
Evolutionary Fault-Tolerant Systems

Garrison W. Greenwood, Ph.D., P.E.

Dept. of Electrical & Computer Engineering

Portland State University

Portland, OR, USA 97207



All systems eventually fail. If the system is

critical, it must be either repaired or replaced.

Unfortunately, repair and/or replacement is

not always easy...

e.g., consider the mars rovers

In such cases, one solution is to make the

system fault-tolerant—i.e., able to autonomously

repair itself to restore functionality.

These fault-tolerant systems must (a) detect

the failure, and (b) do something to fix the

problem

We are going to use evolvable hardware (EHW)

to do the fixing.



OUTLINE

I. Introduction to fault-tolerant systems

II. What is “evolvable hardware”

III. Using EHW to recover from faults

IV. Overview of real-time systems

V. Recovery under real-time constraints



So, what does fault-tolerance deal with?

Suppose a system suddenly fails. Two

questions:

1. can you find the problem?

(fault detection)

2. can you fix the problem? (fault recovery)

Oh, and by the way, do both detection and

recovery without human intervention...



Some observations

• fault detection is not always easy

• redundancy is the most common recovery

method

• when redundancy is impractical,

reconfiguration is worth considering

• in most cases detection/recovery

operations have time constraints



Before discussing recovery, we need to talk

about detection.

But first, “faults” and “failures” are not the

same thing.

def. (failure)

inability to accomplish an assigned task

def. (fault)

a defect that leads to a failure

e.g., a clamping diode shorts (fault) which

causes an input line to be permanently

grounded (failure)



def. (failure modes)

A specified way in which a system or a

component can fail.

e.g., the failure modes of a diode are “open”

and “short”

How can we find these failure modes?

1. historical data

2. from tests or experiments

3. technical literature (journals, reports, etc.)



Once the component failure modes are known,

the system are found using

Fault Tree Analysis (FTA)

A top-down approach where a system

failure is assumed to have happened

and one tries to find the fault that caused

it.

Failure Modes & Effects Analysis (FMEA)

A bottom-up approach where the

effect of every failure mode of every

component is determined and analyzed.



So what causes faults?

1. components have limited lifespans (e.g.,

connectors corrode and transistors burn out.)

2. operational environment changes

An observation...

Environmental conditions include humidity, tem-

perature, shock vibration and radiation.

Unanticipated environmental changes are of most

concern because it makes the system

operate in an unpredictable manner.



def. (fault-tolerant system (FTS))

A system that continues to operate in the

presence of failures )albeit with degraded

performance)

FT = fault detection + fault recovery

FT can be achieved by

• fault masking (doesn’t fix the problem, just

hides it)

• fault recovery via redundancy

(most common method)

• fault recovery via reconfiguration (the EHW

approach)



IMPORTANT NOTES:

1. In some cases only degraded performance

may be achieved after fault recovery takes

place

2. When a system fails, and the cause is not

for environmental reasons, redundancy is

the only recovery method guaranteed to

restore full functionality.

3. If redundancy is not possible, the only vi-

able recovery method may be reconfigura-

tion.



EVOLVABLE HARDWARE

EHW = EA + reconfigurable circuitry

FPGA, FPAA, and FPTA are reconfigurable

devices

“EA” means ES, EP, GA, etc.

P(t + 1) = S(E(V(P(t))))

P(t) population of solutions at time t

V(·) random variation operator
E(·) evaluation operator
S(·) selection operator

Each “solution” is a hardware configuration



Evaluation can be done two ways

1. in hardware (intrinsic)

every configuration is physically implemented

in hardware and then tested to determine

its performance

2. in software (extrinsic)

every configuration is evaluated using a sim-

ulator. Only the final best solution is ever

physically implemented in hardware.



