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Abstract—The paper presents an evolutionary approach to the
design of fault-tolerant VLSI (very large scale integrated) circuits
using EHW (evolvable hardware). The EHW research area com-
prises a set of applications where GA (genetic algorithm) are used
for the automatic synthesis and adaptation of electronic circuits.
EHW is particularly suitable for applications requiring changes
in task requirements and in the environment or faults, through its
ability to reconfigure the hardware structure dynamically and au-
tonomously. This capacity for adaptation is achieved via the use of
GA search techniques. In our experiments, a fine-grained CMOS
(complementary metal-oxide silicon) FPTA (field-programmable
transistor array) architecture is used to synthesize electronic cir-
cuits. The FPTA is a reconfigurable architecture, programmable at
the transistor level and specifically designed for EHW applications.

The paper demonstrates the power of EA to design analog and
digital fault-tolerant circuit. It compares two methods to achieve
fault-tolerant design, one based on fitness definition and the other
based on population.

The fitness approach defines, explicitly, the faults that the com-
ponent can encounter during its life, and evaluates the average be-
havior of the individuals. The population approach, on the other
hand, uses the implicit information of the population statistics ac-
cumulated by the GA over many generations.

The paper presents experiment results obtained using both
approaches for the synthesis of a fault-tolerant digital circuit
(XNOR) and a fault-tolerant analog circuit (multiplier). The
experiments show that the EA (evolutionary algorithm) can
synthesize fault-tolerant designs for both the analog and digital
functions circuits that can recover for functionality when lost due
to a-priori unknown faults by finding new circuit configurations
that circumvent the faults.

The paper shows that although the classic fault-tolerant design
approach is able to create a reliable circuit design by evaluating
the behavior of the circuit when well known faults are injected
during the evolutionary process, better circuit performance, in less
computation time, for a same fault-tolerant degree is achieved by
allowing the evolutionary design process to be free of all faults
constraints.

Index Terms—Evolvable hardware, fault tolerance, genetic algo-
rithm, hardware–software co-design.
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ACRONYMS1

ASIC application specific IC
CMOS complementary metal-oxide silicon
EA evolutionary algorithm
EHW evolvable hardware
FT fault tolerance
FPAA field-programmable analog array
FPGA field-programmable gate array
FPTA field-programmable transistor array
GA genetic algorithm
GAL gate array logic
IC integrated circuit
SPICE simulation program with IC emphasis
VLSI very large-scale integration

I. INTRODUCTION

L ONG-TERM survivability of space systems, as required
for example by outer solar system exploration and by mis-

sions to comets and planets with severe environmental condi-
tions, has recently been approached with new ideas, such as the
use of biology-inspired mechanisms for hardware adaptation.
The application of evolution-inspired formalisms to hardware
design and self-configuration lead to the concept of EHW. In the
narrow sense EHW refers to self-reconfiguration of electronic
circuits, such as those based on FPGA, by evolutionary/genetic
reconfiguration mechanisms. In a broader sense EHW refers to
the self-reconfiguration of a broader class of hardware, ranging
from sensors and antennas to complete space systems that could
adapt to changing environments and, moreover, increase their
performance during the mission.

Evolutionary computation encompasses a class of search
algorithms that use some aspects of natural evolution as
metaphors, and, for EHW, are used for the autonomous
synthesis and adaptation of electronic circuits. In particular,
most of these algorithms borrow ideas from natural selection,
and mimic biological mechanisms such as: genetic material
recombination and mutation. GA [32] is the most widely used
EA. Instead of focusing on just one potential solution to a
problem, it samples a population of potential solutions. A
population of individuals is initially randomly generated. Each
individual is a string that encodes, by means of a particular
mapping, a potential solution to the problem. Individuals are
also known as chromosomes. The GA then performs operations
of selection, crossover, and mutation over these individuals,
corresponding, respectively, to the principles of survival of

1The singular and plural of an acronym are always spelled the same.
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the fittest, recombination of genetic material, and mutation
observed in nature. The selection step is probabilistic, but it fa-
vors individuals that have been assigned higher fitness indexes
in an evaluation step performed beforehand. The fitness is a
scalar measure of the performance of an individual according
to the problem specification. The crossover operator splices
the contents of two randomly chosen strings, producing two
new individuals or offspring. The mutation operator changes a
particular string position at random and is applied with a low
probability of occurrence. The search process is done through
the generation of successive populations until a stop criterion
is met. It is anticipated that the average population fitness
gradually increases along the generations.

