
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 2, FEBRUARY 2004 305

[2] , “A generalized entropy criterion for Nevanlinna–Pick interpola-
tion with degree constraint,” IEEE Trans. Automat. Contr., vol. 46, pp.
822–839, June 2001.

[3] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control
Theory. New York: Macmillan, 1992.

[4] B. A. Francis, A Course in Control Theory. New York: Springer-
Verlag, 1987, Lecture Notes in Control and Information Sciences.

[5] J. W. Helton and O. Marino, Classical Control Using Methods.
Philadelphia, PA: SIAM, 1998.

[6] H. Kwakernaak, “Robust control and -optimization-Tutorial
paper,” Automatica, vol. 29, no. 2, pp. 255–273, 1993.

[7] D. J. N. Limebeer and B. D. O. Anderson, “An interpolation theory ap-
proach to controller degree bounds,” Linear Alg. Applicat., vol.
98, pp. 347–386, 1988.

[8] R. Nagamune, “A shaping limitation of rational sensitivity functions
with a degree constraint,” IEEE Trans. Automat. Contr., vol. 49, pp.
296–300, Feb. 2004.

[9] , “Robust control with complexity constraint: A Nevanlinna–Pick
interpolation approach,” Ph.D. dissertation, Dept. Math., Royal Inst.
Technol., Stockholm, Sweden, 2002.

[10] , “A robust solver using a continuationmethod for Nevanlinna–Pick
interpolation with degree constraint,” IEEE Trans. Automat. Control,
vol. 48, pp. 113–117, Jan. 2003.

[11] J. L. Walsh, Interpolation and Approximation by Rational Functions in
the Complex Domain. Providence, RI: AMS, 1956, vol. 20.

[12] K. Zhou, Essential of Robust Control. Upper Saddle River, NJ: Pren-
tice-Hall, 1998.

Fault Tolerant Control: A Simultaneous
Stabilization Result

Jakob Stoustrup and Vincent D. Blondel

Abstract—This note discusses the problem of designing fault tolerant
compensators that stabilize a given system both in the nominal situation,
as well as in the situation where one of the sensors or one of the actuators
has failed. It is shown that such compensators always exist, provided that
the system is detectable from each output and that it is stabilizable. The
proof of this result is constructive, and a worked example shows how to
design a fault tolerant compensator for a simple, yet challenging system.
A family of second order systems is described that requires fault tolerant
compensators of arbitrarily high order.

Index Terms—Controller order, fault tolerant control, sensor faults, si-
multaneous stabilization.

I. INTRODUCTION

The interest for using fault tolerant controllers is increasing. A
number of theoretical results as well as application examples has now
been described in the literature; see, e.g., [1]–[9] to mention some of
the relevant references in this area.

The approaches to fault tolerant control can be divided into twomain
classes: Active fault tolerant control and passive fault tolerant control.
In active fault tolerant control, the idea is to introduce a fault detection
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and isolation block in the control system. Whenever a fault is detected
and isolated, a supervisory system takes action, and modifies the struc-
ture and/or the parameters of the feedback control system. In contrast,
in the passive fault tolerant control approach, a fixed compensator is
designed, that will maintain (at least) stability if a fault occurs in the
system.

This note will only discuss the passive fault tolerant control ap-
proach, also sometimes referred to as reliable control. This approach
has mainly two motivations. First, designing a fixed compensator can
be made in much simpler hardware and software, and might thus be ad-
missible in more applications. Second, classical reliability theory states
that the reliability of a system decreases rapidly with the complexity
of the system. Hence, although an active fault tolerant control system
might in principle accomodate specific faults very efficiently, the added
complexity of the overall system by the fault detection system and the
supervisory system itself, might in fact sometimes deteriorate plant re-
liability.

In [10], a fault tolerant control problem has been addressed for sys-
tems, where specific sensors could potentially fail such that the corre-
sponding outputs were unavailable for feedback, whereas other outputs
were assumed to be available at all times.

In [11, Sec. 5.5], the question of fault tolerant parallel compensation
has been discussed, i.e., whether it is possible to design two compen-
sators such that any of them alone or both in parallel will internally
stabilize the closed loop system.

The existence results given in [10] and [11] can be considered to be
special cases of the main results of this note.

