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A major problem in transitioning fault tolerance practices to the practitioner community 
is a lack of a common view of what fault tolerance is, and how it can help in the design of 
reliable computer systems. This document takes a step towards making fault tolerance 
more understandable by proposing a conceptual framework. The framework provides a 
consistent vocabulary for fault tolerance concepts, discusses how systems fail, describes 
commonly used mechanisms for making systems fault tolerant, and provides some rules 
for developing fault tolerant systems.  
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5 - Putting It All Together  
 

1 Introduction 
One of the major problems in transitioning fault tolerance practices to the practitioner 
community is a lack of a common view of exactly what fault tolerance is, and how it can 
help in the design of reliable systems. One step towards making fault tolerance more 
understandable is to provide a conceptual framework. The purpose of this document is to 
propose such a framework.  

This document begins with a discussion of what constitutes a system. From there a 
standard vocabulary of system fault tolerance is developed, using commonly accepted 
terminology (e.g., [Laprie 92]) wherever possible. Vocabulary terms are illustrated with 
computer system examples and an alternate set of examples from a radically different 
type of system, a bridge. Next, the document discusses how systems fail, including fault 
classes. This is followed by a summary of the existing approaches to implementing fault 
tolerance. The final section revisits the key concepts of the paper and proposes some 
rules for fault tolerant system design.  

1.1 What is a System? 
In the software engineering arena, a system is often equated with software, or perhaps 
with the combination of computer hardware and software. Here, we use the term system 
in its broader sense. As shown in Figure 1-1, a system is the entire set of components, 
both computer related, and non-computer related, that provides a service to a user. 



 
For instance, an automobile is a system composed of many hundreds of components, 
some of which are likely to be computer subsystems running software.  

A system exists in an environment (e.g., a space probe in deep space), and has operators 
and users (possibly the same). The system provides feedback to the operator and services 
to the user. Operators are shown inside the system because operator procedures are 
usually a part of the system design, and many system functions, including fault recovery, 
may involve operator action. Not shown in the figure, but of equal importance, are the 
system's designers and maintainers.  

Systems are developed to satisfy a set of requirements that meet a need. A requirement 
that is important in some systems is that they be highly dependable. Fault tolerance is a 
means of achieving dependability.  

There are three levels at which fault tolerance can be applied. Traditionally, fault 
tolerance has been used to compensate for faults in computing resources (hardware). By 
managing extra hardware resources, the computer subsystem increases its ability to 
continue operation. Hardware fault tolerance measures include redundant 
communications, replicated processors, additional memory, and redundant power/energy 
supplies. Hardware fault tolerance was particularly important in the early days of 
computing, when the time between machine failures was measured in minutes.  

A second level of fault tolerance recognizes that a fault tolerant hardware platform does 
not, in itself, guarantee high availability to the system user. It is still important to 
structure the computer software to compensate for faults such as changes in program or 



data structures due to transients or design errors. This is software fault tolerance. 
Mechanisms such as checkpoint/restart, recovery blocks and multiple-version programs 
are often used at this level.  

At a third level, the computer subsystem may provide functions that compensate for 
failures in other system facilities that are not computer-based. This is system fault 
tolerance. For example, software can detect and compensate for failures in sensors. 
Measures at this level are usually application-specific. It is important that fault tolerance 
measures at all levels be compatible, hence the focus on system-level issues in this 
document.  

 

2 Requirements 
Many of the terms used in this section are defined in Section 3.  
2.1 - Dependable Systems  
2.2 - Approaches to Achieving Dependability  
2.3 - Dependability Specifications  

2.1 Dependable Systems 
Hazards to systems are a fact of life. So are faults. Yet we want our systems to be 
dependable. A system is dependable when it is trustworthy enough that reliance can be 
placed on the service that it delivers [Carter 82]. For a system to be dependable, it must 
be available (e.g., ready for use when we need it), reliable (e.g., able to provide continuity 
of service while we are using it), safe (e.g., does not have a catastrophic consequence on 
the environment), and secure (e.g., able to preserve confidentiality) [Laprie 92].  

Although these system attributes can be considered in isolation, in fact they are 
interdependent. For instance, a system that is not reliable is also not available (at least 
when it is not operating correctly). A secure system that doesn't allow an authorized 
access is also not available. An unreliable system to control nuclear reactors is probably 
not a safe one either.  

 

2.2 Approaches to Achieving Dependability 
Achieving the goal of dependability requires effort at all phases of a system's 
development. Steps must be taken at design time, implementation time, and execution 
time, as well as during maintenance and enhancement. At design time, we can increase 
the dependability of a system through fault avoidance techniques. At implementation 
time, we can increase the dependability of the system through fault removal techniques. 
At execution time, fault tolerance and fault evasion techniques are required.  



2.2.1 Fault Avoidance 
Fault avoidance uses various tools and techniques to design the system in such a manner 
that the introduction of faults is minimized. A fault avoided is one that does not have to 
be dealt with at a later time. Techniques used include design methodologies, verification 
and validation methodologies, modelling, and code inspections and walk-throughs.  

2.2.2 Fault Removal 
Fault removal uses verification and testing techniques to locate faults enabling the 
necessary changes to be made to the system. The range of techniques used for fault 
removal includes unit testing, integration testing, regression testing, and back-to-back 
testing. It is generally much more expensive to remove a fault than to avoid a fault.  

2.2.3 Fault Tolerance 
In spite of the best efforts to avoid or remove them, there are bound to be faults in any 
operational system. A system built with fault tolerance capabilities will manage to keep 
operating, perhaps at a degraded level, in the presence of these faults. For a system to be 
fault tolerant, it must be able to detect, diagnose, confine, mask, compensate and recover 
from faults. These concepts will be discussed thoroughly in Section 4 of this paper.  

2.2.4 Fault Evasion 
It is possible to observe the behavior of a system and use this information to take action 
to compensate for faults before they occur. Often, systems exhibit a characteristic or 
normal behavior. When a system deviates from its normal behavior, even if the behavior 
continues to meet system specifications, it may be appropriate to reconfigure the system 
to reduce the stress on a component with a high failure potential. We have coined the 
term fault evasion to describe this practice. For example, a bridge that sways as traffic 
crosses may not be exceeding specifications, but would warrant increased attention from 
a bridge inspector. Similarly, a computer system that suddenly begins to respond 
sluggishly often prompts a prudent user to backup any work in progress, even though 
overall system performance may be within specification.  

 
 

2.3 Dependability Specifications 
The degree of fault tolerance a system requires can be specified quantitatively or 
qualitatively.  

2.3.1 Quantitative Goals 
A quantitative reliability goal is usually expressed as the maximum allowed failure-rate. 
For example, the reliability figure usually stated as a goal for computer systems in 
commercial aircraft is less than 10-9 failures per hour. The problem with stating 
reliability requirements in this manner is that it is difficult to know when it has been 
achieved. Butler has pointed out that standard statistical methods cannot be used to show 
such reliability with either standard or fault tolerant software [Butler 91]. It is also clear 



that there is no way to achieve confidence that a system meets such a reliability goal 
through random testing. Nevertheless, reliability goals are often expressed in this manner.  

