Evolutionary Fault-Tolerant Systems

Garrison W. Greenwood, Ph.D., P.E.
Dept. of Electrical & Computer Engineering
Portland State University
Portland, OR, USA 97207

All systems eventually fail. If the system is
critical, it must be either repaired or replaced.

Unfortunately, repair and/or replacement is
not always easy...

e.g., consider the mars rovers

In such cases, one solution is to make the
system fault-tolerant—i.e., able to autonomously
repair itself to restore functionality.

These fault-tolerant systems must (a) detect
the failure, and (b) do something to fix the
problem

We are going to use evolvable hardware (EHW)
to do the fixing.

OUTLINE

I. Introduction to fault-tolerant systems

II. What is “evolvable hardware”

III. Using EHW to recover from faults

IV. Overview of real-time systems

V. Recovery under real-time constraints

So, what does fault-tolerance deal with?

Suppose a system suddenly fails. Two
questions:

1. can you find the problem?

(fault detection)

2. can you fix the problem? (fault recovery)

Oh, and by the way, do both detection and
recovery without human intervention...

Some observations

e fault detection is not always easy

e redundancy is the most common recovery
method

e When redundancy is impractical,
reconfiguration is worth considering

e in most cases detection/recovery
operations have time constraints

Before discussing recovery, we need to talk
about detection.

But first, ‘“faults” and ‘failures’ are not the
same thing.

def. (failure)

inability to accomplish an assigned task

def. (fault)

a defect that leads to a failure
e.d., a clamping diode shorts (fault) which

causes an input line to be permanently
grounded (failure)

def. (failure modes)

A specified way in which a system or a
component can fail.

e.g., the failure modes of a diode are “open”
and “short”

How can we find these failure modes?

1. historical data

2. from tests or experiments

3. technical literature (journals, reports, etc.)

Once the component failure modes are known,
the system are found using

Fault Tree Analysis (FTA)

A top-down approach where a system
failure is assumed to have happened

and one tries to find the fault that caused
it.

Failure Modes & Effects Analysis (FMEA)

A bottom-up approach where the
effect of every failure mode of every
component is determined and analyzed.

So what causes faults?

1. components have limited lifespans (e.g.,
connectors corrode and transistors burn out.)

2. operational environment changes

An observation...

Environmental conditions include humidity, tem-
perature, shock vibration and radiation.

Unanticipated environmental changes are of most
concern because it makes the system
operate in an unpredictable manner.

def. (fault-tolerant system (FTS))

A system that continues to operate in the
presence of failures)albeit with degraded
performance)

FT = fault detection 4 fault recovery

FT can be achieved by

e fault masking (doesn't fix the problem, just
hides it)

e fault recovery via redundancy
(most common method)

e fault recovery via reconfiguration (the EHW
approach)

IMPORTANT NOTES:

1. In some cases only degraded performance
may be achieved after fault recovery takes
place

2. When a system fails, and the cause is not
for environmental reasons, redundancy is
the only recovery method guaranteed to
restore full functionality.

3. If redundancy is not possible, the only vi-
able recovery method may be reconfigura-
tion.

EVOLVABLE HARDWARE

EHW = EA + reconfigurable circuitry

FPGA, FPAA, and FPTA are reconfigurable
devices

“EA” means ES, EP, GA, etc.

Pt+1) = SEW(P())))

P(t) population of solutions at time ¢
V() random variation operator

E(-) evaluation operator

S(-) selection operator

Each “solution” is a hardware configuration

Evaluation can be done two ways

1.

in hardware (intrinsic)

every configuration is physically implemented
in hardware and then tested to determine
its performance

. in software (extrinsic)

every configuration is evaluated using a sim-
ulator. Only the final best solution is ever
physically implemented in hardware.

Evolutionary Algorithm Chromosomes
Genetic search on a population of 10110011010 Conversion
chromosomes or11o1o11el to a circuit
= select the best designs from a population description
* reproduce them with some variation
= jterate until the performance goal is "K“::::“““- _____ P ——]
reached. ' ",f" |
A Cedinse |7 Models |1 | Control J
! avolution —= lof circuits bitstrings

. fﬁimulator
~ (e.g. SPICE)

r-------------
‘\.\
\\
Al
Al e e e
.