A variety of circuits have been synthesized through evolu-
tionary means. For example, [1] used genetic programming to
grow “embryonic” circuits that satisfy desired requirements.
This approach was used for evolving a broad range of circuits,
including filters and computational circuits. An alternative
encoding technique for analog circuit synthesis, which has
the advantage of reduced computation load, was used in [2]
for automated filter design. For digital circuit synthesis, [31]
describes the AdAM system which applies GA at the hardware
description language level of the circuit. Analog circuits [1],
[2] were evolved in simulation, without concern for a physical
implementation, but rather as a proof-of-concept. These ex-
periments demonstrated that evolution can lead to designs that
meet, or in certain cases exceed, performance of those designed
by humans. On-chip evolution was demonstrated for the first
time in [30]. Using GA, a Gate Array Logic (GAL) circuit was
used to design a multiplexer and an adder. On-chip evolution
was also demonstrated later in [3] using an FPGA as the pro-
grammable device, and a GA as the evolutionary mechanism,
and in [24] using dedicated hardware for the circuit and the GA
computation. References to current work in evolvable hardware
are in [4]–[7], [22], [34]. More recently, evolutionary exper-
iments were performed on FPAA [16] and custom-designed
ASIC [9], [23]. However current programmable analog devices
are very limited in capabilities. EA has been used with success
for designing fault-tolerant systems, especially in the domain
where the fitness function was noisy such as robotics (e.g., if
it involves taking error-prone measurements from a real-world
process such as the vision system of a robot) [13], [19] and
recently also in electronics [14], [20], [21].

EHW can bring two main benefits to spacecraft survivability.

1) It can generate new functions (more precisely new hard-
ware configurations can be synthesized to provide re-
quired functionality) when needed.

2) It can help preserving existing functions, in conditions
where the hardware is subject to faults, aging, temperature
drifts, radiation, etc.

The fault-tolerant property is extremely important for electronic
components used in the space and nuclear industries where they
are continuously subjected to radiation. As the limits of VLSI
technology are pushed toward sub-micron levels to achieve
higher levels of integration, devices become more vulnerable
to radiation-induced errors. These radiation-induced errors can
lead to system failure. One of the goals of future electronics is

to design radiation-immune electronic components [18]. More
generally, the development of novel fault-tolerant methods for
circuit design will benefit not only aerospace applications, but
fields with extreme temperature and radiation environments.

Our mission, therefore, is to design and develop electronic
components and systems that are inherently insensitive to faults,
such as silicon defects, by using on-board evolution in hardware
to achieve fault-tolerant or highly reliable systems. The evolu-
tion can self-repair on-line by changing the circuit configura-
tion in a short time or off-line self-repair by pushing further the
evolution and exploiting defective components as if they were
working parts [13], [14]. Another main advantage of GA, when
applied to the domain of real-world electronics, compared to a
one-candidate-solution-at-a-time search method (such as simple
hill climbing or simulated annealing) is the robustness of the
GA [28]. This is because GA work by accumulating fitness sta-
tistics over many generations; conversely, hill climbing or sim-
ulated annealing can be irrecoverably led astray. This paper re-
ports experiments that illustrate how EA, using two different
approaches, can design fault-tolerant analog and digital circuits,
and recover functionality when lost due to faults, by finding new
circuit configurations that circumvent the faults. The search for
an electronic circuit realization of a desired transfer character-
istic is made in software as in extrinsic evolution and in hard-
ware as in intrinsic evolution. In intrinsic evolution the hard-
ware actively participates in the circuit evolutionary process and
is the support on which candidate solutions are evaluated. The
FPTA reconfigurable chip, specifically designed for EHW ex-
periments, has been used in these applications.

Section II presents the fault-tolerance principles and the
evolutionary method to obtain fault-tolerant systems. Sec-
tion III presents the FPTA concept. Section IV presents the
experimental setup, including details of the evolutionary design
tool, the FPTA chip, and the hardware test bed. Section V
describes the fault-tolerant experiments to design by extrinsic
evolution (using a SPICE simulator) an analog multiplier
and by intrinsic evolution (on FPTA chips) a XNOR logical
function. Section VI presents some lessons learned from the
experiments.