2.3.2 Qualitative Goals 
An alternative method of specifying a system's reliability characteristics is to specify 
them qualitatively. Typical specifications would include:  
Fail-safe  

Design the system so that, when it sustains a specified number of faults, it fails in 
a safe mode. For instance, railway signalling systems are designed to fail so that 
all trains stop.  

Fail-op  
Design the system so that, when it sustains a specified number of faults, it still 
provides a subset of its specified behavior.  

No single point of failure 
Design the system so that the failure of any single component will not cause the system to 
fail. Such systems are often designed so that the failed component can be replaced or 
repaired before another failure occurs.  
Consistency  

Design the system so that all information delivered by the system is equivalent to 
the information that would be delivered by an instance of a non-faulty system.  

 
 

3 Fault Tolerance Concepts With 
Examples 
3.1 - Introduction  
3.2 - Faults and Failures  
3.3 - Dependency Relations  
3.4 - Fault Classes  
3.5 - Other Fault Attributes  

3.1 Introduction 
A major purpose of this document is to define system fault tolerance concepts in an 
understandable manner. To help the reader understand the concepts, each concept is 
illustrated by a set of examples after it is defined. Where possible the same two examples 
are used throughout the document.  

It is often easier to understand a concept using an analogy. This avoids the problems 
associated with the unintentional overloading of the meaning of words that often occurs 
in a familiar context. Thus one of the two examples that will appear throughout this 
document is a (simplified) highway bridge over a river. The other example will be in the 
probably more familiar world of computers.  



 
 

3.2 Faults and Failures 
3.2.1 - Definitions  
3.2.1.1 - Concept Definition  
A Digression on Errors  
3.2.1.2 - Bridge Example  
3.2.1.3 - Computer System Example 

3.2.1 Definitions 
The terms failure and fault are key to any understanding of system reliability. Yet they 
are often misused. One describes the situation(s) to be avoided, while the other describes 
the problem(s) to be circumvented.  

3.2.1.1 Concept Definition 
Over time, failure has come to be defined in terms of specified service delivered by a 
system. This avoids circular definitions involving essentially synonymous terms such as 
defect, etc. This distinction appears to have been first proposed by Melliar-Smith 
[Melliar-Smith 75]. A system is said to have a failure if the service it delivers to the user 
deviates from compliance with the system specification for a specified period of time. 
While it may be difficult to arrive at an unambiguous specification of the service to be 
delivered by any system, the concept of an agreed-to specification is the most reasonable 
of the options for defining satisfactory service and the absence of satisfactory service, 
failure.  

The definition of failure as the deviation of the service delivered by a system from the 
system specification essentially eliminates "specification" faults or errors. While this 
approach may appear to be avoiding the problem by defining it away, it is important to 
have some reference for the definition of failure, and the specification is a logical choice. 
The specification can be considered as a boundary to the system's region of concern, 
discussed later. It is important to recognize that every system has an explicit 
specification, which is written, and an implicit specification that the system should at 
least behave as well as a reasonable person could expect based on experience with similar 
systems and with the world in general. Clearly, it is important to make as much of the 
specification as explicit as possible.  

It has become the practice to define faults in terms of failure(s). The concept closest to 
the common understanding of the word fault is one that defines a fault as the adjudged 
cause of a failure. This fits with a common application of the verb form of the word fault, 
which involves determining cause or affixing blame. However, this requires an 
understanding of how failures are caused. An alternate view of faults is to consider them 
failures in other systems that interact with the system under consideration--either a 
subsystem internal to the system under consideration, a component of the system under 
consideration, or an external system that interacts with the system under consideration 



(the environment). In the first instance, the link between faults and failures is cause; in 
the second case it is level of abstraction or location.  

The advantages of defining faults as failures of component/interacting systems are: (1) 
one can consider faults without the need to establish a direct connection with a failure, so 
we can discuss faults that do not cause failures, i.e., the system is naturally fault tolerant, 
(2) the definition of a fault is the same as the definition of a failure with only the 
boundary of the relevant system or subsystem being different. This means that we can 
consider an obvious internal defect to be a fault without having to establish a causal 
relationship between the defect and a failure at the system boundary.  

In light of the proceeding discussion, a fault will be defined as the failure of (1) a 
component of the system, (2) a subsystem of the system, or (3) another system which has 
interacted or is interacting with the considered system. Every fault is a failure from some 
point of view. A fault can lead to other faults, or to a failure, or neither.  

A system with faults may continue to provide its service, that is, not fail. Such a system is 
said to be fault tolerant. Thus, an important motivation for differentiating between faults 
and failures is the need to describe the fault tolerance of a system. An observer inspecting 
the internals of the system would say that the faulty component had failed, because the 
observer's viewpoint is now at a lower level of detail.  

The observable effect of a fault at the system boundary is called a symptom. The most 
extreme symptom of a fault is a failure, but it might also be something as benign as a 
high reading on a temperature gauge. Symptoms are discussed in greater detail later.  

A Digression on Errors 
The term error often is used in addition to the terms fault and failure, as in the article by 
Melliar-Smith previously cited. Often, errors are defined to be the result of faults, leading 
to failures. Informally, errors seem to be a passive concept associated with incorrect 
values in the system state. However, it is extremely difficult to develop unambiguous 
criteria for differentiating between faults and errors. Many researchers refer to value 
faults, which are also clearly erroneous values. The connection between error and failure 
is even more difficult to describe.  

As we have seen, differentiation between failures and faults is essential for fault tolerant 
systems. A third term, error, adds little to this distinction and can be a source of 
confusion. Consequently, we substitute the term fault for the common uses of the term 
error. Generally, references to the term "error" in the literature can be fitted to the context 
of this document by substituting the term "fault."  

3.2.1.2 Bridge Example 
To help understand these definitions, consider the example of a highway bridge over a 
river. Some time after developing this example, Alfred Spector has pointed out that a 
precedent for using this as an example exists in an article comparing practices in bridge 
design with practices in software design [Spector 86].  



When designing the bridge the designer must consider a myriad of details regarding 
requirements, and the environment in which the bridge would operate. Suppose a 20 ton 
truck drives onto the bridge and the bridge collapses. From the truck's point of view, the 
bridge has failed. But what is the fault that led to the failure? There are lots of possible 
answers to this:  

1. The designer of the bridge did not allow for appropriate bridge loading. This 
could be:  

1. A specification fault if the highway department did not anticipate that 20 
ton trucks would need to use the bridge, or  

2. A design fault if the specification called for it being able to carry 20 ton 
trucks.  

3. An implementation fault if the fabricator didn't correctly follow the 
design.  

2. The truck driver ignored a "Load Limit" sign. This would be a user fault.  
3. A worker for the highway department posted an erroneous "Load Limit" sign. 

