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3 FAULTS, ERRORS, AND FAILURES

A reliable and dependable system has the ability to provide its intended, expected, and agreed
upon functions, behavior, and operations, in a correct and timely manner. The inability of a
system to provide this performance is referred to as a failure. A system’s architects, developers,

designers, assessors, and users, all need insight into this ability, or lack thereof. This is why the

distinction is made between faults, errors, and failures. Many definitions of these terms exist, and

they are sometimes used interchangeably.

All devices and other system resources (incl. human operators) have a state, value, operational

mode, or condition. We speak of an error, if this deviates from the one that is correct or desired.

The latter is based on specification, computation, observation, or theory. A system transitions to

its “failed” state, when an error prevents it from delivering the required performance. I.e., a

failure is the system-level manifestation of an error. The term “error” is often reserved for

software as well as data items and structures.

Activities in any of the system’s life cycle phases can lead to a defect, omission, incorrectness, or

other flaw that enters into, or develops within that system. As illustrated in Figure 3.1, the life

cycle covers system development and manufacture, through installation, operation, and

maintenance. The flaw, whether hypothesized or actually identified, is the cause of an error. This

cause is referred to as a fault. It can occur within any subsystem or component. This applies

equally in the domains of software, electronic, mechanical, optical, chemical, and nuclear

systems.

A fault in the physical (non-software) domain requires a physical change, such as dielectric

breakdown, a wire chafing through, or a flow-control valve seizing. Such changes can result from

selection of components that are not suitable for either the system application, or the operating

environment. Interference from that environment involves the accumulation, release, and transfer

of unwanted energy to a vulnerable target in the absence of adequate barriers [Ciemens81]. The

energy can be in the form of heat, shock or vibration, electromagnetic fields [Fuller95,

Shooman93], electrical power, nuclear or particle irradiation, potential and kinetic energy,

chemicals (incl. medication), etc. Other forms of environmental interference are caused by

contaminants such as corrosive or conductive fluids or vapor, sand, or dust. Another source of
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Figure 3.1     Causal relationship between faults, errors, and failures
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faults is the interaction with other systems, whether physical or via data. Human induced faults
can be either inadvertent, or deliberate.

Faults in the software domain, often referred to as “bugs”, are related to the generation of

executable code. These faults can assume a sheer unlimited number of forms, ranging from

specification and design faults, coding faults, compiler flaws, logical errors, improper stack

sizing, improper initialization of variables, etc. A plethora of cases is captured in [Risks]. They

are generally dependent on data, data sequences, or timing [Storey96]. Though the timing of

software tasks is normally implemented with hardware counters and clock oscillators, the

initialization of these counters is usually done by software, as is timer interrupt handling. In

addition, the associated operating system or task scheduler is also a fallible software item, as is

timing-sensitive interaction between tasks. Any mutation in executable code is a physical fault. It

can be caused by events such as memory corruption or a hard disk crash. Another source of

software faults is the installation of hardware modifications without altering the software

accordingly.

As outlined above, a failure is the result of an error, which in turn is caused by a fault [Laprie85,

Avizienis86, Meissner89, Laprie90, IEC61508]. The reverse relationship, however, is

conditional: a fault may cause one or more other faults or errors, and an error may cause failure. A

fault must be activated to cause an error: the faulty system resource must be exercised. For

example, irradiation or a supply voltage spike can corrupt the data at a certain computer memory

location. This fault cannot cause an error until that location is read and the data used. A fault can

also disappear without being present long enough to result in an error. The system may contain

time constants due to mechanical or chemical process inertia, or due to analog or digital signal

filtering. Sometimes the faulty state is (temporarily) the same as the correct state. It is possible

that a fault or error has no perceptible effect on the system performance, so the system remains

non-failed. Similarly, system performance may be degraded (perceptibly or not), but still be

within specified limits. The system may include tolerance mechanisms that mask, or detect and

correct errors. It must also be noted that an error typically occurs at some physical or logical

distance from where the fault enters into, or resides within the system.

So far, the term “failure” has been used for a behavioral manifestation at the system boundary,

with faults and errors reflecting the internal state of the system. However, each sub-system or

component is itself a system that comprises interacting elements with their own performance

requirements. Conversely, each system is a component of a larger system. The same phenomenon

can be a fault at one level in the system hierarchy, and an error at the next level. How far the

iterative decomposition should be carried out, depends on the system context and the reasons for

investigating the causal relationships. The tracing must contribute to understanding. The

“ultimate” fault is of importance in most commercial systems. It is the one that must be fixed to

restore the system’s performance, or be changed to prevent recurrence, even though the

underlying theoretical failure mechanisms may be intriguing.

For instance, when estimating the probability of system failure, it may suffice to go down to an

integrated circuit’s behavior at pin level, ignoring the IC’s internal behavior at gate level. An

accident investigation of a car’s drive-by-wire system might conclude that the ultimate cause is

component damage due to electromagnetic interference. In other analyses, this same damage

might be identified as merely the immediate cause. The ultimate cause could be traced to a flaw in

the component selection or screening process, an omission in the environmental section of a

system specification, etc. From the latter point of view, any failure can ultimately be construed as

human-made. This is often not practical or insightful. It is important to make a distinction

between physical or component faults, and human-made faults such as those related to
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specification, design, human-machine interaction, etc. Contrary to physical faults, the latter tend
to be unpredictable, the resulting errors unanticipated, and their manifestations unexpected
[Anderson81]. Hence, they require different methods and techniques to prevent, remove, and
tolerate them.