II. FAULT-TOLERANCE PRINCIPLES FOREVOLVABLE

HARDWARE

The way this paper investigates FT differs from the conven-
tional way FT is studied. Instead of focusing on manufacturing
problems, such as defective level or realistic faults [25], [26],
this paper concentrates on component failures that can occur
after a long period of circuit operation, possibly due to compo-
nent aging.

The definition of FT is: A fault in a component does not cause
the overall system to malfunction [12]. In general FT is consid-
ered that “no single failure” causes the system to malfunction,
but in equipment such as manned and unmanned space vehicles,
the system can be required to tolerate multiple failures before
the system malfunctions. The malfunction is usually a “loss of
service” that can be total or partial, e.g., on a computer network.
The characteristic of FT is not absolute. It is important to note
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that no system can be truly made tolerant to every possible com-
bination of faults, and there are always some combinations of
events and failures that lead to the disruption of the system. The
question is one of degree: the amount of “required tolerance to
faults” varies from application to application. In our electronic
experiment, the malfunction is calculated by the mean square
error between a desired output transient characteristic and the
actual output.

Fault tolerant systems are evaluated by two criteria: their
reliability and availability. The reliability measures how long
the system can operate before malfunctioning even in the
presence of faulty components. The availability measures the
mean proportion of time that the system is available for use. In
our experiments, circuit

• reliability is measured by evaluating the malfunction of
the electronic circuit when injecting faults;

• availability is measured by calculating the time needed by
the evolution process to retrieve a satisfactory circuit de-
sign. There are four principles for designing fault-tolerant
systems [27]:

1) redundancy,
2) fault isolation,
3) fault detection and annunciation,
4) on-line repair.

• Redundancy is well understood: if part of a system fails,
there is an “extra or spare” that can operate in place of
the failed component such that the system operation is
uninterrupted.

• Fault-isolation consists of containing or isolating the fault
to prevent a single failure’s causing multiple failures that
can easily cause a system malfunction.

• Fault detection and annunciation require that the system
must first detect the failure (avoiding latent failure) and,
once detected, it must announce that malfunction in some
manner so that a repair can be made.

• On-line repair requires that the system with a failed com-
ponent be made unavailable as less as possible while the
system is in service. Three of these four principles can
be applied to fault-tolerant evolutionary design. Redun-
dancy is obtained by using a circuit with many connec-
tions and elements (transistors). Fault detection and an-
nunciation is obtained by evaluating continuously the cir-
cuit performance. On-line repair is obtained by swapping
circuit configuration; it can be performed by searching, in
the population, for a correct circuit, or by running the GA
during a limited number of generations.

Two approaches were proposed to build fault-tolerant sys-
tems using EA:

1) Population-Based Fault-Tolerant Design: It consists of
extracting, from a population of evolved circuits, the in-
dividual that adequately performs a task in the presence
of a fault. The evolution process is continued to attain a
performance equal to that before the fault occurred [14].

2) Fitness-Based Fault-Tolerant Design: It consists of intro-
ducing the faults during the evolutionary process. Partic-
ularly, apply faults knowna priori that can occur in the
circuit during its life-time [17].

While the population fault-tolerant approach uses the popu-
lation statistics accumulated by the GA without constraining it
to particular faults, the fitness fault-tolerant approach needs a
previous knowledge of the faults that can occur in the circuit
during its life-time. This paper show that the former approach
is superior to the latter. Section III presents the FPTA and the
evolutionary platform on which the experiments are conducted;
then describes the experiments and their results.