This would be an operator fault.  
4. The people preparing the documentation for the bridge mistakenly indicated that 

the bridge would support 20 tons, when in fact it was only designed to support 10 
tons. The highway department erected a 20 ton "Load Limit" sign. This would be 
a documentation fault, followed by an operator fault.  

5. Previously a 30 ton truck crossed the bridge and sufficiently weakened the 
structure so that the subsequent 20 ton truck caused the bridge to fail. This, again, 
would be a user fault (the prior user).  

6. Inadequate maintenance caused the bridge to develop structural flaws which led 
to it being unable to support a 20 ton truck. This would be another operator fault.  

7. A barge on the river hit the bridge and knocked out a support. Or a 100 year flood 
came along and washed the bridge out, or a meteor crashed through the bridge. 
These would be environmental faults.  

As an example of a fault which does not lead to a failure, consider the same bridge with a 
crack in its concrete roadbed. There is no failure involved if the bridge continues to carry 
the loads requested of it in spite of this fault. It may be the result of normal wear and tear 
on the roadbed. However, a thorough inspection of the bridge might discover that the 
crack in the roadbed was a symptom of a faulty strut, only observable by x-raying the 
strut. From the point of view of the bridge inspector, the strut would have failed. This 
component failure is an internal fault.  

Scenarios like this can be generated ad infinitum. Note that a fault does not lead to a 
failure unless the result is observable by the user, and leads to the bridge becoming 
unable to deliver its specified service. This means that one person's fault is another 
person's failure. For instance, in example 4 above, from the point of view of the highway 
department the erroneous documentation was a fault that led to an operator failure. From 
the point of view of the user of the bridge the erroneous documentation was a 
documentation fault that led to an operator fault which led to a bridge failure.  



3.2.1.3 Computer System Example 
Consider a computer system running a program to control the temperature of a boiler by 
calculating the firing rate of the burner for the boiler. If a bit in memory becomes stuck at 
one, that is a fault. If the memory fault effects the operation of the program in such a way 
that the computer system outputs cause the boiler temperature to rise out of the normal 
zone, that is a computer system failure and a fault in the overall boiler system. If there is 
a gauge showing the temperature of the boiler, and its needle moves into the "yellow" 
zone (abnormal, but acceptable), that is a symptom of the system fault. On the other 
hand, if the boiler explodes because of the faulty firing calculation, that is a (catastrophic) 
system failure.  

The reasons for the memory fault could be manifold. The chip used might not have been 
manufactured to specification (a manufacturing fault), the hardware design may have 
caused too much power to be applied to the chip (a system design fault), the chip design 
may be prone to such faults (a chip design fault), a field engineer may have inadvertently 
shorted two lines while performing preventive maintenance (a maintenance fault), etc.  

 
 

3.3 Dependency Relations 
3.3.1 - Definitions  
3.3.1.1 - Concept Definition  
3.3.1.2 - Bridge Example  
3.3.1.3 - Computer System Example  
3.3.2 - Failure Regions  
3.3.2.1 - Concept Definition  
3.3.2.2 - Bridge Example  
3.3.2.3 - Computer System Example 

3.3.1 Definitions 
A major concern in fault tolerant system design and verification is the identification of 
dependencies. Dependencies may be static, remaining the same over the life of the 
system, or they may change, either by design or because of the effects of faults.  

3.3.1.1 Concept Definition 
A component of a system is said to depend on another component if the correctness of the 
first component's behavior requires the correct operation of the second component. 
Traditionally, the set of possible dependencies in a system are considered to form an 
acyclic graph. The term fault tree analysis seems to imply this, among other things. 
Indeed, many systems exhibit this behavior, in which one fault leads to another which 
leads to another until eventually a failure occurs. It is possible, however, for a 
dependency relationship to cycle back upon itself. A dependency relationship is said to be 
acyclic if it forms part of a tree. A cyclic dependency relationship is one that cannot be 
described as part of a tree, but rather must be described as part of a directed cyclic graph.  



3.3.1.2 Bridge Example 
In a bridge, the structural integrity of the roadbed depends, in part, on the structural 
integrity of the bridge piers. In a suspension bridge, the structural integrity of each of the 
suspension lines depends on each of the others.  

A weakened strut may lead to another strut developing faults, which in turn could put 
more load on the original strut causing it to weaken further. This would be a cyclic fault 
trajectory. If the faults which developed in the second strut did not further trigger the 
fault in the first strut it would be an acyclic fault trajectory.  

3.3.1.3 Computer System Example 
In a computer system, consider two cooperating sequential processes using semaphores to 
synchronize. If either process fails to release the semaphore when it should, then the other 
process will fail as well. Thus they are mutually dependent.  

A piece of software with a bad bit set in one of its instructions could cause a bad value to 
be calculated which could cause the program to take a different logical path. This 
different path might cause the original piece of software to be re-executed which could 
lead to still other unexpected behavior. This would be a cyclic fault trajectory. If the 
original fault did not ultimately result in the fault being triggered again it would be an 
acyclic fault trajectory.  

3.3.2 Failure Regions 
Defining a failure region limits the consideration of faults and failures to a portion of a 
system and its environment. This is necessary to insure that system specification, analysis 
and design efforts are concentrated on the portions of a system that can be observed and 
controlled by the designer and user. It helps to simplify an otherwise overwhelming task.  

3.3.2.1 Concept Definition 
A system is typically made up of lots of components parts. These components are, in 
turn, made up of sub-components. This continues arbitrarily until an atomic component (a 
component that is not divisible or that we choose not to divide into sub-components) is 
reached. Although all components are theoretically capable of having faults, for any 
system there is a level beyond which the faults are "not interesting". This level is called 
the fault floor. Atomic components lie at the fault floor. We are concerned with faults 
emerging from atomic components, but not faults that lie within these components.  

Similarly, as components are aggregated into a system, eventually the system is 
complete. Everything else (e.g., the user, the environment, etc.) is not a part of the 
system. This is the system boundary. Failures occur when faults reach the system 
boundary.  

As illustrated in Figure 3-1, the span of concern begins at the boundaries between the 
system and the user and between the system and the environment, and ends at the fault 
floor. Faults below the fault floor are indistinguishable, either because they are not fully 



understood, or because they are too numerous. Informally, the span of concern is the area 
within which faults are of interest. 

 

3.3.2.2 Bridge Example 
Bridges are designed with the assumption that the structural members used (beams, 
braces, fasteners) have known load bearing, deformation, and fracture characteristics, 
which are predicted from knowledge of the composition of the materials, the process used 
to produce the materials, and from statistical sampling of the materials. Thus the 
structural members form the fault floor for most bridges. Faults at the molecular level are 
generally below the level of consideration. The design process for a typical bridge design 
begins with specification of a certain grade of steel and employs standard structural 
shapes. The combination of known materials, known shapes, and standard procedures for 
summing loads and forces is used to predict the failure modes of the overall structure.  