Faults, errors, and failures are commonly referred to as impairments to the reliability and
dependability performance of a system [Laprie85, IFIP10.4, Prasad96]. Many types and classes of
these impairments can occur during the life of a system. They must be identified, together with:

•  How, and under which conditions they enter into the system
•  The subsystem in which each of them occurs, or can occur
•  If, and how they propagate through the system
•  What effect they have at the system boundary.

There are important reasons to establish and evaluate these hierarchical, causal relationships,
origins and effects [Avizienis87]. This enables qualitative and quantitative modeling and analysis
of the reliability and dependability performance. It also serves as a basis for specification of goals
and requirements for that performance. It is the essence of troubleshooting, whether a priori
during system development, or a posteriori as part of maintenance or system improvement.

There are many methods and techniques for achieving and enhancing the aforementioned system
performance. The identification of impairments gives insight into which particular means can, or
should be applied at each level of the system hierarchy, or to each applicable life cycle activity.
See Figure 3-1. The identification also supports the evaluation of the effectiveness of such means,
whether they are proposed or actually implemented. Those means are typically categorized as:

•  Fault avoidance,
•  Fault removal, and
•  Fault tolerance.

The purpose of fault avoidance is to prevent fault from entering into, or developing within the
system. It usually is not possible to guarantee complete prevention. For most systems, fault
avoidance is limited to reducing the probability of fault occurrence. Nonetheless, fault avoidance
is powerful: a fault avoided, is one that need not be removed or tolerated with other, often costly,
means. Fault avoidance techniques are applied to all life cycle phases of the system. This can
actually precede the system inception phase, by carrying over experience and “lessons learned”

from all sources: in-house, industry, customers, users, authorities, competition, etc. A major

technique is the rigorous application of Systems Engineering [EIA632]. This includes the capture

and management of requirements for the system’s functionality, interfaces, performance, and

technology. Requirements must be consistent, complete, unambiguous, verifiable, and traceable.

Other techniques range from the selection of inherently reliable components, the performance of

analyses, adherence to standards, design for testability, through concern for human factors: the

attention to “live-ware”. A supplementary approach is the use of “formal methods”: the use of

mathematical techniques, with explicit requirements and assumptions, in the design and analysis

of computer hardware and software [Rushby93].It should be noted that no method guarantees

unequivocal correctness.

Especially in complex systems, faults are present despite fault avoidance measures. Fault
removal is a methodology that minimizes their presence by finding and removing them. This is

the process of establishing and documenting whether system implementation, items, processes,

and documentation, conform to specified requirements. This approach can take the form of

requirements and design reviews, inspections, tests, audits, and other forms of verification
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[Anderson81, DSVH89]. The (potential) faults exposed by this process are subsequently removed
by altering the system design or the interaction with its environment. I.e., fault avoidance
techniques are applied to the newly identified faults. This again is subject to verification. Fault
removal does not refer to fixing a fault by means of repair actions.

Fault tolerance uses redundancy of system resources to provide alternate means of providing the
system functionality and operation. This enables the system to sustain one or more faults or
errors, in a way that is transparent to the operating environment and users. I.e., it prevents a fault
from causing a failure, by masking the effects of errors resulting from that fault. This implies
fault containment, as the fault is precluded from propagating and affecting system level
performance. In general, fault tolerance can only handle a limited number of specified, non-
simultaneous faults. Fault tolerance is typically used when a non-redundant system, combined
with the above techniques, would pose unacceptable exposure to risks. This includes
inaccessibility for repair actions, loss of revenue due to service interruption, damage to
equipment, property, or the environment, and death, injury, or illness.

The avoidance and tolerance of faults are means to provide a system with reliable and dependable
performance. This is complemented by fault removal, to avoid recurrence of identified faults. The
latter means allows confidence to be placed on the ability of the system to provide that
performance.

3.1 FAULT CLASSIFICATION AND TYPES

It is impractical to enumerate all possible variations of faults that can occur in a general system,
or even in a particular system, other than the most simplistic. To get a handle on this, we must
aggregate fault types into manageable classes or categories, each representing a major fault
attribute. Table 3-1 shows a general fault classification based on commonly used attributes
[Avizienis86, Laprie90, McElvany91]. This table also lists the fault types that each attribute
distinguishes. They are described in the subsections below.

Fault Attribute Fault Types

Activity Dormant, Latent, Active

Duration Permanent, Temporary, Intermittent

Perception Symmetrical, Asymmetrical

Intent Benign, Malicious, Byzantine

Count Single, Multiple

Cause (single fault) Random, Deterministic, Generic

Cause (multiple faults) Independent, Correlated, Common-Mode

Extent Local, Global, Distributed

Value Fixed, Varying

Observability Observable, Not Observable

Coincidence Distinct, Coincident, Near-Coincident

Phase of creation Development, Manufacture, Operation, Support

Nature Accidental, Intentional

Source Hardware, Software

Table 3-1 General Fault Classification
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This classification must be done in the context of the architecture and design of the particular
system, its application, as well as the operating and maintenance environment of interest. The
same applies to the mapping of individual fault cases to fault classes. I.e., a particular fault case in
a system may map to a different class (or classes), based on the operational mode or mission
phase. Likewise, the same fault may map to different classes for different systems. Not all classes
apply, or are relevant to all systems: the classification must be tailored. Conversely, the list of
attribute classes may have to be expanded to reflect aspects of fault detection and tolerance.

3.1.1 Fault Activity

Fault activity indicates whether a fault is producing an error or failure, and if so, whether the
latter is detected or observed. This combines the notions of fault propagation and detection. See
Table 3-2.

