
Aims:

This chapter describes what an evolutionary algorithm (EA) is, what its major components are, and how the algorithm is used. This is only an overview, which means not all aspects of EAs can possible be discussed. Nevertheless, the material does provide sufficient preparation so readers can begin to study EHW literature. More detailed information about EAs is available in a number of recently published books. The book by Eiben and Smith (2003) is particularly good. 

Section 1  What is an EA?

Evolutionary algorithms are computer algorithms that mimic the forces of natural evolution and self-adaptation to solve difficult problems. It is therefore not surprising that the underlying theory and even the terminology has strong ties to evolutionary biology. More specifically, EAs follow the neo-Darwinian philosophy which says stochastic processes such as reproduction and selection, acting on species, is responsible for the present the life forms we know. In simple terms natural evolution describes how a population of individuals strives for survival. During reproduction genetic material from each parent creates an offspring. Each individual has an associated fitness that ultimately determines the survival probability. Highly fit individuals have a high probability of surviving to reproduce in future generations.

With respect to EAs, each individual is a unique solution to the optimization problem of interest. A population of individuals is therefore a set of possible solutions and the fitness of a solution measures its quality. New individuals are created each generation by randomly varying individuals in the current population. Every individual is evaluated and the best individuals are selected for the next population.  That is, 



[image: image1.wmf]
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.1)

where P(t) is a population of solutions in generation t, V(() is a random variation operator, E(() is an evaluation operator, and S(() is a selection operator. This process repeats every generation until the termination criteria is satisfied. Each component of an EA is described in the next section.

Section 2 Components of an EA

2.1 Representation

Representation refers to the data structure that encodes all the problem parameters needed to describe a solution. Biological terms are often used when describing representations. In the biological world the term genome refers to all of the genetic material that can be used to build a given life form, but only a subset of this material, called the genotype, is needed to build any particular individual. Each gene value or allele has a defined location or locus within the genotype. Evolution therefore alters one genotype to create a different genotype by changing an allele at specified locus. The phenotype is the genotype’s observed behavior when it interacts with the environment. 

Each encoded problem parameter in an EA is considered a gene. Hence, in EHW problems the genome is the set of all possible encoded problem parameters, and the genotype is the subset of those parameters needed to describe a particular circuit configuration
. The phenotype is the actual problem solution (i.e., a physical circuit).   

There are four encodings used in EHW problems:

1. Binary strings

2. Integers

3. Real numbers

4. Hybrid 

2.1.1 Binary strings

Binary strings are arguably the most frequently encountered encodings.  They are very versatile because they can encode both component values and the circuit topology (configuration). Consider a RC network with possible resistor values R = {100(, 220(, 390(, 470(, 1K(, 2.2K(, 3.3K(, 5.6K(} and possible capacitor values C = {10(F, 47(F, 220(F, 1000(F}. Any circuit configuration can be encoded with a 6-bit binary string: three bits to select one of eight R values (000 for 100(, 001 for 220( and so on); two bits to select one of four C values (00 for 10(F, 01 for 47(F and so on); and one bit to indicate if the R and C are in series (logic 0) or parallel (logic 1).  For instance, the binary string 011100 would indicate a 470( resistor in series with a 220(F capacitor.

2.1.2 Integers

In some cases it is more convenient to specify component values directly. The integer array is split into fields where each field is associated with a particular component. The units are predefined so only the numerical value is encoded. For example, the integer array 

	470
	220


would describe a series RC network where the units were predefined as ohms and microfarads. The integer representation is easy to decipher the component values(which is particularly useful if the number of circuit components is large.  However, it is not easy to describe circuit topologies with this representation.

2.1.3 Real numbers

Real numbers are needed to represent coefficient values such as tap weights for a digital filter or gain constants for a PID controller. One way to represent real numbers encodes each real number 
[image: image2.wmf] as an L-bit binary string.  The conversion from a binary string to a real number is straightforward. Consider 
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[image: image4.wmf]. This binary encoding actually represents the real number



[image: image5.wmf]
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.2)

One additional bit can be added for signed numbers (0 for positive, 1 for negative). The IEEE-754 Standard (32-bit version) is also widely used to represent real numbers although it provides far more precision than what is really needed for EAs (signed numbers from 2-128 to 2127). Real number variables are often collected into a vector.