In this note, we shall consider systems for which any sensor (or in the
dual case any actuator) might fail, and we wish to determine for which
systems such (passive) fault tolerant compensators exist. The main re-
sults state that the only precondition for the existence of solutions to
this fault tolerant control problem is just stabilizability from each input
and detectability of the system from each output.

Throughout this note, RPp�m shall denote the set of proper, real-
rational functions taking values in Cp�m, and RSPp�m shall denote
the set of strictly proper, real-rational functions taking values in Cp�m.
RHp�m

1 shall denote the set of stable, proper, real-rational functions
taking values in Cp�m. The notation fs 2 R+1 : B(s) = 0g will
be used as shorthand for zeros of B( � ) on the positive real line. The
set includes the point at infinity if lims!1B(s) = 0. For matrices
A;B;C;D of compatible dimensions, the expression

G(s) =
A B

C D

will be used to denote the transfer functionG(s) = C(sI�A)�1B+
D. Real-rational functions will be indicated by their dependency of a
complex variable s (as in G(s);K(s)), although the dependency of s
will be suppressed in the notation (as in G;K), where no misunder-
standing should be possible.

II. PROBLEM FORMULATION

Consider a system of the form

_x = Ax +Bu

y1 = C1x

...

yp = Cpx (1)

where x 2 Rn; u 2 Rm; yi 2 R; i = 1 . . . ; p and A;B;Ci; i =
1 . . . ; p are matrices of compatible dimensions. Each of the pmeasure-
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ments yi; i = 1; . . . ; p, is the output of a sensor, which can potentially
fail.

In this note, we will determine whether it is possible to design a
feedback compensator that is guaranteed to stabilize a given system,
in case any sensor could potentially fail. To be more precise, we are
looking for a dynamic compensator u = K(s)y;K 2 RPm�p, with
the property, that each of the following feedback laws:

u = K(s)y u = K(s)yf;1; � � � ; u = K(s)yf;p

y =

y1

y2
...
yp

yf;1 =

0

y2
...
yp

; � � � ; yf;p =

y1

y2
...
0

(2)

are internally stabilizing, i.e., that both the nominal system as well as
each of the systems resulting from one of the sensors failing are all
stabilized by K(s).

It is obvious, that the answer to this question immediately provides
the answer to the corresponding dual question, i.e., whether is possible
to design a compensator, that works in the nominal situation, but also
if any of the actuators would fail.

III. PRELIMINARIES

We remind the reader (see, e.g., [12, Th. 5.9, p. 127]) that a doubly
coprime factorization of a strictly proper plant and a stabilizing com-
pensator

G(s) = N(s)M�1(s) = ~M�1(s) ~N(s)

K(s) = U(s)V �1(s) = ~V �1(s) ~U(s)

where

G 2 RSPp�m N 2 RHp�m
1 M 2 RHm�m

1

~M 2 RHp�p
1

~N 2 RHp�m
1

K 2 RPm�p U 2 RHm�p
1 V 2 RPp�p

1

~V 2 RHm�m
1

~U 2 RHm�p
1

can be found from an observer based controller by the formulas

M U

N V
=

A+BF B �L

F I 0

C 0 I

~V ~U
~N ~M

=

A+ LC B L

�F I 0

C 0 I

(3)

where A;B;C are parameters for a (minimal) state space representa-
tion for G(s), i.e., matrices of smallest, compatible dimensions such
that

G(s) =
A B

C 0

F is an arbitrary stabilizing state feedback gain and L is an arbitrary
stabilizing observer gain, i.e., F and L are matrices of compatible di-
mensions such that both A + BF and A + LC have characteristic
polynomials which are Hurwitz.

The eight matrices defined by (3) satisfy the double Bezout identity

M U

N V

~V � ~U

� ~N ~M
=

I 0

0 I
:

We also remind the reader, that a unit is an element of a ring, which
has an inverse in that ring. In particular, a unit in the ring of stable
proper rational functions, is simply a stable proper function with a
stable proper inverse.

We will need the following result (see [13, Th. 5.2, p. 106] or [11,
Cor. 6, p. 118]) on the strong stabilization problem, i.e., the problem of
finding a stable stabilizing compensator.
Lemma 1: LetA(s); B(s) be stable proper transfer functions. Then

there exists a stable proper transfer functionQ(s) such that the function

A(s) +B(s)Q(s)

is a unit in the ring of stable proper rational functions, if and only if
A(zip) has constant sign for all zip 2 fs 2 R+1 : B(s) = 0g.

