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Abstract 

 

This report reviews fault-tolerant control schemes for high performance aircrafts that 

emphasize combining fault diagnosis and control reconfiguration. The paper outlines the 

principles and relevant techniques of model-based fault diagnosis, as well as robustness 

and solutions. A discussion of advantages and drawbacks of each approach is presented. 

The basic schemes of model-free fault diagnosis are introduced and control 

reconfiguration methods based on the fault diagnosis are presented.   

 



1. Introduction 
 
Fault-tolerant control aims at making the system stable and retain acceptable performance 
under the system faults. Fault Tolerant Flight Control System (FTFCS) has become a 
critical issue in the operation of high-performance airplanes, space vehicles, and 
structures, where safety, mission satisfaction, and significant material value are among 
the main concerns. With a FTFCS system the flying aircraft can maintain high 
performance even with impairments to the actuators, sensors or control surfaces, and thus 
increase the aircraft survivability, and probability of mission success.  
With FTFCS systems controlled flight is achievable even with the presence of failures, 
however, it is necessary to modify the commands to the actuators and reconfigure the 
control law. Fault-tolerant control methods can be classified into two categories: the first 
group is based on fault detection and isolation and the second group is independent of 
fault diagnosis (zhou and Frank, 1998). The first uses the on-line fault detection and 
isolation to monitor the system and when any fault occurs the control laws are redesigned 
to make the faulty systems maintain the performance. The second is to design fixed 
controllers without consideration of whether the fault has occurred or not. It is obvious 
that to design fixed controllers that are robust to failures are very difficult and only time-
invariant linear systems have been considered (Joshi, 1987; Marrison and stengel, 1998). 
Here our emphasis is on the first category and the main methods of fault diagnosis and 
controller reconfiguration techniques for aircrafts are overviewed. 
Fault Detection and Isolation (FDI) is an important part in fault-tolerant control systems 
and it is desirable to provide warnings and diagnostic information as soon as the failure 
develops, so that the controllers are reconfigured and the further deterioration is 
prevented. According to generally accepted terminology, the task of FDI consists of the 
following steps: (Gertler, 1988; Patton, 1991) 

• Fault detection, i.e., the indication that something is going wrong in the system. 
• Fault isolation, i.e., the determination of the exact location of the failure. 
• Failure identification, i.e., the determination of the size of the failure. According 

to the depth of the information used of the physical process, the approaches to the 
problem of failure detection and isolation fall into two major groups: 

• methods that do not make use of the mathematical model of plant dynamics, or, 
model-free FDI;  

• methods that do make use of the quantitative plant model, or, model-based FDI. 
In this review paper Section 2 is devoted to methods used in model-based FDI, and 
Section 3 discusses the robustness problems in model-based FDI. In Section 4 the other 
category of fault detection and isolation  model-free FDI approaches - are organized.  
Section 5 illustrates the methods used for controller reconfiguration. Section 6 gives 
some conclusions. 



2.  Model-based Fault Detection and Isolation (FDI) 
 

A broad class of fault detection and isolation methods makes explicit use of a 
mathematical model of the plant, which we referred to as model-based FDI.  This 
approach is motivated by the conviction that utilizing deeper knowledge of the system 
results in more reliable diagnostic decisions. In the last 20 years different approaches for 
fault detection using mathematical models have been developed, see, e.g., (Willskey, 
1976; Isermann, 1984; Gertler, 1988; Frank, 1990). Since the dynamics of aircrafts is 
well studied, it is readily possible to implement it into the fault diagnosis process, and 
such work can be found in Deckert, et al, 1977; Chandler, 1989; Ioannou, et al, 1989; 
Patton, 1991; Rauch, et al, 1993; Polycarpou, 1994; etc. 
The main idea behind the model-based FDI is “ analytical redundancy", the comparison 
of measurement data with prior known mathematical model of the physical process 
(Chow and Willsky, 1984). Model-based FDI is superior to “ hardware redundancy ” 
generated by installing multiple sensors for the same measured variable in that analytical 
redundancy has more simple, flexible structure; while less equipment, weight, and cost 
(Beard, 1971).   
In this section we will elaborate the concepts of model-based FDI. Section 2.1 will give 
the mathematical models of systems in faulty and fault-free stages. Section 2.2 is a 
general description of steps required in model-based FDI, and the rest of the two sections 
will give an outline of different methods used in model-based FDI.  