Not Propagating Propagating

Not Detected Dormant Latent

Detected Active

Table 3-1 Fault activity classification

A fault is dormant, if it is not (yet) causing an error. It remains in this “lurking” state until the

faulty system element is exercised, utilized, or otherwise called upon. For example:

•  A punctured spare tire, or a backup generator without fuel

•  An control discrete that is stuck at the currently commanded state

•  A corrupted location in Program Memory, corresponding to a subroutine or task that has not

yet been executed

•  A broken fire detection sensor that remains undetected until tested, or the malfunction

becomes apparent when a fire occurs.

A dormant fault becomes active as soon as its manifestations are detected. This may be through

direct observation at the faulty system resource, or be inferred from sub-system behavior and

system performance. Detection does not imply that the faulty element has been identified and

located. Many detection mechanisms need a certain amount of time to reliably determine that a

fault has occurred, once its effects become observable to that detector. During this time the fault

is latent. Not all faults have manifestations that are detectable by the system. Such faults are also

called latent. Sometimes the terms latent and dormant are used interchangeably.

Multiple latent faults may accumulate undetected and compound over time until they eventually

manifest themselves simultaneously. This can defeat the fault tolerant capability of the system, or

of the operator. This makes it important to reduce the detection latency: the time between a fault

becoming observable, and positive detection of the fault. The latency can be reduced by

periodically performing a system integrity check with adequate coverage [McGough89].
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3.1.2 Fault Duration

The duration attribute indicates how long a fault is present in a system. This implies that a
timescale is applied to classify this fault persistence. A distinction is made between permanent
faults, and temporary or transient faults. The threshold depends on the fault itself, as well as on
the system in which it occurs.

A permanent or hard fault has indefinite duration. However, “indefinite” is a relative term. If

truly indefinite, an irreversible physical change has taken place and a maintenance action is

required to remove the fault. E.g., repair or replacement of a damaged component or faulty sub-

system. The fault remains, even if its excitation disappears. Sometimes a seemingly hard fault can

be removed with a system reset or cold start. Even if a fault is not permanent, it can still be

perceived as such by the system’s fault detection mechanism or by the user. After a certain

confirmation persistence has expired, it may no longer matter whether the fault disappears, or it

cannot be reliably determined whether it has. Persistence thresholds are typically based on time

constants or bandwidth of the system, or the maximum time allowed before an uncontrolled fault

causes an unsafe condition. Sometimes the term “hard fault” is used if repeated use of the same

input and initial conditions always result in the same incorrect response. However, this reflects

determinism, rather than duration.

A temporary or transient fault is only present for a limited period of time. The functional

ability of the faulty element recovers without corrective action being taken: the fault disappears

spontaneously and no permanent damage is done [Anderson81]. Transient faults are also referred

to as soft faults, glitches, upsets, or “hiccups”. They are the effect of a temporary internal or

external condition or stimulus. The causes are often environmental, such electromagnetic

interference, electrical power drops or surges, irradiation, or mechanical shock. Some transients

are caused by (temporary) conditions that were not, or not adequately, anticipated and covered

during the specification and design of the system. Transient faults in digital computing systems

typically occur an order of magnitude more often than hard faults [Siewiorek92]. The transient

duration of a fault should not be confused with the transient magnitude of its excitation or effects.

A recurring transient fault is called intermittent. Such faults are often only present occasionally

and inconsistently. I.e., they occur irregularly and infrequently with respect to the mission

duration. In general, they are caused by hardware that is unstable, or only marginally stable for

certain operating conditions. This can be due to design, manufacturing flaws, aging and wear,

unexpected operating environment, etc. For example:

•  the combination of vibration and a loose connection (e.g., chafed through wiring, poorly

socketed component, bad solder joint, poor bonding inside IC).

•  dirty or poorly seated connector (high contact resistance), causing reduced noise margin on

logic levels.

•  excessive drift of a clock oscillator’s frequency, causing occasional brief loss of

synchronization between processing nodes.

Marginal software process timing, or processor throughput, can also cause intermittent faults,

although software itself cannot fail intermittently. Intermittent faults are often hard to trouble

shoot due to their seemingly elusive, inconsistent, and unpredictable occurrence. More complex

systems include extensive logging of the fault circumstances (system state, mission phase,

internal temperature and voltages, the value of control inputs, etc.) to help correlate the fault to its

cause.
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3.1.3 Fault Perception

Fault tolerant computing systems typically comprise multiple concurrent processing nodes. The
nodes exchange data for the purpose of reaching consensus regarding input data to be selected,
the computed output data, control modes that are to be activated, diagnosis of faulty nodes or
other system resources, etc. Fault perception indicates the consistency between the observation
of the fault by all non-failed subsystems. The fault is symmetrical if it seen identically by those
subsystems. Conversely, a fault is called asymmetrical if it produces different symptoms for
different observers.

A standard example of asymmetry is a data transmitter that is fanned out to several receivers,
creating a number of transmitter-receiver pairs. Individually, the transmitter and receivers may
operate within their respective specifications, but combined this is not necessarily the case for all
pairs. Asymmetry can also result from a computing resource failing in such a way that it sends
conflicting versions of the same information to the other members of the computing resource
population. Also see sections 3.1.4 and 3.1.14.

3.1.4 Fault Intent

The difficulty encountered in tolerating a particular fault is driven by the behavior of that fault
and the resulting errors. There are two basic types of fault tolerance, both based on redundancy
techniques:

•  Active or dynamic redundancy, which uses duplication and comparison to perform fault
diagnosis (i.e., detect and locate).

•  Passive redundancy, where duplication is combined with a voting mechanism (redundant or
not) to mask fault occurrence and avoid errors, often without attempting to locate or even
detect faults.