IV. MAIN RESULTS

In this section, we will present our main results which state that for
systems with several outputs, it is always possible to find a compen-
sator, that both stabilizes the nominal situation, as well as the situation
where any of the sensors fails. In a similar fashion, it is shown, that it
is always possible to design a fault tolerant feedback compensator for
a system with several actuators. The only precondition to these results,
is in the first case that all unstable modes for the system are observable
by each sensor and in the second (dual) case, that all modes are con-
trollable by each actuator.
Theorem 1: Consider a system given by a state-space model of the

form (1). Assume, that the pair (A;B) is stabilizable, and that each
of the pairs (Ci; A); i = 1; . . . ; p, is detectable. Then, there exists a
dynamic compensator K(s) such that each of the p + 1 control laws
(2) internally stabilizes (1).

The proof will be constructive, and we shall give some comments on
practical computations in the sequel of the proof.

Proof: First, let us note that it suffices to prove the result in the
case where m = 1 and p = 2. To see that m = 1 can be assumed
without loss of generality, one can just consider the system

_x = Ax + �B�u

y1 = C1x

...

yp = Cpx (4)

where �B = Bv; v 2 Rm�1; �u 2 R, and v is any vector such that the
pair (A; �B) is also stabilizable. This is always possible (see, e.g., [14,
Cor. 1.1, p. 43]). Thus, if �u = �K(s)y is a fault tolerant feedback law
for (4), then u = K(s)y is a fault tolerant feedback law for (1) with
K(s) = v �K(s).

Next, if

K(s) = (K1(s) K2(s)) (5)

is a fault tolerant feedback compensator for this system

_x = Ax +Bu

y1 = C1x

y2 = C2x (6)

then

K(s) = (K1(s) K2(s) 0 � � � 0) (7)

is a fault tolerant feedback compensator for (1). Indeed, in the nominal
situation or if one of the sensors corresponding to yi; i = 3; . . . ; p fails,
the control signal generated by (7) will be the same as the control signal
generated by (5) in the nominal situation. If yi; i = 1; 2 fails, (7) will
still generate the same control signal as (5) which is known to stabilize
the shared dynamics of the two systems.

Thus, without loss of generality, we will assume that the system in
consideration has the form (6), whereB is now a single columnmatrix,
Ci; i = 1; 2 are single row matrices, u; yi 2 R; i = 1; 2. Thus, it will
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be assumed that the transfer functions from u to each of the outputs are
scalar.

Define C = (
C1

C2

) and let K0(s) be an internally stabilizing com-

pensator for the system (6), which has the transfer function G(s) =
C(sI�A)�1B. Introduce a doubly coprime factorization ofG(s) and
K0(s), i.e., stable proper functionsM;N; ~V0; ~U0

G(s) = N(s)M�1(s) =
N1(s)

N2(s)
M
�1(s)

K0(s) = ~V �10 (s) ~U0(s) = ~V �10 (s)( ~U0;1(s) ~U0;2(s))

satisfying the Bezout identity

~V0M �

~U0N = ~V0M �

~U0;1N1 �
~U0;2N2 = 1: (8)

This can always be done—explicit formulas are given by (3).
Next, we note that replacing in (8) the triplet

( ~V0 ~U0;1 ~U0;2) by (~V ~U1 ~U2)

where

~V = ~V0 �Q2N1 �Q3N2

~U1 = ~U0;1 �Q1N2 �Q2M

~U2 = ~U0;2 +Q1N1 �Q3M

also provides a solution to (8), as this simple calculation shows

~VM �

~U1N1 �
~U2N2

= (~V0 �Q2N1 �Q3N2)M � ( ~U0;1 �Q1N2 �Q2M)N1

� ( ~U0;2 +Q1N1 �Q3M)N2

= ~V0M �

~U0;1N1 �
~U0;2N2 = 1:

Consequently, any transfer function of the form

~V �1( ~U1 ~U2) = (~V0 �Q2N1 �Q3N2)
�1

� ( ~U0;1 �Q1N2 �Q2M ~U0;2 +Q1N1 �Q3M) (9)

whereQ1; Q2; Q3 are all stable proper rational functions, is also a sta-
bilizing compensator.