2.1.4 Hybrid

These encodings use a mixture of different encodings. Hybrid representations are particularly useful when both circuit topologies and component values are evolved. For instance, integer fields could be used to specify component values while binary fields could encode switch positions.
2.2 Variation

Variation is a random process that creates offspring (new individuals) from parents (existing individuals) by changing some or all of the encoded solution parameters.  The most common variation operators are mutation or recombination.

· Mutation
Mutation requires only one parent.  The idea is to create a single offspring by randomly altering one or more encoded solution parameters in the parent. (In practice the parent itself is not mutated but rather a copy of the parent.)  The exact mutation operator form depends on the individual’s representation.  For example, a simple mutation operator for individuals encoded as a binary string is to complement a randomly chosen bit position
. Of course more than one bit position may be complemented.  A common practice is to complement every bit position with some small probability pm (typically less than 0.01).

More extensive mutations are possible.  Entire blocks of consecutive bit positions can be swapped.  This swap operator can also be used with more complicated representations. For instance, if the individual is encoded as an integer array, two randomly chosen integers can be swapped

parent:

1 2  5  8  7  3  6  4  0

offspring:
1 2  4  8  7  3  6  5  0

Another mutation method is inversion where the order of all integers between two randomly chosen locations are reversed.

parent:

1 2  5  8  7  3  6  4  0

offspring:
1 2  5  6  3  7  8  4  0

A very effective way for mutating real number parameters is to add a small random variable to the current parameter value.  The magnitude of this random variable determines the mutation strength. Let  xi ( ( for (1 ( i ( n) and let N(0,1) denote a normally distributed random variable with zero mean and unity variance.  Then xi, which is called an object parameter, is mutated by
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where ( is the mutation step size and 
[image: image7.wmf] means a new random variable is sampled for each xi. ( is called a strategy parameter. Studies have shown that evolving the strategy parameters along with the object parameters improves the quality of the search.  The strategy parameter is adjusted online without using any external, deterministic controls(a process called self-adaptation. There are many ways of doing self-adaptation.  One of the easiest methods is 
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where ( is a user-defined parameter (normally a function of n). Notice that each xi has its own unique step size.
· Recombination
Recombination uses genetic material from two or more parents to create offspring.  As with mutation, the recombination operator form depends on the representation. The simplest recombination operator form is 1-point crossover.  Consider a binary string of length l.  Two parents are split at bit position k ( [0, l-1] and all bits after bit position k are exchanged.  That is

[image: image9.wmf]
Figure 1  Example of 1-pt crossover

This concept can be applied to the more general n-point crossover where n random bit positions are randomly chosen.  With n-point crossover alternate segments from each parent are used to form the offspring. 

[image: image10.wmf]
Figure 2  Example of 2-pt crossover

Uniform crossover creates one offspring from two parents by treating each bit independently.  For each bit position a random number over [0,1) is chosen.  If the random number is less than 0.5 than the bit value is copied from the first parent.  Otherwise the bit value from the second parent is copied.

[image: image11.wmf]
Figure 3  Example of uniform crossover.  Each bit has an associated random variable.  If the random variable value is greater than 0.5, the bit from the upper parent is used in the offspring.  Otherwise the bit from the lower parent is used.

Recombination can also be done with real number vectors.  The crossover operators described above(which are typically called discrete recombination operators(can be used with real number vectors, but that is not the only possibility.  For example, with intermediate recombination one offspring is created from two parents by averaging the parent’s component values. In fact, one can even do panmictic recombination where three or more parents participate in the component-wise averaging.