 
2.1  Mathematical Model of the System 

 
Most model-based failure detection and isolation methods rely on linear dynamic models. 
In the case of a non-linear system, this implies a model linearization around an operating 
point.  Although aircraft dynamics are inherently nonlinear, aerodynamic nonlinearities 
and inertial coupling effects generally are smooth enough in the operating regions so that 
linear design techniques are applicable (Stengel, 1993). 
In this section we use the open-loop system model in model-based FDI. For modeling 
purposes, an open-loop system can be separated into three parts: actuators, system 
dynamics and sensors as illustrated in Fig 1. 
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Fig. 1 Open-loop System with Faults 
 



Here,  is the known input vector,  the vector of measured output signals, u  

and  are signals corrupted by actuator and sensor faults. In the fault-free case, the 
system dynamics shown in Fig 1 can be described by the state-space model as 
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where is the state vector, and  are matrices of proper dimensions. 
Substituting in (1)  
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and including the component faults,  , which represents the case when some 
condition changes in the system that make the quantitative model invalid, the model of 
the dynamic system becomes 
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In general cases, the state-space model of a system with all possible faults takes the form 
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where  is a fault vector, with each element corresponding to a specific fault.  )(tf 1×q
An input-output transfer matrix representation for the system with possible faults is then 
described as 
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From a practical point of view it is reasonable to make no further assumptions about the 
fault modes but consider them as unknown time functions. The corresponding 
distribution matrices and of faults are usually assumed to be known (Frank, 1994; 
Chen and Patton, 1999). 

1R 2R

It is worth noting that the system model required in model-based FDI is the open-loop 
although we consider that the system is in the control loop. This is because the input and 
output information required in model-based FDI is related to the open-loop system. 
Hence, it is not necessary to consider the controller in the design of a fault diagnosis 
scheme. However, in the case that the input to the actuator, u , is not available, one has 
to use the reference command  in FDI. Hence, the model involved is the closed-loop 
model of the relationship between  and . For these cases, the controller plays an 
important role in the design of diagnostic schemes (Wu, 1992;  Jacobson and Nett, 1991) 
and the interconnection between fault diagnosis and robust control is a topic calling for 
future research. 
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2.2  Model-based FDI Concepts 
 
In model-based FDI, faults are detected by setting a threshold (fixed or variable) on a 
“residual” generated from the difference between real measurements and estimates of 
these measurements using the mathematical model. A number of residuals can be 
designed with each having special sensitivity to individual faults. 
Fig.2 illustrates the general and conceptual structure of a model-based fault diagnosis 
system comprising two stages of residual generation and decision-making (Chow and 
Willsky, 1984; Isermann, 1997).  
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Conceptual Structure of Model-based Fault Diagnosis 
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The residual is a signal, r , that carries information on the time and location of the 
faults. It should be near zero in fault-free case and deviate from zero when a fault has 
occurred. The decision process evaluates the residuals and monitors if and where a fault 
has occurred. Denote by  and T  the decision function and the threshold, a fault 
can be detected by the following test  
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The isolation of a specific fault, say, the i th out of  possible faults, requires q
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2.2.1  Residuals Generation Methods 
 
A traditional method of detecting faults is to use limit checking, i.e., to compare process 
variables with preset limits; the exceeding of a limit indicates a fault situation. Although 
simple, this method has a serious drawback in that the process variables may be varying 



with different operating states, thus the check limit is dependent on the operating state of 
the process. On the contrary, residual signals are quantities that represent the 
inconsistency between the actual system variables and the mathematical model. They are 
independent of the system operating state and respond only to faults, which makes it a 
direct development of the limit checking method (Chen and Patton, 1999).  
A typical structure of a residual generator is shown in Fig. 3, which involves processing 
of the input and output data of the system (Basseville, 1988; Gertler, 1988). 
 

 
 
 
 
 
 
 
 
 
 

)(tu
)(ty

),(1 yuF ),(2 yuF )(tr
)(tz Residual 

Output 
system 

Input 

 
Fig 3 Redundancy Signal Structure of a residual generator 

 
The simplest approach to residual generation is the use of system duplication. That is, the 
system  is made identical to the original system model and the signal  is the 
simulated output of the system, thus the residual 

1F z
r  is the difference between  and . 

The disadvantage of this method is that the stability of the simulator cannot be guaranteed 
when the system being monitored is unstable. A direct extension to the simulator-based 
residual generation is to replace the simulator by an output estimator, as shown in Fig. 4 
(Patton, 1991). 
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Fig. 4 The General Structure of a residual generator 

 
This structure is expressed mathematically as  
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Here  and  are transfer matrices which are realizable using stable linear 
systems. In order to make the residual become zero for the fault-free case the following 
condition must hold. 
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Eq. (7) is a generalized representation of all residual generators. Design of the residual 
generator means the choice of the transfer matrices  and . Usually residuals 
are generated using analytical approaches, such as observers, parameter estimation or 
parity equations based on analytical redundancy.  It is important to note that the aim of 
the residual generator is not to estimate the state of the plant but rather to respond 
promptly to the occurrence of a fault (Patton and Lopez-Toribio, 1999). 
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To accomplish requirements (5), (6), the residual generator must posses the following 
properties of fault detectability and isolability (Gobbo and Mapolitano, 2000; Frank, 
1994) 
Fault detectabilityA fault is said to be detectable if )(tf i 0)( ≠sg fi  where is 

the th element of the transfer matrix defined in Eq.(4). The detectability 
condition  is evident because otherwise the fault effect on the residual will 
disappear although the fault effect still exists in the system. 
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Fault isolability A fault is isolable if it is distinguishable from other faults using one 
residual set (or a residual vector) and such residual set is said to have the isolability 
property. 
 