In the sequel, we shall demonstrate, that Q1; Q2; Q3 can be chosen
such that ~V �1( ~U1 ~U2) stabilizes both the nominal and the faulty sys-
tems.

If the sensor corresponding to one of the outputs fails, the controller
~V �1( ~U1 ~U2) has to stabilize a system of the form:

G =
N1(s)

0
or G =

0

N2(s)

which means that stability is obtained if and only if the compensator
(9) satisfies the following two equations:

( ~V0 �Q2N1 �Q3N2)M

� ( ~U0;1 �Q1N2 �Q2M ~U0;2

+Q1N1 �Q3M)
N1

0

= ~V0M �Q2N1M �Q3N2M

� ~U0;1N1 +Q1N2N1 +Q2MN1

= ~V0M � ~U0;1N1 +Q1N2N1 �Q3N2M = u1 (10)

and

(~V0 �Q2N1 �Q3N2)M

� ( ~U0;1 �Q1N2 �Q2M ~U0;2

+Q1N1 �Q3M)
0

N2

= ~V0M � ~U0;2N2 �Q1N1N2 �Q2N1M = u2 (11)

where u1; u2 are units in the ring of stable proper rational functions.

Thus, the existence of a fault tolerant controller has now been shown
to be inferred from the existence of stable proper rational functions
Q1; Q2; Q3, such that u1; u2 become units. We will prove this exis-
tence by first choosing Q1 appropriately. Subsequently, (10) and (11)
will be considered as equations for Q3 and Q2 which are no longer
coupled, and show that each has an admissible solution.

To that end, first note that it is possible to determine a stable proper
function Q1, such that:

Q1(s)N1(s)N2(s)� ~U0;1(s)N1(s)js=z =
1

2
(12)

for every value of zip 2 fz 2 R+1 : M(z) = 0g, since
N1(zip)N2(zip) can not be zero for M(zip) = 0 due to coprimeness
of M and N1 and of M and N2. To determine Q1 satisfying (12) in
practice can be done by a standard rational interpolation.

Now, for a fixedQ1, (10) can be recognized as a strong stabilization
problem in the variable Q3. It is known from Lemma 1 that such Q3

exists if and only if

~V0M � ~U0;1N1 +Q1N2N1js=z

has constant sign for every value of

zip 2 fz 2 R+1 : M(z) = 0 or N2(z) = 0g:

For M(zip) = 0, we obtain

~V0(s)M(s)� ~U0;1(s)N1(s) +Q1(s)N2(s)N1(s)js=z

= � ~U0;1(s)N1(s) +Q1(s)N2(s)N1(s)js=z =
1

2
(13)

from (12). For N2(zip) = 0, we get

~V0(s)M(s)� ~U0;1(s)N1(s) +Q1(s)N2(s)N1(s)js=z

= ~V0(s)M(s)� ~U0;1(s)N1(s)js=z = 1 (14)

where (8) has been applied. This proves the existence of an admissible
functionQ3. To determineQ3 in practice, one approach is first to find
u1 that interpolates the constraints (13) and (14), and subsequently to
determineQ3 as a solution to (10). If u1 in addition is chosen to inter-
polate all constraints arising from zeros ofM and N2 in the right half
plane (not just the positive half line), Q3 can be computed by

Q3 =
~V0M � ~U0;1N1 +Q1N2N1 � u1

N2M
: (15)

The proof of existence of an admissibleQ2 is completely analogous
to the proof of existence of Q3. The interpolation constraints for (11)
corresponding toM(zip) = 0 amounts to

~V0(s)M(s)� ~U0;2(s)N2(s)�Q1(s)N1(s)N2(s)js=z

= � ~U0;2(s)N2(s)�Q1(s)N1(s)N2(s)js=z

= 1� ~V0(s)M(s) + ~U0;1(s)N1(s)

�Q1(s)N1(s)N2(s)js=z

= 1�
1

2
=

1

2
(16)

where (8) and (12) has been exploited. ForN1(zip) = 0, we obtain the
constraints

~V0(s)M(s)� ~U0;2(s)N2(s)js=z = ~V0(s)M(s)

� ~U0;2(s)N2(s)�Q1(s)N1(s)N2(s)js=z = 1 (17)

from (8). Q2 can now be found as a solution to (11), and the resulting
u2 will interpolate the conditions (16) and (17). Again, Q2 might be
computed by first finding u2 interpolating all constraints arising from
zeros ofM and N1 in the right half plane [not just (16) and (17)], and
then computing Q2 as

Q2 =
~V0M � ~U0;2N2 �Q1N1N2 � u2

N1M
: (18)
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Thus, one possible fault tolerant compensator is

K = (~V0 �Q2N1 �Q3N2)
�1

� ( ~U0;1 �Q1N2 �Q2M ~U0;2 +Q1N1 �Q3M) (19)

which stabilizes the system given by (6) in the nominal case, as well as
in the case, where one of the two sensors fail.