III. FPTA FOR EVOLVABLE HARDWARE

The FPTA idea was introduced first in [9]. FPTA is a
concept design for hardware reconfigurable at transistor level.
As both analog and digital CMOS circuits ultimately rely on
functions implemented with transistors, the FPTA appears as a
versatile platform for the synthesis of both analog and digital
(and mixed-signal) circuits. Currently available reconfigurable
devices can be classified as FPGA or FPAA [8]. Most FPGA
models consist of an arrangement of cells that perform digital
logic, such as basic gates, multiplexers, and flip-flops [8]. The
user can configure the cells’ connections and, in some models,
their functionality. The FPGA analog counterparts, the FPAA,
are usually regular architectures consisting of a matrix of CAB
(configurable analog block). These CAB are often nominally
identical, being made of 1 OpAmp (operational amplifier) with
programmable interconnections. While FPGA were developed
for applications in the domain of digital-signal processing
and re-configurable computing, most FPAA models are being
developed for applications in programmable mixed-signal
circuits and filtering. In addition to the intrinsic flexibility
of CAB, which confers advantageous features to standard
electronic design, the FPGA and FPAA are also the focus of
research in the Evolvable Hardware. Contrasted with currently
available FPGA and FPAA, the FPTA presents a fine granu-
larity, being programmed at the transistor level. This feature is
advantageous from the EHW perspective, since it allows the
sampling of novel architectures together with the possibility of
implementing standard architectures.

The FPTA cell is an array of transistors interconnected by
programmable switches implemented with transistors, acting as
simple T-gate switches. The status of the switches (or )
determines a circuit topology and consequently a specific re-
sponse. Thus, the topology can be considered as a function of
the switch states, and can be represented by a binary sequence,
e.g., “ ,” where by convention 1 implies a switch turned

and 0 implies a switch turned . The FPTA architecture al-
lows the implementation of bigger circuits by cascading FPTA
cells. To offer sufficient flexibility the module has all transistor
terminals connected via switches to expansion terminals (except
those connected to power or ground). Further issues related to
chip expandability are treated in [9]. Fig. 1 is an example FPTA
cell consisting of 8 transistors and 24 programmable switches;
the transistors P1–P4 are PMOS and N5–N8 are NMOS, and
the switch-based connections are in sufficient number to allow
a majority of meaningful topologies for the given transistor ar-
rangement, and yet less than the total number of possible con-
nections. Programming the switches and defines a cir-
cuit for which the effects of nonzero, finite impedance of the
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Fig. 1. Module of the FPTA cell.

Fig. 2. A test board with 2 cascaded FPTA.

switches can be neglected in the first approximation. One FPTA
module was fabricated as a Tiny Chip through MOSIS,2 using
0.5-micron CMOS technology. Fig. 2 illustrates the test board
with 4 chips mounted on it. The board uses 6 external con-
nections between the 2 FPTA and 8 external connections to
2 voltage inputs, 1 probe output, and 1 current bias. (The 2 FPTA
used in the experiment are on the left side of the figure.)

In the context of electronic synthesis on reconfigurable de-
vices such as the FPTA, the architectural configurations are en-
coded in “chromosomes” that define the state of the switches
connecting elements in the reconfigurable hardware. Fig. 3 illus-
trates the main steps in evolutionary synthesis of electronic cir-
cuits. First, a population of chromosomes is randomly generated
to represent a pool of circuit architectures. The chromosomes
are converted into control bit strings, which are downloaded
onto the programmable hardware. In the particular case of the
FPTA cell, the chromosome has 24 bits that determine the state
of the 24 switches (Fig. 1). Second, circuit responses are com-
pared against specifications of a target response using the rms
error as the fitness criterion. The individuals are ranked based
on their fitness. Preparation for a new iteration loop involves

2A low-cost prototyping and small-volume production service for VLSI cir-
cuit development [http://www.mosis.com].

generating a new population of individuals from the pool of the
best individuals in the previous generation. Third, individuals
are selected probabilistically based on their fitness. Some are
taken as they were and some others are modified by genetic
operators, such as chromosome crossover and mutation. The
process is repeated for several generations, resulting in individ-
uals with increasingly better fitness. The GA is usually ended
after a given number of generations, or when the closeness to
the target response has been reached. In practice, one or several
solutions can be found among the individuals of the last gen-
eration. In addition to this procedure (called intrinsic EHW or
hardware evolution), Fig. 3 also shows an alternate way to carry
on evolutionary circuit synthesis, by using simulators instead of
reconfigurable chips. In this particular case, the chromosome is
mapped into a SPICE circuit model, which will be simulated
and evaluated. The procedure using the simulator is called ex-
trinsic EHW or software evolution. The chromosome is mapped
into the circuit netlist by examining the chromosome values bit
by bit. According to each bit value (0 or 1), the state of its cor-
responding switch is set in the circuit netlist. After the states of
all the switches are determined, the circuit is simulated.