 
2.2.1.1  Observer-based Residual Generation 

 
The basic idea of the observer or filter-based approaches is to estimate the states or 
outputs of the system from the measurements by using either Luenberger observers in a 
deterministic setting (Beard, 1971; Frank 1990) or Kalman filters in a stochastic case 
(Willsky, 1976; Basseville, 1988). The flexibility in selecting observer gains has been 
studied (Frank and Ding, 1997).  
In practice, it is desired to estimate a linear function of the state, i.e. , using a 
generalized Luenberger observer with the following structure 
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where  is the state vector of the observer, and  are matrices of 
appropriate dimensions. The output  of this observer is an estimate of  which 
converges to  in an asymptotic sense if  
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The residual generator is thus 

)(])([)(])([)( 3
1

12
1

1 suLJFsILsyLKFsILsr +−++−= −−
         (11) 

Applying the residual generator to system (3), the residual will be 
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where , and it is seen that the residual depends only on faults. The 
observer-based residual generator always exists because any input-output transfer 
function matrix has the observable realization (Chen and Patton, 1999). 
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Fault detection filters (Beard, 1971; White and Speyer, 1987; Park and Rizzoni, 1994; 
Park, J.H., Halevi, Y. and Rizzoni, G., 1994) are a particular class of the full-order 
Luenberger observer with a specially designed feedback gain matrix such that the output 
estimation error (residual vector) is fixed along with a predetermined direction for an 
actuator fault, or lies in a specific plane for a sensor fault, as will be discussed later. 
 
2.2.1.2  Parity Space Approach 
 
The parity equation method is first proposed by (Chow and Willsky, 1984) using the 
redundancy relations of the dynamic system. The basic idea is to provide a proper check 
of the parity (consistency) of the measurements for the monitored system. Consider the 
discrete-time system 
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 The redundancy relations are specified mathematically as 
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where 
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A residual signal can be defined as 
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To satisfy the fault detectability criterion, the matrix should also satisfy the condition 

0=VW                                                         (16) 
 0≠VM                                                         (17) 

Once the matrix V  is derived, the residual signal can be generated. For an appropriately 
large , solution of Eq. (16) always exists. This means that a parity relation-based 
residual generator for fault detection always exists (Chen and Patton, 1999). 
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2.2.1.3 Parameter estimation method 
 
Model-based FDI can also be achieved by the use of system identification techniques if 
the basic structure of the model is known (Isermann, 1984; Isermann 1997). This 
approach is based on the assumption that faults are reflected in the physical system 
parameters such as friction, mass, resistance, etc. The basic idea is that the parameters of 
the actual process are estimated on-line using well known parameter estimation methods 
and the results are compared with the parameters obtained initially under the fault-free 
case. Any discrepancy indicates a fault. Consider the system model 

  ))(,()( tufty θ=                                                       (18) 
where θ  is the model coefficient vector of the system. By an on-line parameter 
identification, one can abtain the estimation of the model coefficient at time step 1−k  as 

. Assuming the coefficient estimation at time step  is , the residual can then be 
defined as either of the followings: 
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It is not easy to achieve fault isolation using parameter estimation method because the 
parameters identified cannot always be converted back to the system physical parameters 
(Isermann, 1984).  
 
2.2.2  Residual Evaluation Techniques 
 
After a residual signal is derived, the evaluation of the residual to distinguish a particular 
fault from others follows. In model-based FDI one can establish the structured residual 
set which is sensitive to specific faults and insensitive to other faults (Gertler, 1993). The 
other way is to design a directional residual vector that lies in a fixed direction 
corresponding to a particular fault in the residual space.  
 



2.2.2.1  Dedicated Observer Scheme (DOS) 
 
The main idea of dedicated observer scheme (DOS) in fault isolation is to use a bank of 
residual signals. Each of the residuals is sensitive to a specific fault while insensitive to 
the rest of possible faults (Fig. 5) (Wunnenberg, 1990). The task of isolating faults can be 
achieved by comparing each residual signal with the initially set threshold and the 
resulting Boolean decision table. The fault isolation logic can be expressed as 
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Fig. 5 Structured Residual Set (Dedicated Scheme) 
 

The DOS scheme is good enough for the sensor faults. However, it has no robustness to 
unknown inputs like disturbance, uncertainty and noise (Wuennengerg, 1990; Frank, 
1990). 
 
2.2.2.2  Generalized Observer Scheme (GOS) 

 
The generalized observer scheme in fault isolation also uses a set of structured residual 
signals, but the difference with DOS lies in the fact that all residuals of the generalized 
residual set are generated to be sensitive to all but one fault, i.e. 
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The logic of GOS is shown in Fig.6 for the case of totally 3 possible faults. 
 