A corresponding result for actuator failures follows trivially from
Theorem 1 by duality.
Theorem 2: Consider a system given by a state-space model of the

form

_x = Ax +B1u1 + � � �+Bmum

y = Cx (20)

where x 2 Rn; ui 2 R; i = 1 . . . ;m; y 2 Rp and A;Bi; i =
1 . . . ; m; C are matrices of compatible dimensions. Assume, that each
of the pairs (A;Bi); i = 1; . . . ;m, is stabilizable and that the pair
(C;A) is detectable. Then, there exists a dynamic compensator K(s)
such that the nominal control law

u =

u1
u2
...
um

= K(s)y

as well as each of the m control laws

u =

0

u2
...
um

u =

u1
0
...
um

; � � � ; u =

u1
u2
...
0

internally stabilizes (20).
Proof: Follows by transposing the system and the compensator.

It is interesting to note that it might be necessary to resort to ar-
bitrarily high controller orders even for a system of low order. As an
example, consider for " > 0

G"(s) =
s�1

(s�(1+"))(s+1)
s�1

(s�(1+"))(s+1)

(21)

with the following coprime factorization:

G"(s) = N(s)M(s)�1 =
s�1

(s+1)
s�1

(s+1)

s� (1 + ")

s+ 1

�1

for which the fault tolerant control problem is equivalent to finding
K(s) = ~V �1( ~U1

~U2) such that

~V
s� (1 + ")

s+ 1
� ~U1

s� 1

(s+ 1)2
� ~U2

s� 1

(s+ 1)2
= u1

~V
s� (1 + ")

s+ 1
� 0� ~U2

s� 1

(s+ 1)2
= u2

~V
s� (1 + ")

s+ 1
� ~U1

s� 1

(s+ 1)2
� 0 = u3 (22)

where u1; u2; u3 are all units in the ring of stable proper functions.
Evaluating these equations at s = 1 at s =1, we notice that

u1(1) = u2(1) = u3(1) and u1(1) = u2(1) = u3(1):

On the other hand, we also have

u1(1 + ") = u2(1 + ") + u3(1 + "):

Let us define the units v2 = u2=u1 and v3 = u3=u1. Then, we have

v2(1) = v3(1) = 1

v2(1) = v3(1) = 1 v2(1 + ") + v3(1 + ") = 1:

From the last equation, we infer that either v2(1 + ") � (1=2) or
v3(1+") � (1=2). Assume without loss of generality that v2(1+") �
(1=2). Then, v2 is a unit such that

v2(1) = 1 
 := v2(1 + ") �
1

2
and v2(1) = 1:

The constraint at infinity, means that we can assume v2 to be of the
form

v2(s) =
sn + �1s

n�1 + � � �+ �n
sn + �1sn�1 + � � �+ �n

(23)

for some n, which leads to the conditions

1 + �1 + � � �+ �n = 1 + �1 + � � �+ �n (24)

and

(1 + ")n + (1 + ")n�1�1 + � � �+ �n

= 
(1 + ")n + 
(1 + ")n�1�1 + � � �+ 
�n: (25)

Subtracting (24) from (25) gives

(1 + ")n � 1

+ ((1 + ")n�1 � 1)�1 + � � �+ ((1 + ")� 1)�n�1

= (
(1 + ")n � 1) + (
(1 + ")n�1 � 1)�1

+ � � �+ (
 � 1)�n: (26)

We remind the reader, that a necessary condition for (23) to be a unit
is that �i > 0; �i > 0; i = 1; . . . ; n. Thus, all the terms on the left
hand side of (26) are positive. This means, however, that (26) can only
be true if

(1 + ")n >
1



� 2

or, equivalently

n >
log 2

log(1 + ")
!1 for "! 0+:

