Ant
can turn left, turn right, walk one step forward, or do nothing. Food pellets have been
randomly scattered on the grid points and the objective is to have the Ant consume as much
food as possible within a given number of time steps. The grid is the operational environment
for the Ant and a control strategy tells the Ant how to circumnavigate the grid. Figure 4
shows how a control strategy is encoded in a FSM. Sanchez et. al [19] have recently shown
that EAs can evolve FSMs that encode high performance control strategies for this problem.

As previously stated, the objective of our research effort is to see if our approach can
quickly evolve safe control strategies. Consequently, we will need a modified version of
the Santa Fe Trail Problem that adds a safety component. We call this new version the
Hazardous Santa Fe Trail Problem because it introduces hazards—i.e., unsafe conditions—
that the control strategy must avoid. These hazards are “black holes”, which are randomly

placed at vacant grid locations. If the Ant steps into a black hole, it dies. The FSMs we
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Figure 4: An example of an evolved FSM that encodes a control strategy for the Santa Fe
Trail problem. The input to the FSM is an observation of food or no food and the output
is a command for the Ant to make some movement. Any state may be chosen to be the
initial state. The numbers on the arcs represent the observed input (0: no food, 1: food).
Within the bubbles are indicated state/output action (0: NOP, 1: turn left, 2: turn right, 3:
step forward). Every aspect of the control strategy is completely encoded within the FSM
structure. For instance, if the current state is state 3, and no food is observed directly ahead,
then the strategy transitions to state 1 and the Ant is directed to turn to the right. However,
if food 1s observed directly ahead, the strategy transitions to state 4 and the Ant is directed
to step forward to consume the food pellet. This control strategy is taken from [19]. The
FSM for the Hazardous Santa Fe Trail problem is similar in structure, but the labeling of
the arcs is different (see text).

evolve will be similar in structure to that shown in Figure 4, except now each arc is labeled
with two observed inputs: one indicates the presence of food and the other indicates the
presence of a black hole!.

The Hazardous Santa Fe Trail problem is an ideal forum for evaluating not just our
approach, but any method for designing safe adaptive control strategies. Observe that the
currently implemented control strategy may be optimal for the existing placement of food
pellets or black holes, but any changes in those locations can make the strategy ineffective (or
even unsafe), thereby forcing an adaption. It is therefore easy to construct scenarios requiring

adaption of an existing control strategy. Moreover, the problem is easy to simulate.

1'We also dropped the NOP action.
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4.2 Implementing the Evolutionary Algorithm

We intend to use random mutations as the reproduction operator in our EA. A number
of mutation varieties are possible: adding or deleting states; changing the location of an
arc; changing the action taken in a state; and changing the machine’s initial state. The
general rule for mutations is that they preserve some degree of similarity with the original
structure, which leads to producing new structures with a similar fitness. This prevents the
mutation process from degenerating into a simple random search (e.g., as done by simulated
annealing).

The EA steps are shown in Figure 2. (There is one additional step, which is given in
Section 4.3.) The algorithm begins with an initial population of ¢ randomly generated FSM
structures, each encoding a control strategy. All g FSMs are then evaluated for fitness by
placing an Ant on the grid at location (0,0) and then executing the encoded control strategy
for 200 time steps to see how many food pellets are consumed. The fitness value equals the
number of food pellets consumed.

Subsequent iterations of the EA select y parents, copy them, and then mutate the copies
to produce new offspring FSMs. Only one of the above mutation operators is used to produce
an individual offspring. (Mutation operators are chosen with equal probability.) The u
parents and p offspring are collected into a temporary population. All of the individuals
are ranked by fitness and the top p survive while the rest are discarded. Notice that parent
FSMs and children FSMs compete equally for survival. This iterative procedure, called a
processing a generation, is repeated until a defined termination criteria is met. Usually this
criteria is either an acceptable FSM has been found or a fixed number of generations have
been processed. In the latter case the best fit FSM from the final generation is used.