The fault intent indicates whether this behavior is devious, doing seemingly anything it can to
cause a system failure. In turn, this determines the type of fault tolerance required.

A benign fault can be detected by any non-faulty observer. It does not matter if this is a single
observer, or a set of redundant observers that coordinate their fault detection. An example of such
a fault is a processing task that takes too long to complete. This can be detected and tolerated with
active redundancy.

Errors caused by a malicious fault may not be directly recognizable, and cause different
observers to see different symptoms, if any. Such asymmetrical faults can confuse and even
defeat the diagnostic capability of computing systems with standard, active redundancy. Worst
case, multiple faulty resources can seemingly collude to escape detection and corrupt the system
[Dolev83, Shin87, Barborak93, Lala94]. This may develop into:

•  incrimination of healthy system resources,
•  total disagreement between processing nodes (system crash), or
•  agreement on the wrong conclusion; i.e., a system failure that is not contained and not

annunciated by the system itself.
Such effects can also occur at circuit level [Nanya89].
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When no a priori assumptions are made regarding the malicious characteristics of faulty
components we speak of Byzantine faults. They exhibit unrestricted, arbitrary misbehavior
(timing, value, state, etc.). This type of pernicious fault is called “Byzantine”, in analogy with the

so-called Byzantine Generals Problem [Lamport82, Walter88]. The scenario is that a number of

Byzantine Army divisions are besieging a town. The commanding generals (redundant processing

nodes) have to reach consensus on whether to attack or to retreat (mode switching or computed

parameter). Each general has a messenger (datalink) to send his own, local opinion to each of the

other generals, as well as to relay the opinions received from those generals. The sending generals

and messengers can be loyal or treacherous (conveying wrong, distorted, or inconsistent messages

to different generals), and receiving generals can have interpretation problems. The provable,

classical solution to the Byzantine problem requires 3m+1 nodes, where m is the number of

(simultaneously) failing “generals” that must be tolerated. I.e., a minimum of 4 nodes! This is

higher than the 2m+1 required in simple majority voting schemes. Multiple rounds of interactive

voting are needed to reach global consensus and to identify a “malicious” node.

3.1.5 Fault Count

Fault count simply indicates the multiplicity of fault occurrence during the time period of

interest. It is the prime ingredient of fault statistics such as the actuary and predicted rate of

occurrence. It is also an important attribute for fault tolerant systems, as they can only tolerate a

limited number (and types) of faults before exhausting their redundancy.

In the case of a single fault, only one fault occurs, has occurred, or is hypothesized to occur. This

allows the particular fault to be treated in an isolated fashion, for the purpose of analysis or fault

tolerance.

Multiple faults take the form of repeated occurrence of the same fault, or the occurrence of

multiple, different faults. Related attributes are and whether they are invoked by the same cause,

and whether they occur at the same time. See sections 3.1.7 and 3.1.11. Both of these attributes

determine if the multiple faults can be treated as separate, unrelated single faults.

3.1.6 Fault Cause (single fault)

The fault cause indicates whether a fault is random or deterministic. By definition, random
faults are non-deterministic. More precisely, the term “random” is used to model and label events

as such1. In the end, every variation, failure, event, and uncertainty has an assignable root cause

that can be identified if sufficient effort is expended [Evans99]. Occurrences of such faults have a

statistical distribution. They are not correlated to one another, or to a particular causal event. See

section 2.x.. A fault is deterministic if it happens with statistical certainty, anytime a particular

trigger condition or event takes place. I.e., there is an “if-then” causal relationship.

Software cannot fail randomly. Software is time-invariant, and does not wear out. If software has

a fault, then that fault is always present, whether observable or not. The related error is produced

                                                          
1 “Nothing in nature is random… A thing appears random only through the incompleteness of our

knowledge”, Baruch Spinoza, Dutch philosopher 1632-1677
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deterministically, each time it is triggered by a particular data value, data sequence, or timing
with respect to other processes. If the faulty software is never executed, the fault will never
produce an error or failure. So, it is difficult to apply hardware-oriented terms like failure rates to
software reliability [Gordon91, Pfleeger92, Dunn86, Hecht86], nor is it quantifiable [Butler93].
What is generally meant by “reliable” software, is that each process generates “correct” internal

states and outputs when supplied with valid inputs or sequences thereof, and that the response to

invalid inputs is pre-defined. Software is “correct” if it operates as specified.

3.1.7 Fault Cause (multiple faults)

When multiple faults occur, it is important to know to what extent their causes are related. Two

faults are independent if they have unrelated causes. The probability that one occurs is

unaffected by the occurrence of the other, and vice versa. In other words, the conditional

probability is equal to the unconditional probability, and the combined probability is equal to the

product of the probabilities of the individual faults. See chapter 2. In contrast, correlated faults
have a combined probability of occurrence that is significantly higher than that for the same

number of unrelated random faults [Pullum99]. The combined probability of occurrence of

dependent events is not equal to the product of the probabilities of the individual events. If

system performance is based on independence, this must be assured in the actual implementation.

This undesirable dependence can happen in two basic ways:

•  One fault either directly causes an other one, or makes it more likely that the other occurs.

Worst case, this can turn into a cascade or avalanche effect.

•  Multiple faults are caused by the same event. These are called common-mode or common-

cause faults.

Common-mode or common-cause faults occur if a single condition or event causes multiple
system elements to fail. The invoked faults need not happen exactly at the same time, nor is it

necessary that the affected components are identical or redundant. Examples of common-causes

are:

•  Common requirements.

