Evolutionary Fault- Tolerant Systems

Garrison W. Greenwood, Ph.D., P.E.
Dept. of Electrical & Computer Engineering
Fortland State University
Fortland, OR, USA

All systems eventually fail. If the system is
critical, it must be either repaired or replaced.

Unfortunately, repair and/or replacement is
not always easy...

e.q., consicder the mars rovers

In such cases, one solution is to make the sys-
tem fault-tolerant—i.e., able to autonomously
repair itself to restore functionality.

T hese fault-tolant systems must (a) detect the
failure, and (b) do something to fix the prob-
lem.

We are going to use evolvable hardware to do
the fixing.

Outline

[. Introduction to fault-tolerant systems

II. What is "evolvable hardware” 7

[II. Using evolvable hardware to recover from
faults

V. CQverview of real-time systems

V. Recovery under real-time constraints

So, what does fault-tolerance deal with?

Suppose a system suddenly fails. Two ques-
tions must be answered:

1. Can vou find the problem™
(fault detection)

2. Can you fix the problem? (fault recovery)

Oh, by the way, do both detection and recovery
without human intervention.

Motes:

e detection of faults is not always easy

e redundancy is the most common recovery
method

e redundance is not always possible: then re-
configuration might be a good choice

e N some cases detection/recovery have
real-time requirements.

Eefore discussing failure recovery, we need to
identify what the failures are.

But first, "“faults” and "failures” are not the
same thing.

def. (failure)

inability to accomplish an assigned task

def. (fault)

a defect that can lead to a failure.

e.g., a clamping diode shorts (fault) which
causes an input line to be permanently
grounded (failure)

def. (failure mode)

A specified way in which a system or compo-
nent can fail

e.g. the tailures modes of a diode are “short”
and “open”

How can we find these failure modes?

1. historical operational data

2. results from testing or experiments

3. technical literature (journals, reports, etc.)

Once the component Tailure modes are known,
the system failure modes are found using

Fault Tree Analysis (FTA)

A top-down approach where a system
failure is assumed to have happened
and cne tries to find the fault that
caused it

Failure Modes & Effects Analyvsis (FMEA)

A bottom-up approach where the effect
of every failure mode of every compo-
nent is determined.

So what causes faults???

1. components have limited lifespans (e.q.,
connectors corrode, transistors “burn

out™)

2. operational environment changes

An observation...

Environmental conditions include humidity,
temperature, shock, vibration and radiation.

Unanticipated envircnmental conditions are of
most concern because it makes the system op-
erate in an unpredictable manner.

def. (fault-tolerant system (FTS))

A system that can continue to operate in the
presence of failures (albeit with degraded
perfarmance)

FT = fault detection + fault recovery

FT can be achieved by

e fault masking (doesn't fix the problem, just
hides it)

e Tault recovery via reconfiguration (the
EHW approach)

e Tault recovery via redundancy (most com-
mon method)

/ - / -

/., /

SPARE

IMPORTANT NOTES:

1. In some cases only degraded performance
may be achieved after fault recovery takes
place.

2. When a system fails because of non-
environmental reasons, redundancy is the
only recovery method guaranteed to re-
store full functionality.

3. If redundancy not possible, reconfiguration
may be the anly viable recovery methaod

EHW = EA 4 reconfigurable circuitry

e FPGA, FFAA and FFPTA are reconfigurable
devices

e« 'EA" means ES, GA, etc.

Pit+1) = S(EVP(E))))

Pt population of solutions at time ¢
V() random wvariation operator

() evaluation operator

S(-) selection operator

e cach "solution” Is a hardware configuration

e ovaluation can be done in two ways:
1. in hardware (intrinsic)

2. In software (extrinsic)

Evolutionary Algorithm Chromosomes
Genetic search on a population of 10110011010 Conversion
chromosomes or11o1o11el to a circuit
= select the best designs from a population description
* reproduce them with some variation
= jterate until the performance goal is "K“::::“““- _____ P ——]
reached. ' ",f" |
A Cedinse |7 Models |1 | Control J
! avolution —= lof circuits bitstrings

. fﬁimulator
~ (e.g. SPICE)

r-------------
‘\.\
\\
Al
Al e e e
.