Circuit
Target Response evaluation TeRIpnses Reconfigurable
respanse * and filness assessment _.,._—[B] HW
Inirinsi
evolution

Main steps for the evolutionary synthesis of electronic circuits,

From A. Stoica et al., “Reconfigurable VLSI Architectures for Evolvable Hardware: From

Experimental Field Programmable Transistor Arrays to Evolution-Oriented Chips”, IEEE Trans.
on VLSI Sys., Vol 9(1), 2001

Field Programmable Gate Array (FPGA)

B
. . oac
= - -
o] 2] o] 2]
11 = = m |
\
cLe CLE cLe CLE
1 1 1
11
(=] h Vi 2
108 108
11
Routing Channels
1T
5D R] B
[=] v [2]

.-I

o
[us]

E Y
cLE [: cLe [r
— L =]
=

WorsAing Roulng Chornal

ROBK

el

Figure 1: Basic FPSA Block Diagmm

from Xilinx Spartan family datasheet, Version 1.4, Jan 1999

B — 71
G-LUT
ot o | |
OF— %2
o il [
G —a2 &4
_1 N | |
& 51 H-LUT | I \“
ER L 1 ¥
: e faniid
£],] F »
- Jm)l
. =3Fl.ll-r?§f:nF_I LV A B af— xa
F2 Fz F1ﬂ-‘F-1 | :— I
Fl e—q
T | \Y :
Mull Conircdad))
K I by Chrfiguration Frogram | _¥
EC
Faw 1D

Figure 2: Spartan Simplified CLE Logic Diagram {some features not shown)

I_ aTa _I
| I
T
I
o o o
CUTPUT CRIVER |
CH Frogremmabis Elew Rak
[aly Programmabla TTLWGMOE Drive
EC |
%
"
NPUT BUFFER
12
D [|
Frogrammabla
1K K Pul-Up/

Figure 5: Simplified Spartan 108 Block Diagram

FulOmwn [|
o=y
EC L EC Wi pl ecoer Conirolied
b4y Comiguration Prosgram N
1

— — — — — —

figures from Xilinx Spartan family datasheet, Version 1.4, Jan 1999

P5EM

PSM

PSM

B Singles
} 3Longs
1 __}:- Doubiss
H Psm Psm B
b il R 1.1
? DoLbkes 3Longs BSIngks 3Longs

Figura 8: Spartan Series CLB Routing Channels and Interface Block Diagram

©

St Pass Transistors Per
L +l—1 -+ H- Swiich Malr Inlerconnect Point

Figura 10: Programmable Switch Matriz

figures from Xilinx Spartan family datasheet, Version 1.4, Jan 1999

So, how do you program these FPGAS with an
EA7

A good example is the use of “Jbits’ used to
program the Xilinx Virtex FPGA family.

Jbits are a set of Java classes that provide an
interface into the Virtex FPGA configuration
bitstream. (The bitstream can come from a
design tool or readback from the FPGA itself.)

Each configurable logic block (CLB) in the
FPGA has coordinates (i, 7) and each CLB con-
figuration is located in a specific region of the
datastream.

The EA creates a new configuration and then
used the Jbit interface to modify the bit-stream
accordingly. The modified bitstream is reloaded
back into the FPGA.

G3 G2 G1 GO | OR AND
o) o) o) o) o) 0
0 0 o) 1 1 o)
0 0 1 0 1 o)
0 0 1 1 1 0
0 1 o) 0 1 o)
0 1 o) 1 1 o)
0 1 1 0 1 0
0 1 1 1 1 o)
1 0 o) 0 1 o)
1 0 o) 1 1 o)
1 0 1 0 1 0
1 0 1 1 1 o)
1 1 o) 0 1 o)
1 1 0 1 1 0
1 1 1 0 1 o)
1 1 1 1 1 1

To change a LUT implementation of an OR
gate to an AND gate, the bitstream is up-
loaded the bits of the LUT are located, and
OR 1111 1111 1111 1110 Oxfffe

IS changed to

AND 1000 0000 0000 0000 0x8000

JS* Btteampt to connect to the hardware +/
rezult = board.comnect (remcteHostHame,

porth ;

JS* 3et the type of devices used by the
% first FPGE on the board +/
devicaType = board.getDevicaType(d) ;
JS* Read in the bit file */
jBits.readiinfilaNams) ;

J* Zet the Top left CLE (1,1) Lo an AND gate
ww] 1000 Q000 Q000 Qo0 */
jBits.set (1, 1, LUT.SLICEC @, OxX8000);

i

Fde ey

!