•  Common environment: vibration, pressure, cooling, irradiation, explosion or fire,

contamination by fluids, uncontained rupture of rotating parts or pressure vessels, etc.

•  Common (shared) circuitry: a processor and memory, time base or clock, synchronization

mechanism, data bus, or power source.

•  Common input data, shared by multiple processes.

•  Common manufacturing process.

•  Common operation: operating procedures, Human-Machine interface.

•  Common maintenance and test procedures, or test equipment.

This type of fault can have serious consequences, if the same cause results in a fault and prevents

detection of that fault. E.g., substrate fracture inside an integrated circuit that generates a sensor

excitation signal and at the same time monitors that signal. Fault tolerant systems contain

redundant resources to continue the system’s services and performance, despite the presence of a

(specified) limited number of faults. This redundancy may be exhausted at once if a single cause

affects several or all of those resources. E.g., if the rotor disk of a jet engine disintegrates and the

shrapnel severs all of supply lines of the aircraft’s redundant hydraulic system [Hughes89].
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A special type of common-cause fault is the generic fault [Yount85]. As the name suggests, it
affects system resources that are identical or similar. Such faults are of particular concern in fault
tolerant systems that use redundant resources that are identical, e.g., multiple computing nodes
that execute the same software on identical hardware. A software flaw may cause all nodes to
perform the same but wrong calculations at the same time. Despite these errors, the redundant
nodes remain in agreement. This defeats all fault tolerance techniques that are based on the
premise that a fault causes a difference between the redundant resources.

The general approach for protection against generic faults and their consequences is to ensure
independence of faults by applying design diversity, also known as dissimilarity. This concept
dates back nearly 175 years to the era of Charles Babbage’s calculating machine [Lardner34]. In

the software domain dissimilarity is usually referred to as N-version programming [Avizienis85,

Voges88]. Dissimilarity is used where component replication to tolerate faults is not feasible or

effective, i.e., when identical copies show identical faults (nearly) at the same time. This is the

case with software, as it is not subject to physical faults due to noise, aging, or wear. Care must

be taken not to compromise version-independence when fixing ambiguities or divergence

between versions. The level of achievable version-independence is open for debate [Knight86,

Knight90]. Dissimilarity provides little or no advantage in protecting against common-mode

environmental faults. It also does not reduce the probability of simultaneous random faults.

Often, generic faults are referred to as residual design errors [Avizienis99]. However, their

causes can be found in system life cycle phases other than design. For instance, all hardware

components of a particular type can have the same manufacturing flaw (i.e., a “bad lot”). The

system specification can have deficiencies that equally affect all systems designed in compliance

with this specification. This can be a specification error, ambiguity, or omission. Applying

dissimilarity at this level is usually difficult, as the redundant system elements are expected to

provide the same (correct) functionality and behavior. Of course, when the generic flaw is in a

common specification as this causes different implementations of the same fault.

Diversity can be applied at software, hardware component, system, and process level, e.g.:

•  Different programming languages combined with identical or different processors

•  Same software source code but different compilers and assemblers

•  Object oriented programming vs. functional (structured) programming

•  Fixed vs. floating point arithmetic

•  Different coordinate systems, e.g., Cartesian vs. Polar

•  Operating system based on a state machine vs. dynamic task scheduling

•  Electromagnetic vs. hydraulic actuation (but no cross-power generation)

•  Generation of aerodynamic control forces via control surface deflection vs. engine thrust

vectoring

•  Data bus with copper wire vs. optic fiber

•  Different algorithms for the same function

•  Integrated circuits with same form, fit, and function, but implemented with different

technologies, cell libraries, or processes.

Obviously the application of dissimilarity has a significant impact on the cost of the system. The

non-recurring development effort must be replicated (incl. costly software verification and

validation), multiple manufacturing lines set up, qualification testing performed, service and

training manuals written, etc. The recurring cost also increases: more component and

subassembly part numbers must be tracked, different types of hardware or mechanical
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components be procured and stocked (in smaller quantities than in a system with identical
redundancy, and often with limited choice), configuration management expanded, etc.

3.1.8 Fault Extent

The fault extent describes the scope of a fault: how far it propagates through the system, and
which areas of the system are effected. The boundary of this area is called the Fault Containment
Region (FCR). Uncontained faults propagate outside the system boundary, to connected systems
and users.

The fault extent is local, if the fault does not propagate beyond the subsystem or module that
contains the faulty component. If the fault causes errors outside this subsystem, the fault extent is
called distributed.

3.1.9 Fault Value

Each system component has an associated erroneous value, state, or status. The fault value
indicates whether this changes with time upon fault occurrence.

A fixed fault value does not change. This is also referred to as a stationary or frozen value. How
this value is reached depends on the component and particular fault in question. It can be a jump,
drift (also known as “creep-away” or “slow-over”), monotonic slew, oscillatory or erratic move.

The terminal value can be:

•  an extreme value, e.g., stuck at logical level 1 or 0, the maximum position of an actuator

(also known as a “hard-over”), the supply voltage or ground potential

•  the component’s value at moment of the fault occurrence

•  some predetermined value, due to the nature of the component, or forced by the system upon

fault detection.

•  an arbitrary value.

A varying erroneous value changes anywhere between extreme, fixed or arbitrary limits between

extremes. The rate of change can be fixed or varying in sign and magnitude.

3.1.10 Fault Observability

A fault is observable if a symptom of its existence is available to a monitoring mechanism inside

or outside the system. Some fault manifestations can be directly observed at the affected system

component. Others can be inferred from behavior and performance at higher levels in the system

hierarchy, i.e., from errors and failures. Fault observability is important, as it is the prerequisite

for fault detection.