Circuit
Target Response evaluation TeRIpnses Reconfigurable
respanse * and filness assessment _.,._—[B] HW
Inirinsi
evolution

Main steps for the evolutionary synthesis of electronic circuits,

From A. Stoica et al., “Reconfigurable VLSI Architectures for Evolvable Hardware: From

Experimental Field Programmable Transistor Arrays to Evolution-Oriented Chips”, IEEE Trans.
on VLSI Sys., Vol 9(1), 2001

Field Programmable Gate Array (FPGA)

B
. . oac
= - -
o] 2] o] 2]
11 = = m |
\
cLe CLE cLe CLE
1 1 1
11
(=] h Vi 2
108 108
11
Routing Channels
1T
5D R] B
[=] v [2]

.-I

o
[us]

E Y
cLE [: cLe [r
— L =]
=

WorsAing Roulng Chornal

ROBK

el

Figure 1: Basic FPSA Block Diagmm

from Xilinx Spartan family datasheet, Version 1.4, Jan 1999

B — 71
G-LUT
ot o | |
OF— %2
o il [
G —a2 &4
_1 N | |
& 51 H-LUT | I \“
ER L 1 ¥
: e faniid
£],] F »
- Jm)l
. =3Fl.ll-r?§f:nF_I LV A B af— xa
F2 Fz F1ﬂ-‘F-1 | :— I
Fl e—q
T | \Y :
Mull Conircdad))
K I by Chrfiguration Frogram | _¥
EC
Faw 1D

Figure 2: Spartan Simplified CLE Logic Diagram {some features not shown)

I_ aTa _I
| I
T
I
o o o
CUTPUT CRIVER |
CH Frogremmabis Elew Rak
[aly Programmabla TTLWGMOE Drive
EC |
%
"
NPUT BUFFER
12
D [|
Frogrammabla
1K K Pul-Up/

Figure 5: Simplified Spartan 108 Block Diagram

FulOmwn [|
o=y
EC L EC Wi pl ecoer Conirolied
b4y Comiguration Prosgram N
1

— — — — — —

figures from Xilinx Spartan family datasheet, Version 1.4, Jan 1999

P5EM

PSM

PSM

B Singles
} 3Longs
1 __}:- Doubiss
H Psm Psm B
b il R 1.1
? DoLbkes 3Longs BSIngks 3Longs

Figura 8: Spartan Series CLB Routing Channels and Interface Block Diagram

©

St Pass Transistors Per
L +l—1 -+ H- Swiich Malr Inlerconnect Point

Figura 10: Programmable Switch Matriz

figures from Xilinx Spartan family datasheet, Version 1.4, Jan 1999

So, how do yvou program these FRPGAs with an
EAY

A good example is the use of “Jbits” used to
program the Xilinx Virtex FFGA tfamily.

Jbits are a set of Java classes that provide an
interface into the Virtex FFGA configuration
bitstream. (The bitstream can come from a
Xllinx design tool or readback from the actual
device.)

Each configurable logic block (CLE) is the
FFGA has coordinates (:,7) and each CLE
configuration is located in a specific region of
the datastream.

The EA creates a new configuration and then
uses the Jbit interface to modify the bit-
stream accordingly. The modified bitstream
s reloaded into the Virtex FRPGA.

oy
W
Gy
M2

Gl GO OR AND

el o e e e e T 0 R [0 [0 Y O
e e ™ e R T Bl i i e T e
HFFRPOORFR,FL,ODODRFR,PFL,ODORFRL,RHODOO
H O O+ ORORORORFRORFRO
e el
el e I o I T s e I e T i s i Y e Y o e

To change a LUT implementation of an OF
gate to an AND gate, the bitstream is up-
loaded, the bits of the LUT are located, and

OR 1111 1111 1111 1110 Oxfffe

s changed to

AND 1000 0000 0000 0000 0x8000

JS* Btteampt to connect to the hardware +/
rezult = board.comnect (remcteHostHame,

porth ;

JS* 3et the type of devices used by the
% first FPGE on the board +/
devicaType = board.getDevicaType(d) ;
JS* Read in the bit file */
jBits.readiinfilaNams) ;

J* Zet the Top left CLE (1,1) Lo an AND gate
ww] 1000 Q000 Q000 Qo0 */
jBits.set (1, 1, LUT.SLICEC @, OxX8000);

i

Fde ey

!