From A. Stoica et al., “Reconfigurable VLSI Architectures for Evolvable Hardware: From 
Experimental Field Programmable Transistor Arrays to Evolution-Oriented Chips”,  IEEE Trans. 
on VLSI Sys., Vol 9(1), 2001



Field Programmable Gate Array (FPGA)

from Xilinx Spartan family datasheet, Version 1.4, Jan 1999



figures from Xilinx Spartan family datasheet, Version 1.4, Jan 1999



figures from Xilinx Spartan family datasheet, Version 1.4, Jan 1999



So, how do you program these FPGAs with an

EA?

A good example is the use of “Jbits” used to

program the Xilinx Virtex FPGA family.

Jbits are a set of Java classes that provide an

interface into the Virtex FPGA configuration

bitstream. (The bitstream can come from a

design tool or readback from the FPGA itself.)

Each configurable logic block (CLB) in the

FPGA has coordinates (i, j) and each CLB con-

figuration is located in a specific region of the

datastream.

The EA creates a new configuration and then

used the Jbit interface to modify the bit-stream

accordingly. The modified bitstream is reloaded

back into the FPGA.



G3 G2 G1 G0 OR AND
0 0 0 0 0 0
0 0 0 1 1 0
0 0 1 0 1 0
0 0 1 1 1 0
0 1 0 0 1 0
0 1 0 1 1 0
0 1 1 0 1 0
0 1 1 1 1 0
1 0 0 0 1 0
1 0 0 1 1 0
1 0 1 0 1 0
1 0 1 1 1 0
1 1 0 0 1 0
1 1 0 1 1 0
1 1 1 0 1 0
1 1 1 1 1 1

To change a LUT implementation of an OR

gate to an AND gate, the bitstream is up-

loaded the bits of the LUT are located, and

OR 1111 1111 1111 1110 0xfffe

is changed to

AND 1000 0000 0000 0000 0x8000



from G. Hollingworth et al., “Safe Intrinsic Evolution of Virtex Devices”, Proc. 2000 NASA/DOD 
Evolvable Hardware Conf., 2000



 
 
 
 
 

The analog counterpart to the FPGA is the field 
programmable analog array (FPAA). Shown 
above is the Lattice Semiconductor ispPAC10 



The user can program

• input amplifiers gain (by choosing 1 of 8

resistor values plus polarity)

• output amplifier bandwidth (by choosing 1

of 128 capacitor values)

• intrablock and interblock interconnections

The datastream for the ispPAC10 is ≈ 320 bits

long. The EA manipulates the binary string

directly.



From A. Stoica et al., “Reconfigurable VLSI Architectures for Evolvable Hardware: From 
Experimental Field Programmable Transistor Arrays to Evolution-Oriented Chips”,  IEEE Trans. 
on VLSI Sys., Vol 9(1), 2001



To illustrate how EHW can be used for fault

recovery, we will consider an analog FTS. We

assume

1. the system is linear with dynamics

governed by constant coefficient ordinary

differential equations

2. the system is a “black box”—i.e., no

access to its inside to repair or replace failed

components

3. evolution is done intrinsically

NOTE: black box ⇒ compensation is the only

means of handling faults



Fault-tolerant analog system

The plant is 3rd order.  The fault is manifested 
by a change in bandwidth; fault recovery should 
restore the bandwidth.

The reconfigurable device is the ispPAC10, 
which implements a lead or lag compensator.

The EA evolved a population of 20 for 200 
generations using recombination and mutation.



The intrinsic EHW testbench



The fitness of configuration C is given by

fitness(C) =
5∑

i=1

[M(i) − M ∗ (i)]2

where M(i) is the compensated systems

magnitude and M ∗ (i) the desired magnitude

at the i − th test frequency.

The 5 test frequencies were chosen such that

some were in the passband, one at the -3db

point, and some in the stopband.

NOTE: just using the -3db point would pro-

duce the trivial solution of just increasing or

decreasing the open-loop gain.







Overview of real-time systems

def (real-time system)

any system that is both logically and

temporally correct

def (logically correct)

satisfies all functional specifications

def (temporally correct)

completes all tasks within specified timeframes



Fast does not mean real-time

and

Real-time does not mean fast

For example, consider two real-time delivery

systems: one is a courier who guaranties de-

livery in less than 3 days and an e-mail system

that guarantees delivery in 10 minutes.