IV. HARDWARE TESTBED FOREVOLUTIONARY EXPERIMENTS

An evolutionary design tool EHWPack (Fig. 4) was devel-
oped to facilitate experiments in hardware and software evolu-
tion [15], as defined in Section III. This tool incorporates the
public domain Parallel GA package PGAPack [29] as a genetic
engine running on a UNIX workstation. For hardware evolu-
tion, the tool was very useful in testing architectures of recon-
figurable hardware and in demonstrating evolution on FPTA re-
configurable chips. The chromosomes are downloaded from a
UNIX workstation to a PC board with 4 FPTA chips, and the
circuit response is read back to the UNIX workstation through
a TCP/IP connection. The PC test bed is built around National
Instruments data acquisition hardware and software (LabView).
An interface-code links the GA with the hardware where po-
tential designs are evaluated, while a Graphical User Interface
(GUI) allows easy problem formulation and visualization of re-
sults. At each generation the GA produces a new population
of binary chromosomes, which get converted into configura-
tion bits for the 4 PTA’s reconfigurable chips. Configuration bits
are further downloaded by the PC into the FPTA reconfigurable
chips by LabView. Referring to software evolution, we incorpo-
rated in the EHWPack, the SPICE 3F5 [33] as circuit simulator.
An interface code links the GA with the simulator where po-
tential designs are evaluated, while a Graphical User Interface
(GUI) allows easy “problem formulation” and “visualization of
results.” At each generation, the GA produces a new population
of binary chromosomes, which get converted into Netlists that
describe candidate circuit designs, and are further simulated by
SPICE.

V. FAULT-TOLERANT EXPERIMENTS

The aim of the experiments in Section V is to test and com-
pare the reliability and availability of a circuit design obtained
by, respectively, a population and a fitness-based evolution. Two
case studies were investigated: the evolution of 1) an analog
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Fig. 3. Main steps for the evolutionary synthesis of electronic circuits.

Fig. 4. Environment for evolutionary hardware design.

2-inputs multiplier, and 2) a digital XNOR gate. In 1, software
evolution was used, and, in 2, the hardware evolutionary proce-
dure was used. Sections V-A and V-B discuss 2 cases.

A. Software Evolution of an Analog Multiplier

The circuit in Fig. 5 shows that 2 cascaded FPTA cells are
used, and are connected by 6 switches. The interconnection
switches are associated with the faults to be applied in the cir-
cuit, faults 0–5. The chromosome consists of 54 bits: 2 sets of
24 bits controlling the internal switches of the 2 cells, and 6 bits
controlling the interconnecting switches. The circuit receives
2 inputs, and , and has 1 probed output, Out. Since this
is an extrinsic EHW experiment, the circuit is represented by a
netlist that is simulated by the SPICE circuit simulator.

Before launching the GA, a fitness function must be defined
to evaluate how close each circuit comes to the specification.

In this case, a nested DC sweep analysis has been performed,
where and are swept from 1 to 4 volts in increments of
0.3 volts. The fitness of each circuit is:

(1)

The and point to the current values of and , respec-
tively. is the circuit output for a particular input con-
figuration and . The target value is:

is the total number of output samples; in this case.
The fitness increases as the rms error to the target response
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Fig. 5. Cascaded FPTA used to design a fault-tolerant multiplier circuit with 54 switches.

decreases. Since the input and output values are normalized, the
fitness .

Sections V-A-1 and V-A-2 describe two sets of experiments,
population based and fitness based. The experiments used a GA
with parameters [28]:

population size: 128,
chromosome size: 54,
uniform cross-over probability: 0.7,
uniform mutation probability: 0.04,
tournament selection of size 2,
elite strategy: 50%.

1) Population-Based Experiment:After 60 generations, the
GA converged to a particular solution. We then tested this indi-
vidual against 6 different faults (see Fig. 5):

faults 0, 1, 4 are opened switches;
faults 2, 3, 5 are closed switches.

We also tested the individual against inverse faults, defined as:

inverse faults 3, 5 are opened switches,
inverse fault 4 is closed switch.

These faults were chosen in such a way that the interconnecting
switch configuration is opposite to the one attained by the best
individual. The performance of the best individual was investi-
gated for these faults. An individual scores the highest fitness
among the population when no fault is applied. Also investi-
gated were which individuals in the same population (mutants)
could display the best response to each fault; see Table I.