 
 
 
 
 
 



 
 
 

 
 
 
 
 

 
 
 
 
 

1f
2f

2f 3r 3f

3f 1r 1f

ResiduaFault

 detecting 

 detecting  

2r detecting  

Fig. 6 Structured Residual Set (Generalized Observer Scheme) 
 

2.2.2.3  Directional Residual Set Evaluation 
 
The third way to accomplish fault isolation is to use the directional residual vector. The 
i ea is to design the residual signal so that each of them is close to the signature direction, v

, of the fault . The signature of fault is a Boolean vector (binary code) in the 
residual space that represents the specific fault. The fault isolation is achieved by 
comparing the residual vector and the signatures of different faults. The fault with the 
signature direction that is closest to the residual signal will be the most likely fault 
occurred. Fig.7 illustrates the scheme of fault isolation using directional residual vector. 
In this example fault  is determined as the result of fault isolation. 

d
)( fl f

2f
 

rv)( 2fl
r

)( 1fl
r

)( 3fl
r

 
 
 
 
 
 
 

Fig. 7 Fault Isolation with Directional Residual Set 
 
 3.  Robustness Problems in Model-based FDI 
 
Model-based FDI techniques have the advantages of taking full use of the prior quantitive 
information of the dynamics and the success of on-line FDI. The price to pay is that they 
are potentially sensitive to modeling errors and the need for a quantitative model. 
However to obtain an accurate model is almost impossible. In real life the model errors 
such as disturbance and noise on the working system as well as uncertainties of the 
parameters of the dynamics are inevitable, giving rise to the problem of robustness in 
fault detection and isolation. Robustness is defined as the ability of a procedure to isolate 
faults in the presence of modeling errors (Gertler, 1988;  Frank and Ding, 1997). 
Robustness is an important problem since disturbances and uncertainties could interfere 



with fault isolation and make fault detection unachievable when the effect of model 
errors in the residual override that of the faults. 
A number of methods have been proposed to address this problem in applications to 
aircrafts and flight control (Patton and Kangethe, 1988; Stengel, 1991). In this section we 
discuss the methods in robust residual generation and evaluation. 
 
3.1  Robust Residual Generation Problem 
 
The task of robust residual generation is to design a residual signal that is highly sensitive 
to faults but decoupled from disturbance and inaccuracies of the model. Taking model 
errors into consideration the dynamics of the system described in (3) becomes 
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Here  is the time function of unknown inputs such as disturbance, noise and 
uncertainty of the model, and  are assumed to be known matrices of proper 
dimensions, i.e., the disturbances, etc. are structured. A number of methods to determine 
matrices  have been presented in the last decade (Patton and Chen, 1992; Gertler 
and Kunwer, 1995; Frank and Ding, 1994). 
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With the state-space model the output of system in frequency domain with possible faults 
and model errors is: 
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and describes modeling errors in matrices and .  )(sGu∆ ,,, CBA D

Replacing  in (7) with the above output the residual signal will be )(sy

 )()()()()()()()()()( sfsGsHsdsGsHsusGsHsr fydyuy ++∆=         (24)  
with the condition that 0)()()( =+ sGsHsH uyu  as in Eq.(8). 
To accomplish the task of fault detection and isolation with the presence of unknown 
inputs and other possible faults in the residual signal, the effect of a specific fault has to 
be decoupled from that of the other faults and the unknown inputs. The decoupling can be 
achieved if  

     0)()( =sGsH dy                                                   (25) 
If the above condition does not hold, perfect decoupling from the unknown input is not 
achievable. An alternative approach is to solve the optimal or the approximate decoupling 
by minimizing the following performance index (Ding and Frank, 1991): 
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 over a specific frequency range. The extreme case 0=J  means that the effect of 
unknown inputs on the residual signal is completely decoupled. 
 
3.2 Robust Residual Designs 
 
Many methods have been developed to enhance the robustness of the residual generation 
methods discussed in the previous section. Other methods such as  Optimization and 
nonlinear designs have also been exploited to generate robust residual signals. 
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3.2.1 Unknown Input Observer Scheme 
 
The main idea of unknown-input observer is to estimate the state without coupling among 
faults and from unknown inputs (Watanabe and Himmelblau, 1982; Wunnenberg, 1990). 
Since the control signal  is always known, the system model described in (22) can be 
simplified as  
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where )()()( tDutyty −= . 
The unknown input observer is given by 
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The estimation error defined as e )()()( tTxtzt −= and the residual signal are governed by 
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Suppose the initial system is a fault-free case, i.e. 0)( 0 =tf i , the conditions to make the 
fault detectable, say, 
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are satisfied if the following equations hold 
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When all these conditions are satisfied, the estimation error and the residual signals 
obeying (29) will become 
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It reveals that the residual is independent of disturbances and will only rely on the fault 
information since the estimation error is asymptotically converges to zero. 
An illustrative example is given below (Chen and Patton, 1999). Consider the linearized 
longitudinal flight control system with white noise sequences 
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where  is the state vector with pitch angle[ T
Zzyx δων= ] zδ , pitch rate Zω  and 

normal velocity yν . )(kζ and )(kη  are the input and output zero mean white noise 
sequences with covariance matrices  and Q R . The matrices are 
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The simulation assumes the aerodynamic coefficients are perturbed by , i.e. 
 and . Fig.8 shows the absolute values of the state estimation 

errors and Fig.9 gives the detection function when an incipient fault occurs in the sensor 
at time instant k  and the actuator at 
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Fig.8 The State Estimation Error for State Variables  
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Fig.9 The Fault Detection Function when a fault occurs  
 