L the now updated Bitstream */
bz = jBit

g.getrllrackats() ;

S* Finally send the new bitstream to the
w® Yirtex Chip */

rezult = board.szetConfiguration(o,ka) ;
J* Bnd cleanup... */

board. disconnect () ;

Figure 2. Source code for JBits example

from G. Hollingworth et al., “Safe Intrinsic Evolution of Virtex Devices”, Proc. 2000 NASA/DOD
Evolvable Hardware Conf., 2000

OUT1+
OuUT1-—
INT+
IN1—
TEST
TEST

VRE%UT

GND

2OI CAL
1 QI CMYN

ouT24 1 Hh Qj J,:I} 28
ouT2+4 2 _J AAA AAA |'_ 27
vy yvy
Il
IN2H 3 " I 26
—}—M— IA
IN2 4 25
TDI| 5 —}—vw- —\M—Q 24
TRST| 6 23
Configuration Memory
Vsl 7 22
Analog Routing Pool
ThbO 8 Reference & Auto-CaIibre{tior 21
TCK] 2
T™S| 10 —}—ww— —M‘-@
IN4— 11 18
— 1A A
INgH 12 I} I 17
OuUT4113 _ﬂ_ w |-— 16
OuUT44 14— Qj ;@ b 15

IN3—

IN3+

ouUT3—

ouT3+

The analog counterpart to the FPGA 1is the field
programmable analog array (FPAA). Shown
above i1s the Lattice Semiconductor ispPAC10

The user can program

e input amplifiers gain (by choosing 1 of 8
resistor values plus polarity)

e output amplifier bandwidth (by choosing 1
of 128 capacitor values)

e intrablock and interblock interconnections

The datastream for the ispPAC10 is =~ 320 bits
long. The EA manipulates the binary string
directly.

The lowest granularity device is the 0.5um
CMOS field programmable transistor array

(FFPTA). This is a prototype chip developed
for NASA's JFPL.

The FFTA is aorganized as a 2D array of cells

W+
s7 / 512
g3
520
522
V.

Schematic of an FPTA cell consisting of 8 transistors and 24 switches.

Cells can be combined to form current mirrors,
logic gates and op amps.

From A. Stoica et al., “Reconfigurable VLSI Architectures for Evolvable Hardware: From
Experimental Field Programmable Transistor Arrays to Evolution-Oriented Chips”, IEEE Trans.
on VLSI Sys., Vol 9(1), 2001

To illustrate how EHW can be used for fault
recovery, we will consider an analog FTS. We
assume

1. the system is linear with dynamics
governed by constant coefficient ordinary
differential equations

2. the system is a “black box"—i.e., no
access to its inside to repair or replace failed
components

3. evolution is done intrinsically

NOTE: black box = compensation is the only
means of handling faults

+ Chatjpiat
T b gl plani & R
Ml

i I

Felerence _ J'f'v:cmjluu:r;_lhle
ingst analog device

evolutionary

algorithm

-

Campen safor Kypsten

Fault-tolerant analog system

The plant is 3rd order. The fault is manifested
by a change in bandwidth; fault recovery should
restore the bandwidth.

The reconfigurable device is the ispPAC10,
which implements a lead or lag compensator.

The EA evolved a population of 20 for 200
generations using recombination and mutation.

Parsonal Computer

GPIE L,
@ IIF

¥
L
signal reconfigurable spectrum
generator dewvice analyzear

The intrinsic EHW testbench

The fithness of configuration C' is given by
5
fitness(C) = > [M() — M (i)]?
i=1

where M (%) is the compensated systems
magnitude and M * (i) the desired magnitude
at the 7+ — th test frequency.

The 5 test frequencies were chosen such that
some were in the passband, one at the -3db
point, and some in the stopband.

NOTE: just using the -3db point would pro-
duce the trivial solution of just increasing or
decreasing the open-loop gain.

C=1.02pF
{min setting)
I
I

G=1 IS
Input ::)7 A3
8 OA2
G=-1
144
Set to control i
comer frequency High-pass C=1.02pF
/ function (min setting)
1 / —
'—\JUU‘—. — G;‘] ; G:K;: _H_m_'
/ . Al Lead or Lag
\w‘i 0A1 output
| o |J
a2
\
Low-pass
function

The EA had to evolve the capacitor value and
the two amplifier gain values (K, and K5).

We also had to evolve two switch positions
because the only way to get Ky or K5 equal to
0 was to remove the amplifiers 7.4y and TA-.