L the now updated Bitstream */
bz = jBit

g.getrllrackats() ;

S* Finally send the new bitstream to the
w® Yirtex Chip */

rezult = board.szetConfiguration(o,ka) ;
J* Bnd cleanup... */

board. disconnect () ;

Figure 2. Source code for JBits example

from G. Hollingworth et al., “Safe Intrinsic Evolution of Virtex Devices”, Proc. 2000 NASA/DOD
Evolvable Hardware Conf., 2000

The analog counterpart to the FFRPGA is the
field programmable analog array (FPAA)

QuT2e |1 | s |28 | ouT1+
el He T
outz-| 2 H| | . 27 | ouT1-
T l | ||]2
IMZ— | 4 f”fH ' M'_&\'H. 25 IN1-
. P (™ |
TOI| 3 1A e bva—T 1A 1+ | |24 | TEST
—] |~ e —
TRET| & 23| TEST
— Configuration Mamo
VS| T | ke : i | 22| VREF
Anglog Rauting Foal
Tho| é Raterance & AutoCaibration | | |1 SN0
TCE [O 20| CaL
e]
™S 12 | Ij AR -mu-::\l.ﬂ. | (18] oMy,
| {ER]?‘“‘ o 18] IN3=
—]] g " — —

M4+ (12 f’T wu\‘“ 17 | 1N+
OUT4- |13 |- A 15| cUTI-
il =
OUTSe [14 oy H 15| OUT3=

Lattice Semiconductor ispPACI10

The user can program

e input amplifiers gain (by choosing one of 8
resistor values plus polarity)

e Cutput amplifier bandwidth (by choosing 1
of 128 capacitor values)

e iNntrablock and interblock interconnections

The datastream for the ispFPAC10 is = 320 bits
long. The EA manipulates the binary string
directly.

The lowest granularity device is the 0.5um
CMOS field programmable transistor array

(FFPTA). This is a prototype chip developed
for NASA's JFPL.

The FFTA is aorganized as a 2D array of cells

W+
s7 / 512
g3
520
522
V.

Schematic of an FPTA cell consisting of 8 transistors and 24 switches.

Cells can be combined to form current mirrors,
logic gates and op amps.

From A. Stoica et al., “Reconfigurable VLSI Architectures for Evolvable Hardware: From
Experimental Field Programmable Transistor Arrays to Evolution-Oriented Chips”, IEEE Trans.
on VLSI Sys., Vol 9(1), 2001

To illustrate how EHW can be used for fault
recovery, we will consider an analog FTS. We
assume

1. the system is linear with dynamics gow-
erned by constant coefficient ordinary dif-
ferential equations

2. the system is a "black box"'—iIi.e., no ac-
cess to inside to repair or replace failed
components

3. evolution is done intrinsically

Mote: black box = compensation is the anly
means of handling faults

+ Chatjpiat
T b gl plani & R
Ml

i I

Felerence _ J'f'v:cmjluu:r;_lhle
ingst analog device

evolutionary

algorithm

-

Campen safor Kypsten

Fault-tolerant analog system

The plant is 3rd order. The fault is manifested
by a change in bandwidth; fault recovery should
restore the bandwidth.

The reconfigurable device is the ispPAC10,
which implements a lead or lag compensator.

The EA evolved a population of 20 for 200
generations using recombination and mutation.

Parsonal Computer

GPIE L,
@ IIF

¥
L
signal reconfigurable spectrum
generator dewvice analyzear

The intrinsic EHW testbench

The fitness of configuration ¢ is given by

F“I

fitness(C') = Y [M (i) — M*(3)]?

=1

where M (i) is the compensated system’s mad-
nitude and M™(2) the desired maanitude at fre-
quency 1.

The 5 test frequences where chosen such that
some were in the passband, one at the -3db
point, and some in the stopband.

Mote: just using the -3db point would produce
the trivial solution of increasing or decreasing
the open-loap gain.

C=1.02pF
{min setting)
I
I

G=1 IS
Input ::)7 A3
8 OA2
G=-1
144
Set to control i
comer frequency High-pass C=1.02pF
/ function (min setting)
1 / —
'—\JUU‘—. — G;‘] ; G:K;: _H_m_'
/ . Al Lead or Lag
\w‘i 0A1 output
| o |J
a2
\
Low-pass
function

The EA had to evolve the capacitor value and
the two amplifier gain values (K, and K5).