Notice both systems are logically correct (they

guarantee delivery)

But whether or not they are temporally correct

depends on the required delivery time.

scenario delivery courier e-mail

1 5 days X X
2 5 hours X
3 5 min



So, why is RT an issue in fault-tolerance??

ANS: because faults cannot be left uncorrected

indefinitely

This impacts intrinsic EHW used for fault

recovery because reconfiguration takes time.

In fact, in some cases intrinsic reconfiguration

may not even be practical!!!



With intrinsic reconfiguration every solution must

be downloaded into the reconfigurable device,

which takes time tp

Device Type Size tp (ms)

ispPAC10 FPAA 4 100
AN220E04 FPAA 4 3.8
XC3020A FPGA 64 1.5

Virtex XCV50 FPGA 1728 7
XC4085XL FPGA 3136 192

APEX II EP2A70 FPGA 6720 12.5
JPL’s FPTA2 FPTA 64 0.008

Let λ be the number of new configurations

created each generation

Let tf be the time to conduct a fitness test

Then an EA running for k generations has an

intrinsic reconfiguration time of

Tr(k, λ) = kλ(tp + tf)



But the real problem is tf and especially for

analog systems.

Example:

An AN220E04 FPAA is used to compensate

for aging effects in a control system responsi-

ble for positioning a satellite’s communications

antenna.

The reconfiguration search is done by a

generational GA run for 500 generations with

a population size of 100.

The system’s step response is measured to de-

termine if the compensation is correct. This

step response test takes tf = 625 milliseconds

to conduct.

Hence, λ = 100, k = 500 and tp = 3.8 ms,

which makes Tr(500, 100) ≈ 8.7 hours.



Is 8.7 hours too long??

ANS: maybe...

Reconfiguration times are meaningless unless

they are put into context.

For instance, suppose the satellite needs to

communicate for a few minutes every 20 hours,

and failure to operate can lead to the loss of

the satellite.

If a control system fault occurs just after one

of these operational periods, no porblem.

If the operational period starts in 10 minutes,

big problem.



This means you can only determine if a

reconfiguration time is too long by comparing

it against the fault recovery time.

Since fault recovery has a deadline, EHW-based

recovery is a real-time process.



This has strong implications for the EHW

community

It is no longer sufficient to just talk about how

an EA was able to restore a circuit’s functions.

(that only shows logical correctness)

Just reporting an algorithm’s running time doesn’t

say anything about temporal correctness ei-

ther.

In other words,

No EHW-based recovery method can

legitimately proclaim efficacy until it is

proven to be both logically and

temporally correct



Logical correctness is easy to prove. (Try it

out and see if it works!)

Temporal correctness is proven by comparing

the EA running time against the fault recovery

deadline (defined when the FTA or FMEA was

conducted).

If both are satisfied, your EHW recovery method

is viable.



HOWEVER,

Don’t run the EHW algorithm and then

compare it against the recovery time.

This is backwards.

Start with the recovery time and then figure

out how many generations (Gmax) you can run.

Whatever your EA is going to do, its going to

have to do it within Gmax generations.



Some final comments...

• extrinsic reconfiguration is often impracti-

cal as a fault recovery method because

– The precise nature of the failure may

not be known. Hence, any simulation is

likely to be inaccurate.

– It may take too long.

For instance, consider trying to extrin-

sically reconfigure hardware in a deep

space probe operating near the planet

Neptune. Communications with the probe

will take hours.

• Genetic programming should be avoided for

any fault recovery methods. It simply re-

quires far too much computational effort

and is unlikely to meet any realistic fault

recovery deadline.



More detailed information can be found in

G. W. Greenwood, “On the Practicality of

Using Intrinsic Reconfiguration for Fault

Recovery”, IEEE Transactions on Evolutionary

Computation 9(4), 398-405, 2005