20 T T T T T T T T

"faulty”" ———
"orginal" -—-—
"restored” ---#¥--

_50 L L L L L L L L
104000 100000

HZ

Overview of real-time systems

def (real-time system)

any system that is both logically and
temporally correct

def (logically correct)

satisfies all functional specifications

def (temporally correct)

completes all tasks within specified timeframes

Fast does not mean real-time
and

Real-time does not mean fast

For example, consider two real-time delivery
systems: one is a courier who guaranties de-
livery in less than 3 days and an e-mail system
that guarantees delivery in 10 minutes.

Notice both systems are logically correct (they
guarantee delivery)

But whether or not they are temporally correct
depends on the required delivery time.

scenario | delivery | courier e-mail

1 5 days X X
2 5 hours X
3 5 min

So, why is RT an issue in fault-tolerance??

ANS: because faults cannot be left uncorrected
indefinitely

This impacts intrinsic EHW used for fault
recovery because reconfiguration takes time.

In fact, in some cases intrinsic reconfiguration
may not even be practicallll

With intrinsic reconfiguration every solution must
be downloaded into the reconfigurable device,
which takes time ¢y

Device Type | Size | t, (ms)
iISpPAC10 FPAA 4 100
AN220E04 FPAA 4 3.8
XC3020A FPGA | 64 1.5

Virtex XCV50 FPGA | 1728 4
XC4085XL FPGA | 3136 192
APEX II EP2A70 | FPGA | 6720 12.5
JPL's FPTA2 FPTA 04 0.008

Let A be the number of new configurations
created each generation

Let tf be the time to conduct a fitnhess test

Then an EA running for k generations has an
intrinsic reconfiguration time of

Tr(k,A) = k)‘(tp'l'tf)

But the real problem is ty and especially for
analog systems.

Example:

An AN220E04 FPAA is used to compensate
for aging effects in a control system responsi-
ble for positioning a satellite’s communications
antenna.

The reconfiguration search is done by a
generational GA run for 500 generations with
a population size of 100.

The system’s step response is measured to de-
termine if the compensation is correct. This
step response test takes ty =025 milliseconds
to conduct.

Hence, A = 100, £ = 500 and t, = 3.8 ms,
which makes T,.(500,100) ~ 8.7 hours.

Is 8.7 hours too long??

ANS: maybe...

Reconfiguration times are meaningless unless
they are put into context.

For instance, suppose the satellite needs to
communicate for a few minutes every 20 hours,
and failure to operate can lead to the loss of
the satellite.

If a control system fault occurs just after one
of these operational periods, no porblem.

If the operational period starts in 10 minutes,
big problem.

This means you can only determine if a
reconfiguration time is too long by comparing

it against the fault recovery time.

Since fault recovery has a deadline, EHW-based
recovery is a real-time process.

This has strong implications for the EHW
community

It is no longer sufficient to just talk about how
an EA was able to restore a circuit’s functions.
(that only shows logical correctness)

Just reporting an algorithm’s running time doesn’t
say anything about temporal correctness ei-
ther.

In other words,

No EHW-based recovery method can
legitimately proclaim efficacy until it is
proven to be both logically and
temporally correct

Logical correctness is easy to prove. (Try it
out and see if it works!)

Temporal correctness is proven by comparing
the EA running time against the fault recovery
deadline (defined when the FTA or FMEA was
conducted).

If both are satisfied, your EHW recovery method
IS viable.

HOWEVER,

Don’'t run the EHW algorithm and then
compare it against the recovery time.

This is backwards.

Start with the recovery time and then figure
out how many generations (Gmax) you can run.

Whatever your EA is going to do, its going to
have to do it within Gmax generations.

Some final comments...

e extrinsic reconfiguration is often impracti-
cal as a fault recovery method because

— The precise nature of the failure may
not be known. Hence, any simulation is
likely to be inaccurate.

— It may take too long.

For instance, consider trying to extrin-
sically reconfigure hardware in a deep
space probe operating near the planet
Neptune. Communications with the probe
will take hours.

e Genetic programming should be avoided for
any fault recovery methods. It simply re-
quires far too much computational effort
and is unlikely to meet any realistic fault
recovery deadline.

More detailed information can be found in

G. W. Greenwood, “On the Practicality of
Using Intrinsic Reconfiguration for Fault
Recovery” , IEEE Transactions on Evolutionary
Computation 9(4), 398-405, 2005