The p parents selected for reproduction are picked from the survivors of the previous
generation. The highest fit individual from the previous population is copied unchanged to

the next generation. This elitist policy ensures the fitness monotonically increases through-
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out the evolutionary process. The remaining y — 1 parents used during a generation are
selected by conducting a binary tournament, which helps to choose the better fit parents for
reproduction. Two randomly chosen parents compete in this tournament and there are two
criteria used to determine the winner: first is best fitness and second is the best exploration
capability?. If neither parent is a clear winner, then one of them is chosen at random. The
binary tournament algorithm for the Santa Fe Trail Problem is described in Figure 5. The

selection criteria, along with their priority, can be tailored for the problem at hand.

Randomly chose two parents o and  from the
current population

If fitness(ar) > fitness(f3),
then return «
If fitness(3) > fitness(a),
then return 3
If & has more states with action == 3,
then return «
If B has more states with action == 3,
then return 3
If none of the above are satisfied, then return
return « or # with equal probability

Figure 5: A binary tournament algorithm. Each if-then statement is evaluated in the order
shown.

It is important to start out with an initial population that is safe. This is easily accom-
plished even though that population is randomly generated. For example, in the Hazardous
Santa Fe Trail problem, randomly assign the arcs between states, but do this in a way that
ensures the arcs traversed whenever a hole is present do not point to a state with action =
3 (i.e., take a step forward).

These control strategies are intrinsically evolved so the only evaluation method is to

download each of them into the system-—in this case the artificial Ant—and try it out in

2For the Hazardous Santa Fe Trail Problem this latter characteristic is measured by the number of states
who’s action is to take a step forward.
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the real physical environment; the better the strategy performs, the higher its fitness value.
However, each strategy is first checked for safety and any unsafe strategy is immediately

discarded and a new candidate strategy is evolved by mutating the same parent FSM again.

4.3 Adding MC to an EA

The model checker makes successive sweeps through the FSM states, labeling states in which
the safety property holds. For example, consider the safety property S = did not step into
a black hole. The CTL formula AG(S) says it is not possible to get to a state where S no
longer holds, because this is unsafe condition for the Ant. All states are checked and labeled
to indicate whether S holds. It is then possible to verify if the CTL formula is true or false
in linear time. For the Hazardous Santa Fe Trail problem the formula for S is quite simple:

never take a step forward if a hole in front of you. That is,

S = —(step forward A hole present) (2)

The safety of a control strategy for the Hazardous Santa Fe Trail Problem can be checked
in a straightforward manner. First, we note that each state has three incident arcs: one
traversed if there is no food or no hole present; one if food is present but no hole is present;
and one if no food is present but a hole is present. The MC process begins by initially
labeling all states as safe. Next, check all states with action = 3 to see if they have an arc
pointing to it that is traversed because a hole is present. All states incident to the tail of
those arcs have their labels changed to unsafe. Following the procedure outlined in Figure 3,
all states that transition to these unsafe states also have their labels changed to unsafe. This
process continues until all states are visited and labeled as safe or unsafe. Finally, let f7(-) be
the characteristic function for the set of all initial states, and let fy(-) be the characteristic
function for the set of all states labeled as usafe. AG(S) holds if fr(u) A fu(u) =0V u.

In the general case several safety properties will have to be satisfied. Similar sweeps must

17



be conducted for every other CTL formulas describing safety properties, because all safety
properties must hold before the control strategy can be deemed safe. This means the safety

check for any control strategy is expressed in compact form as
K
AG(A\ §)) =1 (3)
7=1

where S; is the j-th safety property and S; = 1 means that property holds. Eq. (3) must
hold from any initial state in the Kripke structure.

Any control strategy that fails the safety check is immediately discarded and the parent
FSM is mutated again. This process usually will not have to be repeated too many times
before a safe offspring is produced. Once the control strategy has been safety certified, it
can then be evaluated in the operational environment. Hence, step 3 in Figure 2 should be

changed to the following form:
3. create i new FSMs by repeating the following two steps:

(7) conduct a binary tournament to select a parent FSM from the current population
(77) randomly mutate the parent 'SM to create a new offspring F'SM

(727) use MC to verify offspring safety. if unsafe, go to step 3(i1).