From (22), we obtain

v2 =
u2
u1

=
~V s�(1+")

s+1
� ~U2

s�1
(s+1)

~V s�(1+")
s+1

� ~U1
s�1

(s+1)
� ~U2

s�1
(s+1)

=
(s� (1 + "))(s+ 1)� (s� 1)~V �1 ~U2

(s� (1 + "))(s+ 1)� (s� 1)~V �1 ~U1 � (s� 1)~V �1 ~U2

:

Since the order of the left-hand side of this equation tends to infinity
as " tends to zero, clearly also the order either of ~V �1 ~U1 or of ~V �1 ~U2

has to tend to infinity.
Thus, the order of the resulting controller can be required to be of

arbitrarily high order even for this family of second-order systems.

V. FAULT TOLERANT CONTROL DESIGN EXAMPLE

In this section, we shall apply the method of the constructive exis-
tence proof for a system which is only of second order, but yet difficult
to reliably stabilize

_x =
3 0

�1 �1
x+

1

0
u

y1 = (1 2)x

y2 = (1 3)x: (27)

This system has a stable pole in �1 and an unstable pole in 3. The
transfer function from u to y1 has a zero in 1, whereas the transfer
function from u to y2 has a zero in 2.
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The objective is now to find a compensator K(s), such that all the
three control laws

u = K(s)
y1
y2

u = K(s)
0

y2
u = K(s)

y1
0

internally stabilize (27).
We will find the doubly coprime factorization by designing an ob-

server based compensator. One possible observer gain matrix (there are
infinitely many) that assigns the observer poles to the set f�2;�1g is
the following gain:

L =
�12 8

4 �3
:

The (unique) feedback gain that also assigns poles to the set f�2;�1g
is

F = (�5 0):

Consequently, the transfer matrix for the system

G(s) =
1

s2 � 2s� 3

s� 1

s� 2

can be written in the following coprime factorization form:

G(s) =
N1(s)

N2(s)
M�1(s)

where

M(s) = 1 + F (sI � A�BF )�1B =
s� 3

s+ 2
N1(s)

N2(s)
= C(sI � A�BF )�1B =

s�1

s +3s+2
s�2

s +3s+2

:

The compensator has the following factorization:

K0 = ~V �10 ( ~U0;1
~U0;2)

with

~V0 = 1� F (sI � A� LC)�1B =
s2 + 8s+ 12

s2 + 3s+ 2

( ~U0;1
~U0;2) = �F (sI � A� LC)�1L

=
1

20
(�3s� 6 2s+ 4):

It is easy to verify, that the aforementioned six functions satify the Be-
zout identity

~V0M � ~U0;1N1 � ~U0;2N2 = 1:

Next, we would like to select Q1 satisfying (12), i.e., such that

Q1(zip)N1(zip)N2(zip)� ~U0;1(zip)N1(zip) =
1

2

wheneverM(zip) = 0 on the positive real half-line, which in our case
means zip = 3. Since we have only one interpolation point, a possible
choice of Q1(s) is a constant

Q1(s) =
1 + 2 ~U0;1(zip)N1(zip)

2N1(zip)N2(zip)
= �200:

The remaining two steps are to solve the two (independent) strong
stabilization problems (10) and (11). First, we should findQ3 satisfying

(10) where u1 is a stable proper function with a stable proper inverse.
The interpolation points are the positive real zeros (including1) ofN2

and ofM which are zN = f2;1g; zM = 3, for which we have

~V0(2)M(2)� ~U0;1(2)N1(2) +Q1(2)N1(2)N2(2) = 1

~V0(3)M(3)� ~U0;1(3)N1(3) +Q1(3)N1(3)N2(3) =
1

2
~V0(1)M(1)� ~U0;1(1)N1(1)

+Q1(1)N1(1)N2(1) = 1:

A possible u1 that interpolates (2; 3;1) to (1; (1=2); 1) can be found
from the Routh–Hurwitz conditions:

u1 =
s3 + 24s2 + 74s+ 1766

s3 + 480s2 + 25s+ 40
:

Thus, Q3 can be computed from (15) as

Q3(s) =
~V0M � ~U0;1N1 +Q1N1N2 � u1

N2M

=
456s4 + 4807s3 � 50 993s2 � 5888s� 4884

s4 + 481s3 + 505s2 + 65s+ 40
:

For the second strong stabilization problem

~V0M � ~U0;2N2 �Q1N1N2 �Q2N1M = u2

the interpolation points are: zN = f1;1g; zM = 3 A possible
u2 that interpolates (1; 3;1) to (1; (1=2);1) can be found from the
Routh–Hurwitz conditions

u2 =
s2 + 2s+ 21

s2 + 20s+ 3

which enables us to compute Q2 from (18) as

Q2(s) =
~V0M � ~U0;2N2 �Q1N1N2 � u2

N1M

=
18s3 + 302s2 + 3420s+ 496

s3 + 21s2 + 23s+ 3
:

Now, we are ready to compute a fault tolerant controller as

K = (~V0 �Q2N1 �Q3N2)
�1

� ( ~U0;1 �Q1N2 �Q2M ~U0;2 +Q1N1 �Q3M)

= �
1

s4 + 29s3 � 7978s2 � 12426s� 2006

�
18s4 + 8658s3 + 9090s2 + 1170s+ 720

456s4 + 10439s3 + 28611s2 + 21217s1 + 2589

T

:

It can be verified, that this compensator manages to stabilize both
the nominal system, as well as the faulty system, in case either of (but
of course not both) the two sensors fails. The stability margin is rather
poor, but numerical experience suggests that it can only be improved
substantially by going to (even) higher order compensators which was
not done, as this example just serves as an illustration of the principle.

VI. CONCLUSION

In this note, we have proved the existence for any given system of
a fault tolerant compensator, which stabilizes the system during its
normal operating conditions, but also in the case that one of the sensors
or actuators would fail.

The proof given was constructive, and it was demonstrated for a
simple example that carrying out the steps of the proofs can lead to
a fault tolerant compensator. It should be stated, however, that the de-
sign process is not easy. Also, in practice, the issue of performance
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should be addressed, which can, unfortunately, not easily be done in
the framework suggested here.

It was also shown that the dynamical order of any fault tolerant com-
pensator for some systems even of order two might have to be consid-
erably large, due to intrinsic properties of the system.

A subject of future research is to clarify whether the same results
hold for systems in which several sensors and actuators (but not all of
either kind) can fail simultaneously.
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Nonlinear Control Synthesis by Convex Optimization

Stephen Prajna, Pablo A. Parrilo, and Anders Rantzer

Abstract—A stability criterion for nonlinear systems, recently derived by
the third author, can be viewed as a dual to Lyapunov’s second theorem.
The criterion is stated in terms of a function which can be interpreted as the
stationary density of a substance that is generated all over the state–space
and flows along the system trajectories toward the equilibrium. The new
criterion has a remarkable convexity property, which in this note is used
for controller synthesis via convex optimization. Recent numerical methods
for verification of positivity of multivariate polynomials based on sum of
squares decompositions are used.

Index Terms—Density functions, nonlinear control, semidefinite pro-
gramming relaxation, sum of squares decomposition.

I. INTRODUCTION

Lyapunov functions have long been recognized as one of the most
fundamental analytical tools for analysis and synthesis of nonlinear
control systems; see, for example, [2]–[4], [6], [7], and [9].

There has also been a strong development of computational tools
based on Lyapunov functions. Many suchmethods are based on convex
optimization and solution of matrix inequalities, exploiting the fact that
the set of Lyapunov functions for a given system is convex.

A serious obstacle in the problem of controller synthesis is however
that the joint search for a controller u(x) and a Lyapunov function
V (x) is not convex. Consider the synthesis problem for the system

_x = f(x) + g(x)u:

The set of u and V satisfying the condition

@V

@x
[f(x) + g(x)u(x)] < 0

is not convex. In fact, for some systems the set of u and V satisfying
the inequality is not even connected [14].

Given the difficulties with Lyapunov based controller synthesis, it is
most striking to find that the new convergence criterion presented in
[15] based on the so-called density function � (cf. Section II) has much
better convexity properties. Indeed, the set of (�; u�) satisfying

r � [�(f + gu)] > 0 (1)

is convex. In this note, we will exploit this fact in the computation of
stabilizing controllers. For the case of systems with polynomial or ra-
tional vector fields, the search for a candidate pair (�; u�) satisfying
the inequality (1) can be done using the methods introduced in [12]. In
particular, a recently available software SOSTOOLS [13] can be used
for this purpose.
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