In theory, any fault can be made directly observable if enough effort is spent on devising a

method. This is typically not practical from a technical and economical point of view, nor is it
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necessary. In addition, observation mechanisms themselves are subject to faults and contribute to
unreliability of the overall system.

For instance, a loose wire bond inside an integrated circuit is observable by visual inspection
inside the component package. Obviously, providing such a level of detection outside the chip
manufacturing process is unthinkable. Exercising the chip during periodic system test could
surface the fault. In some system it is critical that component faults are detected timely. This can
be done with redundancy techniques at component level or higher, or with special detectors.

3.1.11 Fault Coincidence

The fault coincidence attribute indicates the separation in time of fault occurrences. As a fault
cannot coincide with itself, this attribute is reserved for multiple faults. These faults need not be
identical, nor affect the same component(s). Temporal separation does not imply causal
independence: common-cause faults need not happen at the same time, despite their correlation.

Coincident or simultaneous faults occur at exactly the same time. No assumptions are made
regarding their duration being identical. Distinct or separate faults do not occur at the same
time. However, their duration may still overlap. The distinction between “coincident” and

“distinct” is not as clear as it may seem. Strictly speaking, truly simultaneous events do not exist.

Even if they did exist, their exact simultaneity could never be determined with absolute certainty.

It makes more sense to consider near-simultaneous or near-coincident events [McGough83].

This “nearness” allows for a finite time window that can be (approximately) quantified, based on

the type of faults and the system at hand. If multiple faults occur within the span of such a

window, they are near enough to be treated as “coincident”.

Near-coincident faults must usually be considered for critical systems that are required to provide

extremely high reliability over long periods of time. Such systems employ redundancy to achieve

fault tolerance. The redundancy management often uses fault detection mechanisms that are

based on pair-wise comparison of the redundant resources. These monitors typically apply a

persistence time window to confirm the miscompare fault-condition. During this time window,

the system is vulnerable to a consecutive fault that affects the same redundant set of monitored

parameters. The faulty parameters may happen to be in agreement. This can deceive the fault

detection in such a way that either no fault is detected, or the remaining “good” resources are

incriminated. Either way, the faults continue to propagate and the fault tolerance is defeated.

3.1.12 Fault Creation Phase

The life span of a system is divided into so-called life cycle phases. Faults can (and do) enter into,

or develop within the system during any of these phases [Redmill97a]. Many life cycle models

exist, e.g., [EIA632]. They typically distinguish phases and activities corresponding to those

listed in the generic five-phase model below. The transition between the phases is generally

marked by a program decision milestone. It indicates that all tasks of the preceding phase have

been completed in a satisfactory manner. All phases influence the system reliability.
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The system concept and planning phase of commercial systems typically begins with the
identification of customer needs and expectations, and of market opportunity. System concepts
are formulated. Plans are made for the execution of subsequent phases, and the required resources
are identified and approved. Risks are identified and mitigated in the area of technology, program
schedule, cost, etc.

The system development phase of system requirements are captured, analyzed, and managed.
Based on this, several system architecture alternatives are evaluated for suitability and feasibility.
The selected alternative is the basis for preliminary and detailed design of hardware, software,
and mechanical subsystems. Often prototypes and simulations are used to validate concepts and
designs.

The designs are verified against the requirements prior to implementation. The latter involves
selecting components for the circuit design, as well as laying out circuit boards. Software
implementation covers the application software and the operating system. The implemented
subsystems are integrated and tested at subsystem and system level. The development phase is an
iterative process, especially for complex systems. This phase usually includes the development of
test equipment or tools that are used during the system development or manufacturing and
support phases. Quality Assurance techniques must be applied throughout the development, as
must design for testability.

Figure 3-2    Relationship of Human Factors to Other Areas of Science           From: [Fogel63]
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The development phase must pay close attention to the Human-Machine Interface (HMI), the
system will be installed, operated, and maintained by humans. This requires physical access to,
and interaction with the system while it is installed in its operating environment. The interaction
involves tools and test equipment, data entry and control devices, actuators, displays, aural and
visual annunciators, etc. The operator or user also has mental interaction with the system by
directing its functionality, interpreting its behavior, etc. Cognitive aspects of automation must be
devised carefully, as it is prone to causing confusion about active operational modes and changes
thereof: “how do I make it do ...”, “what is it doing?”, “why did it do that?”, “what is it going to

do next?”, “why is it doing this again?” [Wiener88, Hughes95, Leveson97]. Human Factors

engineering (HFE) involves many sciences and engineering disciplines, as illustrated in Figure 3-

2 [Fogel63, Donchin95], and is especially important for especially in safety-critical systems

[Redmill97b].

The manufacturing phase includes the procurement, fabrication and screening of components

and tools. These are subsequently installed in subassemblies and combined into the system level

assembly. If necessary, adjustments are made or calibration “tuning” is performed prior to testing

the system. The latter may involve burn-in testing such as temperature cycling, to weed out

“weak” systems. Early in the phase, production equipment is finalized and quality processes are

established. The completed system is delivered to the customer or end-user in the field, often

subject to an acceptance test.

During the operation and support phase the system is deployed: it is installed in its fixed or

mobile location, and checked out. Subsequently it is utilized: it performs its mission, including

interaction with users, operators, other systems and the environment. This may involve operating

manuals and operator training. System and customer support covers training of operators and

maintenance personnel as well as the performance of maintenance actions. Maintenance is

performed to restore system performance via repair or replacement of faulty components, or

installing modifications and upgrades. This involves procedures and documentation (manuals), as

well as components. Replacement of parts is subject to installation faults similar to those that can

occur during the original system manufacture. Upgrades and modifications (e.g., when “drop in”

replacement parts can no longer be procured) are also subject to development faults. Experience

with the fielded system can be fed back to any of the preceding phases to improve the system.