5 A Numerical Example

The numerical example of the Hazardous Santa Fe Trail Problem was conducted on a 32x32
grid. Seventy food pellets and fifteen black holes were randomly assigned to grid locations
(see Appendix for the exact locations).

Our EA used a population size of y = 25 FSMs that evolved over 150 generations. The
initial population was randomly created with each FSM having between 10 and 15 states.
Parents in subsequent generations were selected using a binary tournament. The mutation

operators, defined in Section 4.2, were applied with equal probability but only one operator
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Figure 6: Fitness vs generations for a typical run.

could be used to produce a given offspring. Each offspring was safety checked using a MC
algorithm before being evaluated for fitness. About 10%-15% of the created offspring were
found to be unsafe. Recall FSMs that fail the safety check are immediately discarded and
the same parent FSM is mutated again. This procedure must continue until a safe offspring
is produced. Usually only one or two tries were sufficient to achieve this.

Each safe FSM was evaluated by placing the Ant at grid location (0,0) and executing
the encoded control strategy. The number of food pellets the Ant consumed within 200
time steps was recorded and this became the fitness value of the FSM. The simulation was
written in C4++ and run on a SPARC ULTRA-10 workstation. Each run took less than 20
seconds to complete. Figure 6 shows the results of a typical run. Notice that the fitness
monotonically increases. (See Appendix for the state table describing this FSM.)

It is important to realize that unsafe control strategies do not necessarily always produce
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unsafe results. We took one of the unsafe FSMs and executed it. (See Appendix for this
FSM’s state table). The Ant only consumed two food pellets before it died, which makes
it a relatively poor control strategy. However, the Ant did not fall into a hole until time
step 55—which means it was completely safe for 54 time steps. It is likely that this unsafe
action would occur at some different time step with a different placement of food pellets
and holes. But, the key point here is unsafe actions take place only if the FSM is in a
specific subset of states and, even then, only if a specific set of inputs are present. A FSM
could, in principle, undergo thousands of state transitions without ever producing unsafe
actions. This means unsafe actions are eventuality events—something difficult to find using
simulation or emulation methods. The MC algorithm checks for these unsafe eventuality

events by identifying paths that terminate at unsafe states.

6 Final Remarks

The evolved control strategy is only good for a specific operational environment. Put an-
other way, an evolved control strategy that is good for one operational environment may not
be any good in a second environment because it’s efficacy was tied to the first operational
environment. The operational environment for an instance of the Hazardous Santa Fe Trail
Problem is defined by the food pellet and hole placements. While it is true a safe control
strategy for one placement of food pellets and holes will certainly be safe for any other place-
ments, it’s ability to consume food pellets in different environments may vary considerably.
So, how useful is it to evolve such a restricted control strategy?

We believe restricted control strategies are the norm for real-world applications. Elec-
tronic systems installed in space vehicles are designed to optimally perform over specified
environmental ranges. Any deviation from these range boundaries at a minimum degrades
the system’s performance or, in the worst case, leads to system failure. The control strategy

should start to evolve so that a system can recover most (if not all) of its previous func-
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tionality. For instance, suppose a deep-space probe suddenly encounters a high radiation
environment, which causes degraded performance in a gyro system. The gyro system’s con-
trol strategy should begin to adapt, but this adaption is to a known environmental change.
The control strategy does not have to make the gyro system work in say a high temperature
or high pressure environment because nothing indicates such an environment exists. In other
words, a changed operational environment invokes the evolutionary process, and the scope
of that change is known. If this was not the case, then the environmental change goes unde-
tected and there is no reason to suspect the existing control strategy is inadequate. In either
case the control strategy is restricted to work under a defined operational environment.