Table I compares the individuals according to their normal-
ized fitness, by applying a transformation where the worst and
best fitness are 0 and 1, respectively. The performance of the
best individual attained by the GA is compared with the other
mutants in the population. When presented with the 6 faults,
the best individual performance deteriorated for faults 0, 1, 3, 4,

TABLE I
ACHIEVED FITNESS—POPULATION—BASED (INV-F� INVERSE FAULT)

5. Mutants with better responses for these faults, are shown in
Table I. However, we could not find mutants with an acceptable
performance for faults 0, 1, 4. This procedure was then carried
on for each of these 3 faults: re-starting the GA, and evaluating
the individuals under each particular faulty condition. Thus we
could “self-repair” the circuit, and increase the fitness for these
faults. For fault 0, the GA converged after 100 generations; for
faults 1, 4, the GA converged after 60 generations.

Table I also illustrates the performance of the individuals
when the inverse of faults 3, 4, 5 are applied. This is equiva-
lent to applying no faults, and thus providing the same results.
However, this is an interesting test for the fitness based method.

Referring to the number of evaluations in Table I, the first
GA execution took 7680 evaluations. Whenever the best indi-
vidual provides the best response for a particular fault (fault 2,
in Table I), no evaluation is necessary. If the mutant provides the
best response to a particular fault, it means that the whole popu-
lation (128 individuals) had to be re-evaluated for the particular
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Fig. 6. Response of the best analog multiplier with no faults applied.
Population-based experiment.

Fig. 7. Response of the best analog multiplier when fault 5 is applied.
Population-based experiment.

Fig. 8. Response of the best mutant with respect to fault 5 for the multiplier.
Population-based experiment.

fault. For the self-repaired individuals, the number of evalua-
tions is the number of individuals multiplied by the number of
generations necessary for convergence of the second GA.

Fig. 6 illustrates the best individual response when no fault
is applied. Fig. 7 displays the response of the same individual
when fault 5 is applied; there is a deterioration in its response
when compared to the target. Fig. 8 depicts the response of
the best mutant with respect to fault 5. The response again ap-
proaches the target.

2) Fitness-Based Experiment:The fitness-based exper-
iment encompasses the evaluation of 7 versions of each
individual: 1 with no faults, and 6 with the faults defined in
Section V-A-1. It is anticipated to have more robust individuals
at the expense of more evaluations. After 50 generations the
GA converged to the best individual. Table II shows the results
for the fitness-based experiments; it shows the performance

TABLE II
ACHIEVED FITNESS—FITNESS-BASED (INJ � INJECTED; INV-F �

INVERSEFAULT)

TABLE III
COMPARISON OFPOPULATION AND FITNESSBASED METHODS FOR THE

ANALOG MULTIPLIER (POP-B⇒POPULATION-BASED; FIT-B⇒FITNESS-BASED)

of the best individual and mutants when exposed to faults and
inverse faults.

Table II shows that, in contrast to the population-based
experiments, the application of inverse fault 5 reduces the
performance of the best individual.

3) Comparison of Population and Fitness Based
Methods: Table III compares the results for population
and fitness based methods; the population-based method
achieved slightly superior results for 9 out of 10 faults. Taking
an average, the results for the population-based method are
1.4% superior to the fitness-based method. However, taking
the number of individuals evaluated in each method (Tables I
and II), the population-based method evaluated 20% fewer
individuals than the fitness-based method.

A second GA experiment was conducted for both population
and fitness based methods, exhibiting similar results to that in
this section.

B. Hardware Evolution of a Digital XNOR Gate

The experiment consists of 2 cascaded FPTA but differs from
the experiments in Section V-A. Each FPTA is programmed by
24 internal switches. The 2 FPTA are connected by 6 external
wires controlled by 6 programmable switches (Fig. 9). The in-
terconnection switches are associated to the six faults to be ap-
plied in the circuit, fault 0 to fault 5, by imposing the switches
to be always closed or open. Each FPTA is connected through
4 programmable switches to and , 1 current bias, and
1 probe output, . These 4 programmable switches allow the
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Fig. 9. Cascaded FPTA used to design a fault-tolerant XNOR circuit with 62 switches. The 6 connections indicated by a circle are subjected to — faults 0,3, 5,
are open switches; faults 1, 2, 4 are closed switches.