Disposal is the life-cycle phase in which the system is decommissioned, i.e., permanently taken

out of service. The system’s ability to provide expected or required services is no longer an issue.

However, parts of a retired system may end up being re-used in other systems. This applies to

hardware and software components as well their requirements and design. In addition, a system

may contain “hazardous waste material” causing its disposal to have environmental implications.

3.1.13 Fault Nature

Depending on the system, it maybe necessary to examine the nature of faults. This indicates

whether a fault develops accidentally during one of the system’s life cycle phases, or as the result

of an intentional act. Intentional faults result from intrusions into the system during any life

cycle phase, for the explicit purpose of causing faults. Examples of such faults are benign or

malicious computer viruses, and the destructive acts of vandals, terrorists, and otherwise

disgruntled or hostile persons.
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3.1.14 Fault Source

The fault source indicates whether a fault is a hardware fault or a software fault. As software
executes on, and interacts with hardware, the underlying cause of a software error may actually
be a hardware error (an incorrect or undesired state) or fault. Conversely, flawed software can
invoke a hardware fault or error. It is difficult to foresee all such possible interactions and
dependencies during the development of complex systems [Littlewood93]. Correction of a
software problem may actually require a hardware change, and vice versa.

There are many types of software faults, e.g. [Littlewood92, Sullivan92]:
•  computation of addresses that cause (attempted) access violations of memory or other

hardware resources
•  “hogging” (no timely release) of allocated hardware resources, to the exclusion of access by

other software tasks or users

•  incorrect pointer management or statement logic, causing wrong execution order or omission

•  incorrect or missing variable initialization

•  existence of a path to an undefined or unanticipated state

•  stack overflows

•  wrong algorithm used (but program runs without “crashing”)

•  incomplete or incorrect implementation of a function

•  timing or synchronization error (management of real-time resources)

•  software-build error: the software must be compiled, linked to the correct version of libraries

and other software modules, located, and loaded or installed. Faults can occur in each of

these steps. These steps also involve tools that are software themselves and prone to faults

like the developed application or executive software.

Software reliability issues are discussed in Chapter 4.

The classical distinction between hardware and software is less clear in “hardware-implemented

software” or “hardware-near-software”. This refers to the embodiment of (complex) algorithmic

functions into hardware devices such as complex Programmable Array Logic (PALs) or high-

density Programmable Logic Devices (PLDs) such as large Field Programmable Gate Arrays

(FPGAs) and Complex2 PLDs (CPLDs), certain Application Specific Integrated Circuits (ASICs),

and high gate-count processors [Wichman93]. In many cases this involves design and

implementation via Hardware Description “programming” Languages (HDLs), and the use of

software tools for design, synthesis, simulation, and test. I.e., a development process that is very

similar to that of regular software. As with complex software, it may not be feasible to guarantee

correctness of the device. Its development must be subject to same rigorous assurance measures

as would have to be used for an equivalent software implementation.

3.2 FAILURE CLASSIFICATION

A failure mode is the manner in which an item has failed (observation), or can fail (conjecture).

Simple devices may have only one or two failure modes. For instance, a relay can fail “open” or

“closed”. More complex functions, or devices such as microprocessors, can have a vast number

of failure modes. These may have to be lumped so they can be treated in a practical manner.

                                                          
2  A device’s gate count does not necessarily correlate to its level of complexity.
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The failure modes affect the service and performance that is delivered by the failed item or by the
system that contains it. This in turn impacts all users and user-systems that directly or indirectly
depend on this service. In addition, system malfunctions may cause damage to people and objects
that do not directly participate in the normal operation of the system: manufacturers and
designers, bystanders, underwriters, nature, society at large, etc. The actual or perceived
consequences are called the failure effects [ARP4761, Walter95].  

Failures can be categorized according to attributes such as:
•  Type
•  Hazards
•  Risks
•  Failure accountability
•  Failure effect controls

3.2.1 Failure Type

The failure type indicates the correctness and timeliness of the functionality delivered by the
system, when faults and errors propagate to the system boundary:

•  Omission failure: the system starts tasks too late, only performs them partially, or does not
start the tasks at all. The latter is also known as a “system crash”. The system is called fail-
stop if the system ceases all activities at its interfaces, independent of the continuation of

internal activities. Fail-stop behavior is usually easy to detect.

•  Timing failure is similar to omission failure, but expanded with starting tasks too early or

completing too late.

•  Incorrect results: computations in the system generate timing and value faults that

propagate to the system boundary; the faults occur even if the system is supplied with

correct input data.

•  A system is called fail-silent if failures never produce incorrect results: the system either

delivers correct performance or fails by omission.

•  Graceful degradation occurs if a system continuous to provide its primary functions, and

the loss of the remaining functionality is not hazardous. This situation may increase operator

workload or required vigilance. This is also called fail-soft, and is often preferred for safety

critical applications, when retention of some degraded is preferred over complete loss of

function. Take for example a mechanical actuation system with two independently

controlled motors whose outputs are velocity-summed. If one control channel fails, the drive

system can still provide actuation without loss of torque, but at half speed. An other example

is a control system that sheds certain automatic control or protection modes upon failure of

particular sensor or computational resources, and annunciates this to the operators.