No attempt was made to use implication tables or other reduction techniques to check
for equivalent states in the evolved FSMs. These techniques may be appropriate for extrinsic
evolution, but they are probably too computationally expensive for intrinsic evolution, which
is the intended application area for our approach.

Finally, in this initial effort we only concentrated on the efficacy of the approach without
worrying about computational effort. Clearly time to evolve cannot be ignored because an
autonomous space vehicles cannot survive for an indefinite period of time without a viable
control strategy. Hardware-only implementations of EAs have been developed [20], and we
recommend this as the preferred method of implementation for deep-space probes because it
is timely and fully supports in-situ intrinsic evolution. Our future efforts will focus on that

very approach for evolving control strategies under real-time constraints.
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Appendix

‘ item ‘ location ‘
food pellets | (2, 1) (2,23) (3,10) (3, 15) (3, 20)
3,23)(3,29) (4,4)(5,15) (5, 31)

,7) (6,14) (6, 19) (7,7) (8, 20)

(
(6
(8.22) (8, 28) (8,30) (9,8) (9, 10)
(9,17) (10, 12) (10, 13) (10 , 20) (11 , 20)
(11, 28) (12, 25) (13, 2) (13, 4) (13, 10)
(13, 27) (14, 30) (15, 22) (16 , 6) (16 , 20)
(17 ,26) (19, 1) (19, 2) (20 , 25) (20 , 30)
(21, 4) (21, 7) (21, 10) (21, 13) (21 , 26)
( (22,1) (22, 4) (22, 16) (22 , 25)
( (24,7) (24,8) (24, 9) (24, 21)
( (24 ,29) (25 ,3) (25, 9) (25, 11)

( (26, 22) (28 , 5) (28 , 20) (28 , 28)
( (30 ,12) (30 ,13) (30, 19) (31, 5)
(5.,2)(6,2)(7,31) (8,13) (9, 14)

(17 ,17) (18, 21) (18 ,27) (20, 1) (23 , 21)
(24 ,16) (25, 24) (26 , 12) (27 , 23) (28 , 25)

holes

Table 1: This table shows the 70 food pellet and 15 hole grid locations used in the Section
5 example.
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present state next state action
FH FH FH
00 01 10
0 12 5 1 1
1 18 ) 8 3
2 19 9 1 1
3 10 2 1 1
4 16 5 1 1
bt 1 13 1 1
6 2 7 1 2
7 4 4 23 2
8 9 6 8 3
9 12 ) 10 2
10 8 4 1 3
11 6 22 8 1
12t 3 7 14 3
13 11 5 8 2
14 17 2 12 3
15 3 5 21 1
16 20 11 8 3
17 10 6 12 2
18 16 3 8 3
19 17 17 1 3
20 7 0 18 3
21 12 6 14 3
22 7 6 12 2
23 0 13 1 3

Table 2: This is the state table for the best evolved control strategy found during a single
EA run. The next state is shown for the three possible food/hole conditions visible to the
Ant (“0” implies absence, “1” implies presence). Actions 1, 2, and 3 are turn left, turn right,
and step forward, respectively. ‘i’ indicates the initial state. The control strategy is safe
because F=0 and H=1 never causes a transition to a state with action = 3. This control

strategy consumed 22 food pellets in 200 time steps.
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present state next state action

FH FH FH

00 01 10
0f 6 ) 1 2
1 7 ) 8 3
2 1 9 10 1
3 7 2 1 1
4 1 5 1 1
bt 1 9 1 1
6 2 7 1 3
7 4 4 1 2
8 2 6 11 3
9 6 2 8 2
10 4 ) 10 3
11 1 0 10 3

Table 3: This is the state table for one of the unsafe control strategies. The next state is
shown for the three possible food/hole conditions visible to the Ant (“0” implies absence,
“1” implies presence). Actions 1, 2, and 3 are turn left, turn right, and step forward,
respectively. ‘i’ indicates the initial state. Notice that state 8 is unsafe because F=0, H=1
causes a transition to state 6, which has action = 3. This control strategy caused the Ant
to fall into a hole at time step 55.
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