3.3.2.3 Computer System Example 
In a computer example, a repair person may not care to localize a "problem" to the 
component level, but instead be satisfied to localize it to the circuit board level. The 
circuit board represents a fault floor for the repair person. This fault floor is often referred 
to as a Field Replacable Unit (FRU) or Line Replaceable Unit (LRU). The selection of 
FRUs and LRUs is an important part of the maintenance strategy for any computer 
system. The selection is based on considerations such as replacement cost, diagnosis 
facilities, and skill levels in the field and at repair depots. Notice, however, that when the 
board is shipped back to the repair depot, they may indeed care about localizing the 
"problem" down to the component level. In this case the fault floor has changed.  

 
 

3.4 Fault Classes 
No system can be made to tolerate all possible faults, so it is essential that the faults be 
considered throughout the requirements definition and system design process. However, 



it is impractical to enumerate all of the faults to be tolerated; faults must be aggregated 
into manageable fault classes.  

Faults may be classified based on Locality (atomic component, composite component, 
system, operator, environment), on Effect (timing, data), or on Cause (design, damage). 
Other possible classification criteria include Duration (transient, persistent) and Effect on 
System State (crash, amnesia, partial amnesia, etc.).  

Since the location of a fault is so important, fault location is a logical starting point for 
classifying faults.  

3.4.1 Locality 
3.4.1 - Locality  
3.4.1.1 - Atomic Component Faults  
3.4.1.2 - Composite Component Faults  
3.4.1.3 - System Level Faults  
3.4.1.4 - External Faults  
3.4.2 - Effects  
3.4.2.1 - Value Faults  
3.4.2.2 - Timing Faults  
3.4.3 - Duration  
3.4.4 - Immediate Cause  
3.4.5 - Ultimate Cause  

3.4.1.1 Atomic Component Faults 

Concept Definition 
A atomic component fault is a fault at the fault floor, that is, in a component that cannot 
be subdivided for analysis purposes.  

Bridge Example 
A fault in an individual structural member in a bridge may be considered a atomic 
component fault. If the bridge design properly distributes the load among the various 
structural members (resources) of the bridge, then the load is transferred to other 
structural members, no failure occurs, and the fault is masked. The fault may be detected 
by observation of cracks or deformation, or it may remain latent.  

Computer System Example 
In a computer system, substrate faults can appear in diverse forms. For instance, a fault in 
a memory bit is not an atomic component fault if the details of the memory are below the 
current span of concern. Such a fault may or may not appear as a memory fault, 
depending upon the memory's ability to mask bit faults.  



3.4.1.2 Composite Component Faults 

Concept Definition 
A composite component fault is one that arises within an aggregation of atomic 
components rather than in an atomic component. It may be the result of one or more 
atomic component faults.  

Bridge Example 
A pier failure would be an example of a composite component failure for a bridge.  

Computer System Example 
A disk drive failure in a computer system is an example of a composite component 
failure. If the individual bits of memory are considered to be in the span of concern, a 
failure of one of those would be a component failure as well.  

3.4.1.3 System Level Faults 

Concept Definition 
A system level fault is one that arises in the structure of a system rather than in the 
system's components. Such faults are usually interaction or integration faults, that is, they 
occur because of the way the system is assembled rather than because of the integrity of 
any individual component. Note that an inconsistency in the operating rules for a system 
may lead to a system level fault. System level faults also include operator faults, in 
which an operator does not correctly perform his or her role in system operation. Systems 
that distribute objects or information are prone to a special kind of system fault: 
replication faults. Replication faults occur when replicated information in a system 
becomes inconsistent, either because replicates that are supposed to provide identical 
results no longer do so, or because the aggregate of the data from the various replicates is 
no longer consistent with system specifications. Replication faults can be caused by 
malicious faults, in which components such as processors "lie" by providing conflicting 
versions of the same information to other components in the system. Malicious faults are 
sometimes called Byzantine faults after an early formulation of the problem in terms of 
Byzantine generals trying to reach a consensus on attacking when one of the generals is a 
traitor [Lamport 82].  

Bridge Example 
A bridge failure resulting from insufficient allowance for thermal expansion in the overall 
structure could be considered a system failure: individual structural members behave as 
specified, but faulty assembly causes failures when they interact. Operator faults have 
been discussed in the example in Section 3.2.1.  

Computer System Example 
Consider the computer systems in an automobile. Suppose the airbag deployment 
computer and the anti-lock brake computer are both known to work properly and yet fail 



in operation because one computer interferes with the other when they are both present. 
This would be a system fault.  

3.4.1.4 External Faults 
External faults arise from outside the system boundary, the environment, or the user. 
Environmental faults include phenomena that directly affect the operation of the system, 
such as temperature, vibration, or nuclear or electromagnetic radiation or that affect the 
inputs provided to the system. User faults are created by the user in employing the 
system. Note that the roles of user and operator are considered separately; the user is 
considered to be external to the system while the operator is considered to be a part of the 
system.  

3.4.2 Effects 
Faults may also be classified according to their effect on the user of the system or service. 
Since computer system components interact by exchanging data values in a specified 
time and/or sequence, fault effects can be cleanly separated into timing faults and value 
faults. Timing faults occur when a value is delivered before or after the specified time. 
Value faults occur when the data differs in value from the specification.  

3.4.2.1 Value Faults 
Computer systems communicate by providing values. A value fault occurs when a 
computation returns a result that does not meet the system's specification. Value faults 
are usually detected using knowledge of the allowable values of the data, possibly 
determined at run time.  

3.4.2.2 Timing Faults 
A timing fault occurs when a process or service is not delivered or completed within the 
specified time interval. Timing faults cannot occur if there is no explicit or implicit 
specification of a deadline. Timing faults can be detected by observing the time at which 
a required interaction takes place; no knowledge of the data involved is usually needed.  

Since time increases monotonically, it is possible to further classify timing faults into 
early, late, or "never" (omission) faults. Since it is practically impossible to determine if 
"never" occurs, omission faults are really late timing faults that exceed an arbitrary limit. 
Systems that never produce value faults, but only fail by omission are called fail-silent 
systems. If all failures require system restart, the system is a fail-stop system.  

3.4.3 Duration 
Persistent faults remain active for a significant period of time. These faults are sometimes 
termed hard faults. Persistent faults usually are the easiest to detect and diagnose, but 
may be difficult to contain and mask unless redundant hardware is available. Persistent 
faults can be effectively detected by test routines that are interleaved with normal 
processing. Transient faults remain active for a short period of time. A transient fault that 
becomes active periodically is a periodic fault (sometimes referred to as an intermittent 



fault). Because of their short duration, transient faults are often detected through the 
faults that result from their propagation.  

3.4.4 Immediate Cause 
Faults can be classified according to the operational condition that causes them. These 
include resource depletion, logic faults, or physical faults.  