We also had to evolve two switch positions
because the only way to get Ky or K5 equal to
0 was to remove the amplifiers 7.4y and TA-.

20 T T T T T T T T

"faulty”" ———
"orginal" -—-—
"restored” ---#¥--

_50 L L L L L L L L
104000 100000

HZ

Overview of Real-Time Systems
def. (real-time systems)

A real-time system (RTS) is any system that
is both logically and temporally correct.

def. (logically correct)

satisties all functions specifications

def. (temporally correct)

completes all tasks within specified timeframes

Fast does not mean real-time

and

Real-time does not mean fast

For example, consider two real-time delivery
systems: one is a courier who guarantees de-
livery in less than 3 days and an email system
that guarantees delivery in 10 minutes.

Notice both systems guarantee delivery (logi-
cally correct), but one is orders of maagnitude
faster than the other.

Scenario #1: need delivery in 5 days
(both are RTS)

Scenario #2: need delivery in 5 minutes
(neither are BTS)

So, why is BT an issue in fault-tolerance?

ANS: because Taults cannot be left uncorrected
indefinitely.

This impacts intrinsic EHW used for fault
recovery because reconfiguration takes time,

In fact, in some cases intrinsic reconfiguration
may not be practicallll

With intrinsic reconfiguration every solution
must be downloaded into the reconfigurable
time, which takes time i,

Device Type | Size tp (ms)
ispPAC10 FPAA 4 100
AN220E04 FPAA 4 3.8
X C3020A FEFGA | 64 1.5

Virtex XCV50 FPGA [1728 7
X CADS5X L FFGA [2136 102
APEX II EP2AT0 [FFGA 6720 12.5
JPL's FPTAZ FPTA| 64 0.008

Let A be the number of new configurations
created each generation

Let ts the time to conduct a fithess test.

Then an EA running for k& generations has an
intrinsic reconfiguration time of

T(k,A) = kA(tp+tp)

But the real problem is ¢y and especially for
analog systems.

Example:

An ANZ2Z20E04 FPAA is used to compensate
for aging effects in a control system responsi-
ble for positioning a satellite’s communications
antenna.

The reconfiguration search is done by a gen-
erational GA run for 500 generations with a
population size of 100,

The system’s step response is measured to de-
termine If the compensation is correct. This
step response test takes tp =625 milliseconds
to conduct.

Hence, A = 100, k£ = 500 and t; = 3.8 ms,
which makes T.(500.,100) = 8.7 hours.

Is 8.7 hours too long™
Ans: mayhe

Feconfiguration times are meaningless unless
they are put into context.

For instance, suppose the above control sys-
tem is in a communications sattelite. It only
operates for a few minutes every 20 hours.
However, failure to aperate can lead to the
loss of the sattelite.

If a control system fault occurs just after one
of these operaticonal periods, no problem.

If the operational period starts in 10 minutes,
big problem.

T his means vou can only determine it a
reconfiguration time is too long by comparing
it against the fault recovery deadline.

Since fault recovery has a deadline, It meets
the definition of a BRTS.

T his has strong implications for the EHW com-
munity.

It is no longer sufficient to just talk about how
an EA was able to restore a circuit’'s function-
ality. (only shows logical correctness)

Just reporting an algorithm's running time
doesn’'t say anvthing about temporal correct-
ness either.

The key point is expressed by the following first
principle:

No EHW=-based recovery method can
legitimately proclaim efficacy until it is
proven to be both logically and tempo-
rally correct.

Logical correctness is easy to prove. (Try it
out and see if it works!)

Temporal correctness is proven by comparing
the EA running time against the fault recov-
ery deadline (defined when FTA or FMEA was
conducted).

If both are satisfied, wour EHW recovery
method is viable.

Final comments:

e Extrinsic reconfiguration is often impracti-
cal as a fault recovery method because

1. The precise nature of the failure may
not be known. Hence, any simulation is
likely to be inaccurate.

2. It may take too long.

For instance, consider trying to extrin-
sically reconfigure hardware in a deep
space probe operating near the plant
MNeptune. Communication with the
probe will take hours.

e Genetic programming should be avoided
for any fault recovery methods. It simply
requires far too much computational effort
and is unlikely to meet any realistic fault
recovery deadline.