Fig. 10. Input signal 1 (100 Hz), input signal 2 (50 Hz), output signal of XNOR configuration. (x axis: 0.25 msec/unit; switches: 1 volt/unit.

GA to select the terminals in the circuit to apply the input volt-
ages and to collect the output voltage. The 2 cascaded FPTA are
programmed by a total of 62 switches which represent the chro-
mosome of the GA (Fig. 9).

The experiment consisted of the evolutionary design of a
XNOR logic function using 2 square-wave voltage inputs, at
50 Hz and 100 Hz (Fig. 10). The fitness function is:

XNOR

(2)

The sum reflects the “rms error between the output response of
the circuit obtained by evolution and the ideal output signal of a
XNOR logic function calculated for 4 logic states of the input:
(0, 0) (1, 0), (0, 1), (1, 1)” as illustrated in Fig. 10., point to the
current values of , respectively. is the circuit
output for a particular input configuration , ; the
target value is the XNOR function applied to , .

Two sets of experiments, population based and fitness based,
are described. The experiments used a GA with parameters:

chromosome size 62,
population of 200,

tournament selection of size 10;
uniform mutation probability: 0.04,
uniform cross-over probability: 0.7,
elite strategy: 10%.

1) Population Based Experiment:After 60 generations,
the GA obtained the circuit with the correct XNOR response.
Fig. 11 shows the circuit configuration of the best individual,
and indicates that the best configuration uses only the output
probe which is connected only to the left FPTA.

To evaluate the FT of the best circuit configuration found
after 60 generations, this individual was tested against 6 dif-
ferent faults chosen:

fault 0, fault 3, fault 5 are open switches,
fault 1, fault 2, fault 4 are closed switches.

We also tested the individual against inverse faults defined as:

inverse faults 3, 5 are closed switches;
inverse fault 2 is open switch.

The performance of the best individual was analyzed for these
faults as shown in Fig. 12 and in Table IV (column 1). Also in-
vestigated was which individuals in the same population (mu-
tants) could display the best response to each fault as shown in
Fig. 13 and in Table IV (column 2).
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Fig. 11. Circuit design of best digital XNOR obtained at generation 60. (Population-based experiment).

Fig. 12. Response of best digital XNOR circuit with no-fault and 6-faults
applied. (Population-based). The best circuit design could not realize the XNOR
functionality for faults 2, and faults 3, 4, 5. (The responses are shifted in time
in all the figures to enhance the illustration.)

TABLE IV
FITNESSACHIEVED BY THE BEST INDIVIDUALS, MUTANTS, SELF-REPAIRED

INDIVIDUALS (FOR THEPOPULATION-BASED FT EXPERIMENT FOR THEDIGITAL

XNOR) COLUMN 5 SHOWS THENUMBER OF CIRCUIT EVALUATIONS FOR EACH

TEST. THE BESTFITNESS IS INBOLD. THE NUMBER OFEVALUATIONS IS GIVEN

BY THE POPULATION SIZE (200) TIMES THE NUMBER OF GENERATIONS

Fig. 13. Response of best mutants with respect to each fault for XNOR.
(Population-based). Further evolution was needed to find an XNOR circuit for
faults 3, 4.

Fig. 14. Fitness of the best digital XNOR circuit through generation for
population-based and fitness-based.
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Fig. 15. Circuit design of the best digital XNOR circuit obtained at generation 60. (Fitness-based experiment).

Fig. 12 shows that the best circuit configuration does not
achieve the XNOR functionality for faults 2, 3, 4, 5. Looking
at the population in generation 60, some mutants had better re-
sponses for faults 2, 5 as shown in Fig. 13 and Table IV. How-
ever no mutants were found with acceptable performance for
faults 3, 4 (Fig. 13 and Table IV). As in Section V-A-1 with
the analog multiplier, the GA with the population of its last run
was restarted, evaluating the individuals under fault 3 and fault
4 conditions. The GA was able to increase the performance with
these faults and to off-line self-repair the circuit. The behavior
of the faulty part became just another component to be used: the
EA did not “know” that the part was supposed to do something
else [13]. For fault 3, and starting with the last available popula-
tion, it took half the number of generations (30 generations) to
recover than when starting with a random population, as shown
on Fig. 14. These experiments illustrate that the population ef-
fect can find instantaneously and on-line a circuit configuration
to resolve the faults.