Resource depletion faults occur when a portion of the system is unable to obtain the 
resources required to perform its task. Resources may include time on a processing or 
communications device, storage, power, logical structures such as a data structure, or a 
physical item such as a processor.  

Logic faults occur when adequate resources are available, but the system does not behave 
according to specification. Logic faults may be the result of improper design or 
implementation, as discussed in the next section. Logic faults may occur in hardware or 
software.  

Physical faults occur when hardware breaks or a mutation occurs in executable software. 
Most common fault tolerance mechanisms deal with hardware faults.  

3.4.5 Ultimate Cause 
Faults can also be classified as to their ultimate cause. Ultimate causes are the things that 
must be fixed to eliminate a fault. These faults occur during the development process and 
are most effectively dealt with using fault avoidance and fault removal techniques.  

A common ultimate cause of a fault is an improper requirements specification which 
leads to a specification fault. Technically this is not a fault, since a fault is defined to be 
the failure of a component/interacting systems and a failure is the deviation of the system 
from specification. However, it can be the reason a system deviates from the behavior 
expected by the user. An especially insidious instance of this arises when the 
requirements ignore aspects of the environment in which the system operates. For 
instance, radiation causing a bit to flip in a memory location would be a value fault which 
would be considered an external fault (Section 3.4.1.4). However, if the fault propagates 
inside the system boundary the ultimate cause is a specification fault because the system 
specification did not foresee the problem.  

Flowing down the waterfall, a design fault results when the system design does not 
correctly match the requirements, and an implementation fault arises when the system 
implementation does not adequately implement the design. The validation process is 
specifically designed to detect these faults. Finally, a documentation fault occurs when 
the documented system does not match the real system.  

 
 



3.5 Other Fault Attributes 
3.5.1 - Observability  
3.5.1.1 - Concept Definition  
3.5.1.2 - Bridge Example  
3.5.1.3 - Computer System Example  
3.5.2 - Propagation  
3.5.2.1 - Concept Definition  
3.5.2.2 - Bridge Example  
3.5.2.3 - Computer System Example  

3.5.1 Observability 
Faults originate in a system component or subsystem, in the system's environment, or in 
an interaction between the system and a user, operator, or another subsystem. A fault may 
ultimately have one of several effects:  

1. It may disappear with no perceptible effect  
2. It may remain in place with no perceptible effect  
3. It may lead to a sequence of additional faults that result in a failure in the system's 

delivered service (propagation to failure)  
4. It may lead to a sequence of additional faults with no perceptible effect on the 

system (undetected propagation)  
5. It may lead to a sequence of additional faults that have a perceptible effect on the 

system but do not result in a failure in the system's delivered service (detected 
propagation without failure)  

Fault detection is usually the first step in fault tolerance. Even if other elements of a 
system prevent a failure by compensating for a fault, it is important to detect and remove 
faults to avoid the exhaustion of a systems fault tolerance resources.  

3.5.1.1 Concept Definition 
A fault is observable if there is information about its existence available at the system 
interface. The information that indicates the existence of a fault is a symptom. A symptom 
may be a directly observed fault or failure, or it may be a change in system behavior such 
that the system still meets its specifications. A fault that a fault tolerance mechanism of a 
system has found is said to be detected. Otherwise it is latent, whether it is observable or 
not. The definition of detected is independent of whether or not the fault tolerance 
mechanism is able to successfully deal with the fault condition. For a fault to be detected, 
it is sufficient that it be known about.  

3.5.1.2 Bridge Example 
Fault detection in a bridge usually relies on the principle that stress in a structural 
member results in deformation of the member, which can usually be observed by looking 
for cracks in the surface or changes in the alignment of the bridge. Note that the fault is 
not observed directly; rather, its effects are observed. Other faults, such as metal fatigue, 
can only be predicted by knowing the history of the loads imposed on the member.  



A flaw in a structural member of the bridge is a latent fault. If a bridge inspector x-rays 
the member and discovers the flaw, or observes a crack that is a logical consequence of 
the flaw, it is a detected fault.  

3.5.1.3 Computer System Example 
To provide failure-free outputs in a computer-based fault tolerant system, the system 
must detect faults, a process that requires redundant information (that is, information in 
addition to the minimum information needed to perform a prescribed function). 
Redundant information may be combined with a value or it may be stored separately. 
Such information may include attributes of a value, such as an abstract type; encoded 
information, such as error correcting code words; and independently calculated reference 
values. Attribute information is used to verify that the value is being used in the correct 
context. Codeword information is used to determine if one or a few of the bits in the 
value have been changed since the value was created. Independently calculated values 
may be static (for example, a predefined invariant or limit) or they may be dynamically 
calculated by a reference process. The reference process may be a redundant copy of the 
primary process, or it may be a diverse implementation that uses a different approach to 
produce the value being tested. Either time redundancy (retry) or space redundancy (a 
concurrently executing process) may be used. For instance, a flipped bit in a program is a 
latent fault. If a checksum is taken, and it does not match a previously computed value, 
the fault becomes detected, although, in this case, it may only be possible to tell that a 
fault exists, and not exactly where it is.  

Timing faults may be detected by recognizing the passage of an allotted time interval or 
by serializing outputs to detect missing outputs. The passage of time may be monitored 
directly using values from hardware clocks or it may be inferred by noting the completion 
of one or more processes that complete within a known time interval under normal 
circumstances.  

3.5.2 Propagation 

3.5.2.1 Concept Definition 
A fault that propagates to other faults or failures is said to be active. A non-propagating 
fault is said to be dormant. When a previously dormant fault becomes active it is said to 
be triggered. An active fault may again become dormant, awaiting a new trigger. The 
sequence of faults, each successive one triggered by the preceding one and possibly 
ending in a failure, is known as a fault trajectory. (Because of the ways faults trigger 
successive faults, a fault trajectory could be viewed as a chain reaction.)  



Figure 3-2 shows the relationship between detected, latent, dormant, and active 

 
faults.  

3.5.2.2 Bridge Example 
Suppose the example bridge was designed to carry 10 ton vehicles over it, but the 
highway department erects a "load limit 40 tons" sign on the approach. The sign is a 
dormant fault. It becomes active when a 38 ton truck triggers it by attempting to drive 
over the bridge and causes the bridge to fall (a failure) or perhaps a structural member to 
weaken (another fault). The original fault (the sign) becomes dormant again, until another 
over weight truck drives onto the bridge. The sequence "overweight truck drives over 
bridge", "structural member weakens" is the fault trajectory.  

3.5.2.3 Computer System Example 
As another example, consider a computer program loaded in memory, but with a bad bit 
in one of its instructions. Until that instruction is executed, the fault is dormant. Once it is 
executed it becomes active and perhaps results in a crash (failure) or a wrong value in a 
computation (fault). If the value computed was the altitude of an aircraft, and the 
resulting faulty information led to the plane flying into a mountain, that would be another 
fault in the fault trajectory (actually a failure in this case).  