Up to this point we have not restricted how a variation operator can change a genotype. This is not always the case. Constrained optimization problems put certain limits on what constitutes a legal solution. For example, reconfigurable analog devices implement different circuit configurations with programmable switches. Although any switch can be opened, opening all the switches may isolate the inputs, which makes the circuit inoperable. Any legal solution is therefore prohibited from having all switches programmed open. Constraints such as this can be incorporated into the variation operator design itself(i.e., fix certain alleles and design the operator so that they are never modified. It may also be possible to repair the genotype by forcibly changing any improper alleles. Either way, the variation operator will always produce legal offspring from legal parents.
2.3 Evaluation

Evaluation is done using an objective function that assigns a numeric score to a solution, thereby indicating its quality. Normally this objective function maps the solution onto the real number line. That is, if ( is an objective function and X is the space of all possible solutions, then (: X ( (. Solution a is considered better than solution b if ((a) > ((b).  
The objective function should assign a numeric score that accurately reflects how closely a circuit meets the design specifications. All design parameters of interest should contribute to this score. This means the objective function is tailored to the optimization problem being solved. An example will illustrate the idea. Suppose we are using an EA to find appropriate values for the passive components in a low-pass filter. The design specification would describe the filter’s desired spectral properties. For example, the specification might say the filter must have 0db gain at frequency F1= 100Hz, -3db gain at frequency F2= 200Hz, and -25db gain at frequency F3= 500Hz. Assume gain values were specified for M different frequencies. One possible objective function is
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where s is a filter circuit in the solution space X, 
[image: image13.wmf] is the gain of a filter s at frequency Fi and 
[image: image14.wmf]is the ideal gain at frequency Fi. Filter s is better than filter 
[image: image15.wmf](i.e., filter s is a closer match to the design specifications(if 
[image: image16.wmf]. The goal is to search for the optimal filter s* where 
[image: image17.wmf].

Sometimes the literature refers to a fitness function rather than to an objective function. The term “fitness” is arguably more appropriate for EAs since they are based (loosely) on neo-Darwinian principles. However, the terms “fitness function” and “objective function” are not necessarily interchangeable. Fitness implies health and suitability(attributes that should always be maximized(whereas objectives could be minimized or maximized depending on their definition. The objective function defined in Eq. (1.5)

 is to be minimized.  However, if the definition was
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then this objective should be maximized(which fits nicely with the notion of fitness. (( is needed to keep eval(s) finite.) In practice either term is used, although technically fitness function is really only appropriate if maximization is desired. Objective function is preferable because it is more general.

Surprisingly, a good objective function definition is not necessarily obvious. This can be problematic because the selection operators, described shortly, use the numeric score provided by the objective function to make decisions. Some circuits have very complex behaviors, which are not easily captured in a simple, closed form mathematical expression. Nonlinear behaviors such as hysteresis are a good example. Even simple combinational logic circuits are not immune. Consider evolving a digital circuit to implement an exclusive-or function. An initial choice for an objective function might be to apply all four input conditions (00, 01, 10, and 11) and record the number of correct responses. But what if one evolved circuit got the wrong response for the inputs 00 and 01, while another evolved circuit got the wrong response for the inputs 00 and 11. Which circuit is better? The objective function doesn’t really provide much help.  

Unfortunately, in some problems maximizing a desirable property may also maximize an undesirable property. For instance, circuits that operate at high speed also tend to have high power consumption. Obviously a high value should be awarded for correct operation at a high speed, but if low power consumption is also necessary, somehow this information should appear in the objective function’s format. Put another way, if solution s and s( both operate correctly and at the same speed, but s consumes less power, then we want eval(s) > eval(s(). One way to accomplish this is to incorporate a penalty into the objective function.  That is,
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where the penalty artificially decreases the natural fitness of the solution s. The penalty can be a function of the power consumed or it can be a fixed value large enough so the solution can’t ever be selected. Another option is to tie the penalty to the generation number(i.e., high power consumption may impose a smaller penalty at the beginning of the search than it does near the end of the search. The exact form of the penalty is problem dependent.
2.4 Selection

The variation operators depend on the individual’s representation.  Conversely, selection operators only depend on an individual’s fitness. The most common selection methods are

· Fitness proportional selection  

The probability of selecting an individual is directly proportional to that individual’s absolute fitness(i.e., the higher the fitness, the higher the probability of selection.  The selection probability is easily calculated.  Let fi be the fitness of individual i.  Then the probability of selecting individual i from a population of size N is 
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This selection method requires all fitness values to be strictly positive (to prevent a zero denominator).  Fitness scaling can be used to handle cases where fj ( 0.