Fail-Operational behavior does not appear in the above listing, as it implies that the system is

fault tolerant and continues to deliver correct performance, despite the presence of a certain

predetermined number and type of faults in the system. I.e., there is no failure at system level. It

should also be noted that absence of operation by no means implies safety, as is the case for heart

pacemakers, and control systems for processes that are destructively unstable without computer

control. Similarly, safety does not imply that system failure occurs very infrequently. These

aspects of system failure are further discussed in the sections below.
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3.2.2 Failure Hazards

Hazards are actual or potential, unplanned (but not necessarily unexpected) undesired conditions
or events that could result from system failure [Roland90, Leveson95]. Examples of such events
are:

•  death, injury, occupational illness or discomfort
•  damage to, or loss of equipment or property
•  damage to the natural environment
•  adverse operational and environmental conditions such that the operator cannot cope without

applying exceptional skills or strength
•  loss of revenue due to service interruption or loss of sales
•  loss of goodwill and customer satisfaction
•  loss of opportunity
•  extension or termination of a product’s development schedule

•  loss of organizational or corporate morale, confidence, prestige, or public image

•  legal, moral, or political liability.

Safety is the relative freedom from being the cause or subject of uncontrolled hazards. Hence, it

is a state in which the real or perceived risk is lower than the upper limit of the acceptable risk.

Safety look at consequences of failures, independent of whether the system is reliable, i.e.,

delivers its required or expected service [Mulazzani85]. For instance, a bomb that cannot explode

is safe, but not reliable.

Hazard severity is the worst credible known or potential consequence that could ultimately

result from system malfunction. This severity is ranked with classes or ranges. Example of a 4-

level ranking is Catastrophic, Major, Minor, and Negligible Effect [ACAMJ25]. A 2-level

ranking could be Benign versus Malign, based on whether the consequences are of the same order

of magnitude as the benefits derived from the service delivered by the non-failed system

[Laprie85]. For instance, death in a car crash versus the benefit of personal transportation. The

number of severity levels is academic, but the boundaries must be clearly defined and the ranges

must be consistent without overlap.

Severity classification is form of Hazard Assessment. It is preceded by identification of possible

failure modes at various levels of the system, and the associated effects. See Chapter X. This

assessment is performed for several reasons:

•  to meet contractual or system certification requirements.

•  as part of an assessment of the risks versus the benefits derived from the potentially risky

function or activity, or similarly, to evaluate the incremental cost of hazard abatement efforts

against the resulting reduction in mishap costs. I.e., used as a management tool [Icarus94].

•  to provide inputs to trade studies for system architecture and design.

Hazard probability is the expected likelihood that a system failure with hazardous consequences

will occur. As with hazard severity, the probability is ranked with qualitative or quantitative

classes or ranges. For example, a qualitative scale can range from “frequent” to “extremely

improbable” [ACAMJ25]. A rating of “absolutely impossible” is typically not an option. The

classes are scaled for the mission length or life span of an individual system, or aggregated for the

entire installed equipment base or “fleet”. The probability or frequency data is derived from

historical data for similar systems or components, or predicted based on analysis. A powerful tool

for obtaining a low hazard probability is a system architecture in which it takes multiple
independent faults before a hazardous failure occurs. I.e., the elimination of single-point failures.
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This results in a series reliability model in which the event probabilities are multiplied to arrive at
the probability of the unsafe event. See Chapter #.

3.2.3 Failure Risks

The risk attribute combines the hazard severity with the hazard probability, resulting in a hazard-
risk index or matrix:

Risk = (Severity of mishap consequences) x (Expected number of mishaps)
         = (Severity) x (Expected mishap frequency per unit of exposure) x (Amount of exposure)

Such indexing allows prioritization of hazards based on the relative level of risk. For instance,
severity-probability combinations can be marked as unacceptable (i.e., requiring redesign),
undesirable, conditionally acceptable, or acceptable. Common sense dictates that the allowed
probability of a particular hazard be inversely proportional to the associated severity. The
probability classes are usually not linear, e.g., adjacent classes [10-5, 10-3〉  and [10-3, 10-1〉  both
span 2 orders of magnitude but one has a size of 0.00099 and the other of 0.999. The same applies
to severity classes [Krantz71]. Hence, the entries in the risk index do not represent constant risk
amounts. Figure 3-3 illustrates the components of real risks, and how they are reduced and
combined into to residual risks.

Figure 3-3 Components of Risk
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•  System architecture and design that contains a backup or other form of redundancy, or
includes a failure path that directs failures in a way that limits the safety impact. E.g., rip-
stop textiles and similar techniques applied in mechanical and civil engineering objects.

•  Warning devices. They annunciate impending or actual hazards to user-systems or the
operator.

•  Safety devices. These contrivances are intended to prevent injury, damage, or hazardous
operation. They contain or absorb the harmful energy, prevent build up of dangerous energy
levels, form a barrier for that energy, or divert it away from vulnerable targets. E.g., pressure
relief valves, protective shrouds in jet engines, radiation containment buildings, fuses,
protective clothing, interlocking switches on heavy machinery, and brakes. These devices
must be checked regularly for latent faults.

•  Standard and emergency operating procedures, and training. These are typically not
acceptable as the sole means of control for catastrophic hazards.

3.2.1 Failure Accountability

Failure accountability indicates who has to fix the failed system, or has to “pay” for or accepting

or correcting the damage ensuing from system failure, whether this damage is physical, mental,

environmental, or financial. This may involve contractual obligations for the assumption of

warranty and repair costs by the system manufacturers who guarantees a certain minimum or

average fault-free operating period. The accountability often depends on actual or perceived

negligence and, in certain societies, on which associated person or business entity has a large

financial basis or “deep pockets”.
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