 
 
 
 



4 Fault Tolerance Mechanisms 
4.1 - Characteristics Unique to Digital Computer Systems  
4.2 - Redundancy Management  
4.3 - Acceptance Test Techniques  
4.4 - Comparison Techniques  
4.5 - Diversity  

 

4.1 Characteristics Unique to Digital Computer Systems 
Digital computer systems have special characteristics that determine how these systems 
fail and what fault tolerance mechanisms are appropriate. First, digital systems are 
discrete systems. Unlike continuous systems, such as analog control systems, they 
operate in discontinuous steps. Second, digital systems encode information. Unlike 
continuous systems, values are represented by a series of encoded symbols. Third, digital 
systems can modify their behavior based on the information they process.  

Since digital systems are discrete systems, results may be tested or compared before they 
are released to the outside world. While analog systems must continuously apply 
redundant or limiting values, a digital system may substitute an alternative result before 
sending an output value. While it is possible to build digital computers that operate 
asynchronously (without a master clock to sequence internal operations), in practice all 
digital computers are sequenced from a clock signal. This dependency on a clock makes 
an accurate clock source as important as a source of power, but it also means that 
identical sequences of instructions take essentially the same amount of time. One of the 
most common fault tolerance mechanisms, the time-out, uses this property to measure 
program activity (or lack of activity).  

The fact that digital systems encode information is extremely important. The most 
important implication of information encoding is that digital systems can accurately store 
information for a long period of time, a capability not available in analog systems, which 
are subject to value drift. This also means that digital systems can store identical copies 
of information and expect the stored copies to still be identical after a substantial period 
of time. This makes the comparison techniques discussed in Section 4.4 possible.  

Information encoding in digital systems may be redundant, with several codes 
representing the same value. Redundant encoding is the most powerful tool available to 
ensure that information in a digital system has not been changed during storage or 
transmission. Redundant encoding may be implemented at several levels in a digital 
system. At the lowest levels, carefully designed code patterns attached to blocks of digital 
information can allow special-purpose hardware to correct for a number of different 
communication or storage faults, including changes to single bits or changes to several 
adjacent bits. Parity for random access memory is a common example of this use of 
encoding. Since a single bit of information can have significant consequences at the 



higher levels, a programmer may encode sensitive information, such as indicators for 
critical modes, as special symbols unlikely to be created by a single-bit error.  

 

4.2 Redundancy Management 
4.2.1 - Space Redundancy  
4.2.2 - Time Redundancy  
4.2.3 - Clocks  
4.2.4 - Fault Containment Regions  
4.2.5 - Common Mode Failures  
4.2.6 - Encoding  
 
Fault tolerance is sometimes called redundancy management. For our purposes, 
redundancy is the provision of functional capabilities that would be unnecessary in a 
fault-free environment. Redundancy is necessary, but not sufficient for fault tolerance. 
For example, a computer system may provide redundant functions or outputs such that at 
least one result is correct in the presence of a fault, but if the user must somehow examine 
the results and select the correct one, then the only fault tolerance is being performed by 
the user. However, if the computer system correctly selects the correct redundant result 
for the user, then the computer system is not only redundant, but also fault tolerant. 
Redundancy management marshals the non-faulty resources to provide the correct result.  

Redundancy management or fault tolerance involves the following actions:  

Fault Detection  
The process of determining that a fault has occurred.  

Fault Diagnosis  
The process of determining what caused the fault, or exactly which subsystem or 
component is faulty.  

Fault Containment  
The process that prevents the propagation of faults from their origin at one point 
in a system to a point where it can have an effect on the service to the user.  

Fault Masking  
The process of insuring that only correct values get passed to the system boundary 
in spite of a failed component.  

Fault Compensation  
If a fault occurs and is confined to a subsystem, it may be necessary for the 
system to provide a response to compensate for output of the faulty subsystem.  

Fault Repair  
The process in which faults are removed from a system. In well-designed fault 
tolerant systems, faults are contained before they propagate to the extent that the 
delivery of system service is affected. This leaves a portion of the system 
unusable because of residual faults. If subsequent faults occur, the system may be 
unable to cope because of this loss of resources, unless these resources are 



reclaimed through a recovery process which insures that no faults remain in 
system resources or in the system state.  

The measure of success of redundancy management or fault tolerance is coverage. 
Informally, coverage is the probability of a system failure given that a fault occurs. 
Simplistic estimates of coverage merely measure redundancy by accounting for the 
number of redundant success paths in a system. More sophisticated estimates of coverage 
account for the fact that each fault potentially alters a systems ability to resist further 
faults. The usual model is a Markov process in which each fault or repair action 
transitions the system into a new state, some of which are failure states. Because a 
distinct state is generated for each stage in each possible failure and repair process, 
Markov models for even simple systems can consist of thousands of states. Sophisticated 
analysis tools are available to analyze these models and to create the Markov models 
from more compact system descriptions such as Petri Nets.  

The implementation of the actions described above depend upon the form of redundancy 
employed such as space redundancy or time redundancy.  

4.2.1 Space Redundancy 
Space redundancy provides separate physical copies of a resource, function, or data item. 
Since it has been relatively easy to predict and detect faults in individual hardware units, 
such as processors, memories, and communications links, space redundancy is the 
approach most commonly associated with fault tolerance. It is effective when dealing 
with persistent faults, such as permanent component failures. Space redundancy is also 
the approach of choice when fault masking is required, since the redundant results are 
available simultaneously. The major concern in managing space redundancy is the 
elimination of failures caused by a fault to a function or resource that is common to all of 
the space-redundant units. This is discussed in more detail in Section 4.2.5.  

4.2.2 Time Redundancy 
As mentioned before, digital systems have two unique advantages over other types of 
systems, including analog electrical systems. First, they can shift functions in time by 
storing information and programs for manipulating information. This means that if the 
expected faults are transient, a function can be rerun with a stored copy of the input data 
at a time sufficiently removed from the first execution of the function that a transient 
fault would not affect both. Second, since digital systems encode information as symbols, 
they can include redundancy in the coding scheme for the symbols. This means that 
information shifted in time can be checked for unwanted changes, and in many cases, the 
information can be corrected to its original value. Figure 4-1 illustrates the relationship 
between time and space redundancy 



 
. The two sets of resources represent space redundancy and the sequential computations 
represent time redundancy. In the figure, time redundancy is not capable of tolerating the 
permanent fault in the top processing resource, but is adequate to tolerate the transient 
fault in the lower resource. In this simple example, there is still the problem of 
recognizing the correct output: this is discussed in more detail in Sections 4.3 and 4.4.  