Hou and Muller (1994) presented a unified viewpoint in designing Unknown Input 
Observers (UIOs). The main methods in their study are designing reduced order UIOs 
using algebraic approaches and so on.  In fact, the reduced order and full order UIOs are 
the same in the sense of disturbance decoupling if the conditions of disturbance 
decoupling are satisfied. Thus it is possible to design full-order UIOs to achieve other 
required performances using the extra design freedom. Now consider the Beard Fault 
Detection Filter (BFDF) introduced in section 2.2.1.2. The main drawback of that scheme 
was the lack of robustness. To improve its robustness Chen, Patton and Zhang (1996) 
presented a method combining UIO and BFDF theories to use the freedom of reduced 
order UIOs to make the residual vector “directional” as introduced in section 2.2.2.3.  
 
3.2.2  Eigenstructure Assignment for Robust FDI 
 
In the design of UIOs the state estimation error is independent of the disturbances, and 
the residual is defined as the weighted linear transformation of the state estimation error. 
Therefore, the residual is independent of the disturbances. An alternative way to 
accomplish robust residual generation is to make the residual de-coupled from 
disturbances directly, while the state estimation error may be dependent on the unknown 
inputs. Eigenstructure assignment approach is such a method presented in (Patton, et. al, 
1986) and applied to robust FDI of flight control in (Shen et al, 1998).    
The main idea of eigenstructure assignment method is to assign the left or right 
eigenvectors of the observer to be orthogonal to the disturbance distribution directions. 
Consider the system state equations 
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Comparing with the state model in (22) the term  disappears after a 
transformation of the output and the matrix C  (Chen and Patton, 1999). The full 
order observer is used as 
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Define the state estimation error as )(ˆ)()( txtxte −= , the residual are governed by  
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To make the residual independent of the disturbances, the following condition must hold 
0)()()( 1

1 =+−= − sdEKCAsIQCsGrd                                         (36) 
The sufficient conditions for satisfying the disturbance de-coupling requirement (32) are 
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There are methods to assign the left observer eigenvectors, for instance, parametric 
approach (Duan, et al, 1997). It is also feasible to achieve disturbance decoupling by 
assigning right eigenvectors of the observer (Patton and Kangethe, 1988; Choi et al, 
1995; Choi, 1998). The restriction of eigenstructure assignment is that the number of 
independent disturbances to be decoupled is smaller than the number of independent 
available measurements. 
 
3.2.3  Robust FDI using Optimal Parity Relations 
 
Consider the discrete model of the system dynamics with disturbances and possible faults 
as follows 
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Similar to Eq. (14), the output equations with unknown inputs  and become (.)d (.)f
                   

            

(39) 
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The residual signal is generated with the actual measurements and as follows (.)u (.)y
)]()([)( 1 kUHkYVkr −=                                           (44) 

As discussed in Eq.(16) and Eq.(17), the conditions for fault detectability are 
00 =VH                                                         (45) 

 03 ≠VH                                                         (46) 
To satisfy the disturbance decoupling condition another requirement is needed, i.e. 

02 =VH                                                         (47) 
Equation (47), the requirement for perfect disturbance decoupling, is rather restrictive 
and there is no analytic solution in some cases. The solution in these cases is to solve the 
approximate unknown input decoupling rather than achieving perfect disturbance 
decoupling. The idea is to minimize the performance index  
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in order to strike a compromise between the effect of faults and unknown inputs. Such 
work can be found in (Wuennenberg, 1990; Lou, et al., 1986; Frank, 1990) and a review 
of parity space approaches to fault diagnosis for aerospace systems is given in (Patton 
and Chen, 1994). 
 
3.2.4  Frequency Domain Design and H-infinity Optimization 
 
It is from the fact that unknown inputs and faults have different frequency characteristics 
that the frequency domain designs for fault detection are available (Viswanadham and 
Minto, 1988; Kinnaert and Peng, 1995). For the system and output equation described in 
(22) and (23), the residual generator via factorization is given by (Ding and Frank, 1991)  
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K is the feedback matrix chosen to make ( )KCA −  stable; and the matrix  is a 
stable and proper transfer function matrix defined as a weighting matrix which can be 
static or dynamic. Substituting the model in Eq. (22) into (49) the residual signal is 
obtained as follows: 
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The perfect disturbances decoupling requires (Frank and Ding, 1994) 
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where  is the set of all stable and proper transfer matrices. ∞RH
In the term of the transfer matrices and  the perfect decoupling condition is 
given by (Frank and Ding, 1994) 
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When such conditions do not hold, perfect disturbances decoupling is not achievable. In 
this case, the best approach is to obtain an optimal approximation that minimize the 
following performance index 
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This optimization problem and the  approach are studied by Ding and Frank (1991). 
Other methods using singular value decomposition techniques are presented by Lou, et al. 
(1986); Mangoubi, et.al. (1992), etc. 
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3.2.5  Nonlinear Residual Generation 