· Fitness ranking selection

Individuals are sorted by absolute fitness value with the lowest fit individual in a population of size N given rank 0, the second lowest fit individual rank 1 and so on until the highest fit individual has rank N-1. Individuals are selected with a probability tied to their rank index instead of to their absolute fitness value (as is done in fitness proportional selection). There are both linear and nonlinear formulas for calculating the selection probability (Bäck et. al, 2000 page 188). A nonlinear example is exponential ranking where the probability of selecting the individual with rank s is 
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where C is normalization constant to make sure 
[image: image22.wmf].

A different type of ranking is used with multiobjective optimization problems (MOPs). Every solution to this type of problem has multiple attributes such as speed, gain, power consumption and selling price. The objective is to search for those solutions that have the best possible value for every attribute. (In some cases an optimal attribute value is a maximum while in other attributes an optimal value is a minimum.) 

Let X be the set of all possible solutions to a MOP. Each x(X has an associated attribute set A={a1, a2, ( , an}. A solution x is said to dominate a solution x( (denoted by 
[image: image23.wmf]) if every ak is better than or equal to every
[image: image24.wmf] but there exists at least one m such that am is strictly better than 
[image: image25.wmf].  (ak  is only compared against 
[image: image26.wmf].) The best solutions are non-dominated. If 
[image: image27.wmf] and 
[image: image28.wmf], then x is said to be “indifferent  to” x( (denoted by 
[image: image29.wmf]). By definition, non-dominated solutions are indifferent to each other. 

Ranking based on dominance is done using Goldberg’s (1989) technique. A pairwise comparison identifies all the non-dominated solutions in the current population. All non-dominated solutions are assigned rank 1 (the highest rank) and then removed from further consideration. A pairwise comparison amongst the remaining solutions will find a new set of non-dominated solutions, which are assigned rank 2 and then no longer considered. This assignment process repeats until all individuals have a rank. The rank-based probability formulas mentioned above cannot be used for two reasons: (1) the best-fit individual has rank 1 (instead of N-1) and (2) more than one individual can have the same rank. 

· Truncation selection

This deterministic selection method selects individuals from the previous population to construct the next population. The ( parents from P(t) are subjected to variation operators that produce ( offspring. All (+( are collected together and sorted by fitness values. The ( best-fit individuals are kept to form P(t+1) and the rest are discarded.
· Tournament selection

Tournament selection takes a random uniform sample of q > 1 individuals from the population and then selects the highest fit individual. Binary tournament selection (q = 2) is widely used although in principle any q value is acceptable. Large q values increase the chances of having above-average fitness individuals in the sample set. 

With the exception of truncation selection, all of the selection methods are stochastic, which means the globally optimum solution, if found, could be accidentally lost. One way to prevent this is by using elitism where the best individual is copied unchanged from P(t) to P(t+1). (Notice that truncation selection is naturally elitist.) This elitism concept can be carried even further to form a steady-state EA where only a fraction of the worst fit individuals are replaced each generation. The percentage of the population that does get replaced is called the generation gap.  
A selection pressure characterizes every selection method. Selection pressure refers to how much “weight” is given to highly fit individuals. High selection pressure means individuals with a high (relative) fitness have a high selection probability. It is important that the selection pressure not be too high or the EA could prematurely converge. This issue will be discussed in greater detail later in the chapter.
2.5 Population

The population is a set of solutions that evolves as the EA runs.  Actually the term multiset is more appropriate because the population may contain more than one copy of the same individual. The initial population is randomly generated to maximize the diversity.  Diverse populations have many different solutions that, at least initially, produce a more thorough search. However, care must be taken with constrained optimization problems because a completely random population might contain illegal solutions. It is easy to create a legal, albeit random, population with N individuals. Start with one single legal solution(if necessary, constructed by hand(and duplicate it N-1 times. Since this is a constrained optimization problem, the variation operator is purposely designed to create only legal offspring from legal parents. Now apply this variation operator to each individual a random number of times to create a random population composed entirely of strictly legal individuals. 