4.2.3 Clocks 
Many fault tolerance mechanisms, employing either space redundancy or time 
redundancy, rely on an accurate source of time. Probably no hardware feature has a 
greater effect on fault tolerance mechanisms than a clock. An early decision in the 
development of a fault tolerant system should be the decision to provide a reliable time 
service throughout the system. Such a service can be used as a foundation for fault 
detection and repair protocols. If the time service is not fault tolerant, then additional 
interval timers must be added or complex asynchronous protocols must be implemented 
that rely on the progress of certain computations to provide an estimate of time. Multiple-
processor system designers must decide to provide a fault tolerant global clock service 
that maintains a consistent source of time throughout the system, or to resolve time 
conflicts on an ad-hoc basis [Lamport 85].  

4.2.4 Fault Containment Regions 
Although it is possible to tailor fault containment policies to individual faults, it is 
common to divide a system into fault containment regions with few or no common 
dependencies between regions.  

Fault containment regions attempt to prevent the propagation of data faults by limiting 
the amount of communication between regions to carefully monitored messages and the 
propagation of resource faults by eliminating shared resources. In some ultra-dependable 
designs, each fault containment region contains one or more physically and electrically 
isolated processors, memories, power supplies, clocks, and communication links. The 
only resources that are tightly coordinated in such architectures are clocks, and extensive 
precautions are taken to insure that clock synchronization mechanisms do not allow faults 



to propagate between regions. Data fault propagation is inhibited by locating redundant 
copies of critical programs in different fault containment regions and by accepting data 
from other copies only if multiple copies independently produce the same result.  

4.2.5 Common Mode Failures 
System failures occur when faults propagate to the outer boundary of the system. The 
goal of fault tolerance is to intercept the propagation of faults so that failure does not 
occur, usually by substituting redundant functions for functions affected by a particular 
fault. Occasionally, a fault may affect enough redundant functions that it is not possible 
to reliably select a non-faulty result, and the system will sustain a common-mode failure. 
A common-mode failure results from a single fault (or fault set). Computer systems are 
vulnerable to common-mode resource failures if they rely on a single source of power, 
cooling, or I/O. A more insidious source of common-mode failures is a design fault that 
causes redundant copies of the same software process to fail under identical conditions.  

4.2.6 Encoding 
Encoding is the primary weapon in the fault tolerance arsenal. Low-level encoding 
decisions are made by memory and processor designers when they select the error 
detection and correction mechanisms for memories and data buses. Communications 
protocols provide a variety of detection and correction options, including the encoding of 
large blocks of data to withstand multiple contiguous faults and provisions for multiple 
retries in case error correcting facilities cannot cope with faults. Long-haul 
communication facilities even provide for a negotiated fall-back in transmission speed to 
cope with noisy environments. These facilities should be supplemented with high-level 
encoding techniques that record critical system values using unique patterns that are 
unlikely to be randomly created.  

 
 

4.3 Acceptance Test Techniques 
4.3.1 - Fault Detection  
4.3.2 - Fault Diagnosis  
4.3.3 - Fault Containment  
4.3.4 - Fault Masking  
4.3.5 - Fault Compensation  
4.3.6 - Fault Repair  
 
The fault detection mechanism used influences the remainder of the fault tolerance 
activities (diagnosis, containment, masking, compensation, and recovery). The two 
common mechanisms for fault detection are acceptance tests and comparison.  

4.3.1 Fault Detection 
Acceptance tests are the more general fault detection mechanism in that they can be used 
even if the system is composed of a single (non-redundant) processor. The program or 
sub-program is executed and the result is subjected to a test. If the result passes the test, 



execution continues normally. A failed acceptance test is a symptom of a fault. An 
acceptance test is most effective if it is based on criteria that can be derived 
independently of the function being tested and can be calculated more simply that the 
function being tested (e.g., multiplication of a result by itself to verify the result of a 
square root function).  

4.3.2 Fault Diagnosis 
An acceptance test cannot generally be used to determine what has gone wrong. It can 
only tell that something has gone wrong.  

4.3.3 Fault Containment 
An acceptance test provides a barrier to the continued propagation of a fault. Further 
execution of the program being tested is not allowed until some form of retry successfully 
passes the acceptance test. If no alternatives pass the acceptance test, the subsystem fails, 
preferably silently. The silent failure of faulty components allows the rest of the system 
to continue in operation (where possible) without having to worry about erroneous output 
from the faulty component [Schlichting 83].  

4.3.4 Fault Masking 
An acceptance test successfully masks a bad value if a retry or alternate results in a new, 
correct result within the time limit set for declaring failure.  

4.3.5 Fault Compensation 
A program that fails an acceptance test can be replaced by an alternate, as described in 
the next section. If the alternate passes the acceptance test, its result may be used to 
compensate for the original result. Notice that the alternate program run during a retry 
may be a very simple one that just outputs a "safe" value to compensate for the faulty 
subsystem. A common approach in control systems is to "coast" the result by providing 
the value calculated from the last known good cycle.  

4.3.6 Fault Repair 
Acceptance tests are usually used in a construct known as a recovery block. A recovery 
block provides backward fault recovery by rolling program execution back to the state 
before the faulty function was executed. This repairs the faulty state and the result. When 
a result fails an acceptance test, the program can be executed again before leaving the 
recovery block. If the new result passes the acceptance test, it can be assumed that the 
fault originally detected was transient. If the software is suspect, an alternative can be 
executed in place of the original program fragment. If a single processor is used, the state 
of the processor must be reset to the beginning of the function in question. A mechanism 
called the recovery cache has been proposed to accomplish this [Anderson 76]. A 
recovery cache records the state of the processor at the entrance to each recovery block. 
Although a recovery cache is best implemented in hardware, implementations to date 
have been limited to experimental software. Where multiple processors are available, the 
retry may take the form of starting the program on a backup processor and shutting down 



the failed processor. Recovery blocks can be cascaded so that multiple alternatives can be 
tried when an alternate result also fails the acceptance test.  

 
 

4.4 Comparison Techniques 
4.4.1 - Fault Detection  
4.4.2 - Fault Diagnosis  
4.4.2.1 - Voting Issues  
4.4.3 - Fault Containment  
4.4.4 - Fault Masking  
4.4.5 - Fault Compensation  
4.4.6 - Fault Repair  

4.4.1 Fault Detection 
Comparison is an alternative to acceptance tests for detecting faults. If the principal fault 
source is processor hardware, then multiple processors are used to execute the same 
program. As results are calculated, they are compared across processors. A mismatch 
indicates the presence of a fault. This comparison can be pair-wise, or it may involve 
three or more processors simultaneously. In the latter case the mechanism used is 
generally referred to as voting. If software design faults are a major consideration, then a 
comparison is made between the results from multiple versions of the software in 
question, a mechanism known as n-version programming [Chen 78]. This is discussed 
more in the Section 4.5.  

4.4.2 Fault Diagnosis 
Fault diagnosis with comparison is dependent upon whether pair-wise or voting 
comparison is used:  
pair-wise  

When a mismatch occurs for a pair it is impossible to tell which of the processors 
has failed. The entire pair must be declared faulty.  

voting  
When three or more processors are running the same program, the processor 
whose values do not match the others is easily diagnosed as the faulty one.  