 
The methods discussed above are all for linear models of the system dynamics, which 
rarely represent the real case practically. The first method to deal with nonlinearity is to 
obtain the linear approximation at an operating point and utilize robust techniques to 
make the residual signals insensitive to model errors, as studied above. The problem of 
these methods is that the strategy works only within a small range near the operating 
point. If the system operates in a wide dynamic range, the linearized model may fail to 
describe the dynamics and the linear techniques are not applicable. The preferred way to 
address the nonlinearity is to deal with it directly and develop nonlinear fault detection 
and isolation techniques. Some existing methods such as nonlinear and adaptive observer 
designs have been exploited to address the nonlinear fault detection and isolation (Ding 



and Frank, 1992). To find a “universal” model for nonlinear systems neural networks are 
introduced (Narendra and Parthasarthy, 1990). Similarly, to overcome the problem of 
precision and accuracy of the models used in FDI, fuzzy logic is integrated in model-
based FDI (Dexter and Benouarets, 1997; Takagi and Sugeno, 1985).   
 
3.3  Methods of Robust Residual Evaluation 
 
As discussed before, the residual evaluation is to compare the decision function of the 
residual signal  and the threshold ))(( trJ T initially set in fault free case. A fault can be 
detected by (5) and different faults are isolated by (6). Besides a number of robust 
residual generation methods, there are also some approaches that increase the robustness 
in residual evaluation. The main idea of these approaches is to pick up different 
thresholds that are modified with residuals or control activity of the system as oppose to 
the use of one fixed threshold applicable only to a specific operation point and sensitive 
to unknown inputs like disturbances.  
 
3.3.1  Adaptive Threshold Method 
 
An intuitive approach is to use adaptive thresholds, i.e. variable threshold. Since the 
residual and the decision function may change with the changing control inputs in the 
presence of system parameter uncertainties, the false alarms may be generated when the 
changes are large enough to exceed the fixed value of the threshold. In order to increase 
robustness in such cases, an adaptive threshold was proposed (Clark, 1989; Frank, 1995) 
which varies dependently on the control input. Fig.10 gives a graphic illustration of this 
scheme. 
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Fig.10 Application of an Adaptive Threshold in Robust FDI 
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Consider the residual signal in Eq.(24), and assume that unknown inputs are decoupled, 
the residual signal in fault free case is 

 )()()()( susGsHsr uy ∆=                                            (55)  
Assume that the model error is bounded by 
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The adaptive threshold T  for Eq.(20) and (21) can be selected as )(t
)()()( susHsT yδ=                                            (58) 

Clearly this threshold will change with the input and therefore become adaptive to the 
system operation. 
 
3.3.2  Robust Threshold Selector 
 
A similar way to increase the robustness in residual evaluation is to use the robust 
threshold selector presented by Emani-Naeini, et al. (1988) represented in the block 
diagram shown below in Fig.11. 
 
 
 )(t )(t

alarmdecision
making

threshold
selector

residual 
generato

Output uInput u  
syste 

 
 
 
 
 
 
 
 
 
 
 

Fig.11 Robust FDI With Use of Threshold Selector 
 

With properly chosen threshold the residual is no longer compared with a fixed threshold. 
The control activity and the system operation states influence the variable threshold and 
hence improve the fault detection and isolation. 
 
 4.  Model-free FDI Techniques 
 
The methods mentioned so far were all based on quantitative models of the system 
dynamics, which are not applicable when the models of the system are not available. As a 
complement, there is a branch of fault detection and isolation that deals with cases when 
only the qualitative model of the dynamics or no model at all is available. In this section 
we will introduce some of these methods that are applicable to aircraft dynamic and 
control. 



 
4.1  Fault Diagnosis Using Qualitative Models 
 
It is often difficult to develop an accurate mathematical model of the system dynamics, 
whereas cruder description of the system is easier to achieve. Fault diagnosis of dynamic 
systems can also be accomplished based on declarative knowledge called “qualitative 
models”. The qualitative models require only declarative (heuristic) information of the 
variables - the tendencies and the magnitudes of the signals - so that robustness to 
uncertainty is achieved (Chen and Patton, 1999). Qualitative-based FDI methods can be 
used when no analytical mode is available, the on-line information is not given in 
quantitative measurements, or the parameters of the system structure are not precisely 
known.  
Qualitative model-based FDI does not use quantitative residual generation to generate the 
symptoms of faults but turns to qualitative knowledge usage (Isermann, 1994). The 
qualitative knowledge includes fault-tree, i.e. the connection of symptoms and faults, the 
process history and fault statistics. Through human observation and inspection heuristic 
characteristic values in the form of noise, color, smell, etc. are generated. The heuristic 
information can also be expressed in linguistic terms like “little”, “medium” or “full”. 
Based on the available heuristic knowledge the diagnostic reasoning (forward and 
backward reasoning) strategies can be adopted (Isermann, 1994) and on-line expert 
systems are also applicable (Frank, 1990). An alternative way is to use qualitative 
observers based on Markov chain models which, like quantitative observers used in 
model-based FDI, generate and evaluate residuals for stochastic systems (Zhuang et al, 
1998). Chessa and Santi (2001) presented a graph-based diagnosis with multiple faults in 
which the error propagation between system components is modeled as a direct graph. 
Pecht, et al. (2001) suggested an on-board hardware-software diagnostic means referred 
to as built-in test when failure occurrences were uniquely associated with the operating 
environment and the usage of this method into Boeing 767 and 777 proved its usefulness.   
 