2) Fitness-Based Experiment:The chromosomes are evalu-
ated in 4 circuit states: 1 without fault, and 3 with fault 2, 3, 5,
respectively. The fitness of the chromosome is the average of the
four evaluations. After 60 generations the GA obtained the cir-
cuit that best satisfied the requirement (Fig. 14). Fig. 15 shows
the circuit configuration, and indicates that the input signals and
the output probe are connected to both FPTA.

To evaluate the fault-tolerance of the best
circuit-configuration found after 60 generations, the
individual was tested against the 6 different faults defined in
Section V-B-1 As anticipated, Fig. 16 and Table V show
that the best circuit-configuration achieves the XNOR
functionality for each of the 3 faults. The circuit-schematic
shows that the switch-states are identical to the faults which
make the circuit insensitive to the faults: fault 2 closed and
faults 3, 5 opened (Fig. 11). Table V and Fig. 16 show that
the circuit can also achieve the XNOR functionality with
faults not included into the fitness function such as faults
0, 1, 4, but with lower performance: the circuit is robust
to faults not encountered during evolution. However the
circuit performance degrades when inverse faults were applied

Fig. 16. Response of the best digital XNOR circuit with no fault and 5 faults
applied. (Fitness-based).

TABLE V
FITNESSACHIEVED BY THE BEST INDIVIDUALS AND MUTANTD FOR THE

FITNESS-BASED FT EXPERIMENT FOR THEDIGITAL XNOR

because its design is specialized to the faults injected during
the evolution. Looking at the population at generation 60,
mutants with better responses were found for the inverse
faults (Fig. 17 and Table V).

Table VI compares the results for population and
fitness-based methods; it shows that the population-based
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Fig. 17. Response of the best mutants with respect to each fault for the XNOR.
(Fitness-based).

TABLE VI
COMPARISON OFPOPULATION AND FITNESS-BASED METHODS FORDIGITAL

XNOR (POP-B⇒POPULATION-BASED; FIT-B⇒FITNESS-BASED)

method achieved much better results for 9 out of the 10 faults.
On average, the results for the population-based method are
9.5% superior to the fitness-based method. Using the number of
individuals evaluated, the population-based method evaluated
(Tables IV and V) 57.1% less individuals than the fitness-based
method.

A second GA experiment was conducted for both the
population-based and fitness-based methods; its results were
similar to the ones in this Section V-B-2.

VI. L ESSONSLEARNED

Two approaches for designing fault-tolerant FPTA were
experimentally compared. The population-evolution approach
has appreciably more advantages than the fitness-evolution
approach:

1) The population approach builds circuits with better per-
formance in a no-fault situation than does the fitness fault-
tolerant approach. In the latter case, the evolution is con-
strained by the faults imposed on the circuit. But the
fitness-based fault-tolerant approach has the advantage of
obtaining a single circuit robust to multiple faults.

2) The population approach offers an on-line self-repair
mechanism able to find circuits in the population with

better performance than the circuits obtained by the
fitness approach. Although the best circuit configuration
for a faulty situation is not robust, the population con-
tains mutant configurations able to achieve the desired
functionality with the faulty circuit. They even display
a better performance than the best configuration and
mutants obtained by the fitness approach.

3) Although the population approach offers a self-repair
mechanism, it must be done off-line in 20% to 50% less
time needed to obtain a solution from scratch.

4) The population approach requires 20% to 50% less
computation than the fitness approach. The speed-up
increases considerably if multiple faults are injected
simultaneously.

These experiments open the way for further investigation of
the property of fault-tolerant evolutionary techniques applied
to electronics, such as the behavior of the fault-tolerant system
when arbitrary and many faults are injected, and the unavail-
ability time is limited, or when the faults do not have the same
phenotypic effect as genetic operators. New methodologies can
be conceived by combining the population and the fitness ap-
proaches, or by including, more explicitly, redundancy in the
system such as explored in the ‘embryological’ development
[11].

These initial experiments, while illustrating the power of GA
to design digital circuits and to maintain functionality by recov-
ering from faults, only prepare the ground for further questions
related to its application. Examples of further questions include:

• addressing how the evolutionary mechanism can be pro-
tected such that its implementation is not itself subject to
faults,

• how should the fitness function be computed/stored.
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