4.4.2.1 Voting Issues 
Voting may be centralized or decentralized. Centralized voting is easy to mechanize, 
either in software or hardware, but results in a single point of failure, a violation of many 
qualitative requirements specifications. It is possible to compensate for total voter failure 
using a master-slave approach that replaces a silent voter with a standby voter, as in the 
pair and spare approach. Decentralized voting avoids the single point of failure, but 
requires a consensus among multiple voting agents, either hardware or software in order 
to avoid replication faults mentioned in Section 3.4.1.3. In order to reach consensus, the 
distributed voters must synchronize to exchange several rounds of messages. In the worst 
case, where up to f faulty processors are allowed to send misleading results to other 
processors participating in the consensus process, 3f+1 distributed voters must be 



provided to reach a state known as interactive consistency [Pease 80]. Interactive 
consistency requires that each non-faulty processor provides a value, that all non-faulty 
processors agree on the same set of values, and that the values are correct for each of the 
non-faulty processors. Similar processes are required to maintain a consensus as to the 
number of members remaining in a group of distributed processors [Cristian 88].  

4.4.3 Fault Containment 
When pair-wise comparison is used, containment is achieved by stopping all activity in 
the mismatching pair. Any other pairs in operation can continue executing the 
application, undisturbed. They detect the failure of the miscomparing pair through time-
outs.  

When voting is used, containment is achieved by ignoring the failed processor and 
reconfiguring it out of the system.  

4.4.4 Fault Masking 
In a comparison based system, fault masking is achievable in two ways. When voting is 
used the voter only allows the correct value to pass on. If hardware voters are used, this 
usually occurs quickly enough to meet any response deadlines. If the voting is done by 
software voters that must reach a consensus, adequate time may not be available.  

Pair-wise comparison requires the existence of multiple pairs of processors to mask 
faults. In this case the faulty pair of processors is halted, and values are obtained from the 
functional, good pairs.  

4.4.5 Fault Compensation 
The value provided by a voter may be the majority value, the median value, a plurality 
value, or some other predetermined satisfactory value. While this choice is application 
dependent, the most common choice is the median value. This guarantees that the value 
selected was calculated by at least one of the participating processors and that it is not an 
extreme value.  

4.4.6 Fault Repair 
In a comparison-based system with a single pair of processors, there is no recovery from 
a fault. With multiple pairs of pairs, recovery consists of using the values from the 
"good" pair. Some systems provide mechanisms to restart the miscomparing pair with 
data from a "good" pair. If the miscomparing pair subsequently produces results that 
compare for an adequate period of time, it may be configured back into the system.  

When voting is used, recovery from a failed processor is accomplished by utilizing the 
"good" values from the other processors. A processor that is outvoted may be allowed to 
continue execution and may be configured back into the system if it successfully matches 
in a specified number of subsequent votes.  

 



4.5 Diversity 
The only fault tolerance approach for combating common-mode design errors is design 
diversity--the implementation of more than one variant of the function to be performed 
[Avizienis 84]. For computer-based applications, it is generally accepted that it is more 
effective to vary a design at higher levels of abstraction (i.e., by varying the algorithm or 
physical principles used to obtain a result) than to vary implementation details of a design 
(i.e. by using different programming languages or low level coding techniques). Since 
diverse designs must implement a common system specification, the possibility for 
dependencies always arises in the process of refining the specification to reflect 
difficulties uncovered in the implementation process. Truly diverse designs would 
eliminate dependencies on common design teams, design philosophies, software tools 
and languages, and even test philosophies. Many approaches attempt to achieve the 
necessary independence through randomness, by creating separate design teams that 
remain physically separate throughout the design, implementation, and test process. 
Recently, some projects have attempted to create diversity by enforcing differing design 
rules for the multiple teams.  

 
 

5 Putting It All Together 
This document has attempted to present a conceptual framework of system fault 
tolerance. The previous discussion has been centered around definitions and examples. 
This section discusses how to use the information in the prior sections.  

A system is said to have a failure if the service it delivers to the user deviates from 
compliance with the system specification. A fault is the adjudged cause of a failure. The 
significance of this is that, in the absence of precise requirements, it is impossible to tell 
whether a system has failed, and therefore whether a fault has occurred.  

Rule 1: Know precisely what the system is supposed to do. Part of this process should be 
determining how long a system can be allowed to deviate from its specification before the 
deviation is declared a failure.  
However, it is not sufficient to know what the system is supposed to do under normal 
circumstances. It is also necessary to know what abnormal conditions the system must 
accommodate. It is virtually impossible to enumerate the set of all possible faults that a 
system might encounter. It is much more manageable to deal with classes of faults.  
 
Rule 2: Look at what can go wrong, and try to group the causes into classes for easier 
manageability. This involves defining a fault floor based on your ability to diagnose and 
repair faults.  
The goal of fault tolerance is to prevent faults from propagating to the system boundary, 
where it becomes observable and, hence, a failure. In general, the further a fault has 
propagated, the harder it is to deal with. Since fault tolerance is redundancy management, 
however, it becomes a matter of the degree of redundancy desired. For instance, it is 



almost certainly cheaper to deal with memory faults by using error correcting memory 
(that is, redundant bits in a memory location) than by providing a "shadow" memory. 
Note, however, that dealing with faults earlier rather than later may go counter to the 
advice given above regarding dealing with classes of faults rather than individual faults.  
 
Rule 3: Study your application and determine appropriate fault containment regions and 
the earliest feasible time to deal with potential faults.  
In general, the price paid for a fault tolerant system is additional resources, both in terms 
of time, and in terms of space. As with most things these two can be traded off against 
each other. In some applications (e.g., flight control), timing is everything, even at the 
cost of extra processors. In general, the comparison approach to fault detection works 
best in these situations. In other applications (e.g., a space probe), weight and power 
consumption is an overriding issue--arguing for a higher reliance on time redundancy and 
suggesting the use of acceptance tests.  
 
Rule 4: Completely understand the requirements of your application and use them to 
make appropriate time/space trade-offs.  
Protecting a system from every conceivable fault can exhaust another resource--money. 
This is true even if a rational set of fault classes is defined. The trade-off here is fault 
coverage versus the cost of that coverage. In all systems, it is possible to classify faults by 
the likelihood of occurrence.  
 
Rule 5: Whenever possible, concentrate on the credible faults and ignore those less likely 
to occur unless they can be dealt with at little or no additional cost.  
Time is an essential element in any digital computer system, even in systems that do not 
claim to be real-time. It is important to define the minimum period of time a system can 
fail to provide its defined service before a failure is declared. Unnecessarily short failure 
margins force the system designer to resort to expensive fault tolerance mechanisms, 
such as real-time fault masking.  
 
Rule 6: Carefully determine application failure margins and use the information to 
balance the degree of fault tolerance needed with the cost of implementation.  

 
 
 