4.2  Diagnosis Using Classification Method 
 
The task of fault diagnosis is to identify the most possible fault causing the appeared 
symptom in system operation. Denote by [ ]n

T SSSS L21=

]0,nSL
TTT SSS 0−=

 the features of the 

system in operation and  the reference vector determined for 

the normal behavior in fault free case, ∆ is the symptom vector that 
indicates the occurrence of one or more fault(s). The binary vector  

[ 0,20,10
T SSS =

[ ]q
T FFFF L21=  

expresses the fault  as either “happened” with if 1=iF or “not happened” with . If 
no further information is available for the relations between features and faults, 
classification or pattern recognition methods can be used (Isermann, 1997). The block 
diagram of classification methods is shown in Fig. 12. 
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Fig. 12 Fault Diagnosis Using Classification Methods 
 

In Fig.12, the relationship between  and  is learned or trained experimentally and 
stored, forming the explicit database. By comparison of the observed  with the normal 
reference , the fault indication vector can be concluded. 

S F
S
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Bayesian classification is a main kind of probability-based statistical classification 
method that works on the premise that classified faulty and fault-free data exist. The 
nearest neighbor scheme is a geometrical classification similar with Bayesian classifier 
while it makes no statistical assumptions (Molnar, 1997). A more generalized 
classification method is to use neural-networks because of their ability to approximate 
nonlinear relations and determine flexible decision regions in continuous or discrete form 
(Molnar, 1997; Hoffman, et al, 2001). Also fuzzy classification is possible which is at the 
edge of probability theory and the expert system (Isermann, 1997).  
 
4.3  Application of Computational Artificial Intelligence in FDI 
 
Artificial intelligence (AI) has been exploited for FDI for a period of time (Frank, et al, 
1997). Integrating the symbolic and quantitative knowledge by a neuro-fuzzy system is a 
new trend in this area (AI-Jarrah and AI-Rousan, 2001; Benkhedda and Patton 1996; Frey 
and Kuntze, 2001). The advantage is the neuro-fuzzy system feasibly combines the 
learning ability of neural networks with the explicit knowledge representation of fuzzy 
logic, and thus can model and design nonlinear systems efficiently. Patton and Lopez-
Toribio (1999) integrated B-Spline neural network and fuzzy logic dealing with the 
qualitative information to diagnose faults. The general parameter adaptation fuzzy neural 
network is presented by Akhmetov, et al. (2001).   
Another trend in FDI using AI is to use fuzzy residual evaluation (Kiupel, et al., 1995). 
The purpose is to release only weighted alarms instead of yes-no decisions. The final 
decision is made by both a decision maker with fuzzy logic and the human operator. The 
method contains no defuzzification but it has to be understandable for the operating 
persons. 
 
5.   Controller Reconfiguration 
 
Based on the fault detection and isolation techniques, the dynamic system is under 
monitoring during the operation for any possible fault. To make the aircraft dynamic 
tolerant to failures controller reconfiguration need to be adopted, which modifies the 
controller in either structure or parameters in order to control the flight and mission in an 
uninterrupted operation.  
 



5.1  Control Reconfigurability Analysis 
 
The task of the reconfigurable controller reconfiguration is to retain nominal stability and 
performance characteristics. This requires that the on-design controllability and 
observability be preserved (Stengel, 1991). At the same time the reconfiguration should, 
at least, provide sufficient stability long enough for the FDI process to take place and new 
controllers switch in (Chandler, 1989). In order to implement a reconfiguration strategy 
the following control surfaces and mechanisms are needed (Napolitano and Swaim, 1989) 
• control surfaces like speed brakes, wing flaps, rudder below fuselage, etc; 
• thrust control mechanisms. 
and the quantities to be available for reconfiguration purposes include 
• actuator position for each actuator; 
• aircraft body angular and linear velocities in three body axes; 
• aircraft attitude and angle of attack. 
 
5.2  Reconfiguration Law Design 
 
The block diagram in Fig.13 illustrates the fault detection, isolation and controller 
reconfiguration for control surfaces using multiple model for the F/A -18 aircrafts 
(Rauch, 1995). 
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Fig. 13 Fault Detection, Isolation and Reconfiguration for Aircraft Control Surfaces 
 

Here the decision function monitors the sensors and compares measured system response 
with the estimate response from the system models built in fault-free case. Once a 
potential fault is detected, fault isolation fulfills the task of isolation an position of the 
fault, and controller reconfiguration, based on stored control laws designed for each 
anticipated fault. However, there is a trade-off between speed of reconfiguration and 
computer storage requirements since the structures and parameters for all failed states can 
be generated off-line and stored for future use requiring an enormous memory (Stengel, 
1991). Alternatively, the reconfigured control can use a pseudo-inverse approach to 
implement a feedback control law similar to that of the primary controls used in nominal 
operation without fault. In other words, the new feedback control is calculated to achieve 
equal product of the new control matrix ( ) and the new control ( u ) with the 
product of the previous control matrix 

newK new

K times the control , i.e. u



KuuK newnew =                                                            (59) 
If a fault occurs, the control influence matrix  is derived from newK K by eliminating the 
column corresponding to the failed control input. If the redundancy in the actuators is 
available the new control signal u  can be calculated using the pseudo-inverse as 
follows 
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A more general approach is to develop a new LQR control law based on the model of the 
system that corresponds to the faults (Rauch, 1994; Moerder,et al, 1989). In the work of 
Moerder, et al, (1989) the reconfiguration control law was presented for AFTI F16 
aircraft at Mach 0.8 and 5000 ft altitude. The stabilization is achieved by a proportional-
integral-filter (PIF) output feedback regulator given by 
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where is the control command vector, the plant output vector, and (.)u (.)y T∆ the 
controller sampling interval. The PIF feedback gain matrix is scheduled as 
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Here is the vector representing the surface effectiveness loss of n  
control surfaces. 

T
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0=jθ  implies fully effectiveness while 1=jθ  indicates faulty or 
missing effectiveness of the th control surface. The gain matrix G  is obtained using 
LQG output feedback stabilization design. The objective is to minimize a cost function   
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where is the state vector and u the control vector of a collection of linear discrete-
time plant models with respect to different faults. 

jx j

Rattan (1985); Ioannou, et al, (1989) presented the evaluation of control mixer concept 
for reconfiguration of flight control system. The reconfiguration algorithm computes a 
new control mixer gain matrix to distribute the forces and moments of the failed control 
surface to the remaining healthy surfaces. The difference is that Patton “lock” the failed 
control surface to the center position, i.e., the input to the failed surface is zero, while in 
the latter paper the surface is allowed to be stucked at any position although this non-zero 
stuck needs accommodation by a compensating input signal. Assume the unimpaired, 
healthy aircraft is modeled as 

δ0000 BxAx +=&                                                        (64) 
The subscript “0” implies the system is working in the normal fault-free case;  
denotes the state vector of the aircraft and 

1×nx

1×sδ  the aircraft control surface deflection 
vector which is governed by the control vector u as 

uK0=δ                                                           (65) 
Assume the fault detection and isolation unit diagnosed that the th control surface 
failed, i.e. the surface got stuck at 

j

jj δδ = , the system dynamic becomes 
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where ; and b is the th column of . 0
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K and are control mixer and compensating signal to be designed in order that d x is as 
close to  as possible, i.e. 0x
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Consider the condition that Eq.(67) must hold for fault-free case as 0=jδ , the solution 
to (67) is given by 
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where ( denotes the pseudoinverse of matrix . +)0
jB jB0

To achieve controller reconfiguration there was also some work on the variable structure 
model following control (Zinober, et al, 1988; Mudge and Patton, 1988) in which the 
design objective is to develop a controller which forces the aircraft dynamics to follow 
the dynamics of an ideal model. In Martins, et al (2001) the language techniques are 
introduced to model the controlled dynamical systems and a learning algorithm for 
controller reconfiguration is proposed. Ahmed-Zaid, Ioannou, et al (1991) proposed a 
fault accommodation method based on adaptive control theory (Ioannou and Sun, 1996) 
in the sense that with the presence of failures the control law was reconfigured using on-
line estimates of the faulty aircraft dynamics. This method requires no explicit 
information of types of faults and hence it simplifies the design and is resistant to false 
alarms. Polycarpou(1994) presented a systematic procedure for constructing nonlinear 
estimation using neural networks and a stable learning scheme is used for 
accommodating failures. Recently Zhou and Frank (2001) proposed a PID state feedback 
control for nonlinear stochastic systems in closed loops combined with fault detection 
and accommodation. 
 
 6.  Conclusion 
 
In this paper we reviewed the methods applicable for fault-tolerant control of aircrafts 
with the emphasis on approaches combining fault diagnosis and controller 
reconfiguration. Main principles and most relevant techniques of model-based and 
model-free fault diagnosis were reviewed. The robustness problem was also discussed. It 
was seen that the methods of analytical redundancy is to some degree more mature but 
the demand is an accurate analytical model of the system dynamics. In the application of 
aircrafts, knowledge-based methods are often used since they do not require prior 



quantitative models but the learning algorithms of neural networks or rules and reasoning 
of expert system together with restored control laws in fault status may require an 
enormous computer memory.  
The basic schemes of controller reconfiguration based on fault diagnosis decision were 
also summarized. There are a number of results related to using FDI to mechanical 
systems and control surfaces of an aircraft, while techniques for on-line identification of 
fault models with time-varying nonlinearities and robust FDI using closed loop models 
are still of research interest. Other future research topics include severe single and 
multiple failures accommodation and disturbance compensation through controller 
restructuring and approaches enhancing sensitivity of fault-tolerant control systems to 
failures while maintaining robustness properties.    
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