The population size is usually fixed in EHW problems.  A consequence of sampling a finite population without some form of mutation is, over time, the population will eventually contain only one type of individual.  This loss of genetic diversity is called genetic drift, and the rate of loss is inversely proportional to the population size; smaller populations succumb to genetic drift effects more rapidly.

2.6 Termination criteria

Three termination criteria used are

1. The algorithm has converged

Convergence is assumed to exist if there is no improvement in the search over the previous k generations.  (k =10 is frequently used.)

2. A fixed number of generations have been processed

The EA in this case runs for a predetermined number of generations. In EHW problems this number typically ranges from around 30 generations up to several thousand generations depending on the complexity of the circuit undergoing evolution.  There are no formulas to compute this number because there are tradeoffs involved:  to small a number may provide enough time to search for a good solution, while too large a number wastes computing time if the algorithm quickly converges. 

3. A sufficiently good enough solution has been found

This solution may not necessarily be optimal, but it is good enough to satisfy the designer’s requirements.

Section 3 Getting the EA to work

There are a number of factors to consider when formulating an EA to solve an EHW problem. There are many options available, which means trade-offs are necessary. For instance, a small population size will reduce the EA running time, but the resulting search may not be very thorough. A high selection pressure can focus the search, but if it is too high the EA could prematurely converge.  

EAs have a number of tunable parameters (population size, mutation probability, etc.) that must be determined before any real search operations commence. Unfortunately there are no canned answers, no design formulas, and few rules available(EA design is hardly a pedantic process! The situation is not, however, completely hopeless because some heuristics do exist.

The first efforts should concentrate on a suitable representation. With commercial devices such as field-programmable gate arrays there is no real choice(the vendor has already predefined the data structure. But other cases the designer has complete freedom to choose a data structure. For example, suppose we want to design an amplifier circuit using MOSFETs. The designer is not constrained to use any particular data structure because the circuit is constructed from discrete components. It may be necessary to convert the data structure to another format to make it compatible with a circuit simulator, but that has no impact on the EA because the EA manipulates genotypes. The issue here is to make sure whatever representation is chosen does completely describe a circuit configuration. Hybrid representations will most surely be needed if the EA investigates both component values and different circuit configurations. Real number representations are not always necessary. Indeed, integer only representations are fine(and the EA may even run faster(if only component values are selected.

The variation operators are, of course, linked to the representation format, but it is in this area some work may have big dividends. A substantial amount of empirical evidences suggests some form of recombination is beneficial, but a moderate amount of mutation should always be used to keep the search from stagnating. This is particularly true when the EHW is used in any fault-tolerant system (Greenwood et. al, 2003). Many different recombination forms have been proposed, but the designer should explore novel forms to see how well they work. Panmictic forms of recombination should not be ignored. Most EAs use more than one variation operators, each applied with some probability. Don’t be afraid to experiment with both the type of operator and its probability of use. One effective search strategy is to use an operator that makes large moves in solution space as the primary search operator and combine this with a local search operator that only makes small moves. 

It is also wise to consider using some form of variation operator adaptation(e.g., as was done in Eq. (1.4)

. Remember the initial population is (ideally) uniformly distributed throughout the solution space. It makes sense then to have large movements in the solution space. However, near the end of the search the population should be located near very good solutions(which means only small moves should be made to prevent missing interesting solutions. There is some advantage in being able to tailor the movement step sizes at different times during the search.

Arguably the most difficult thing to achieve is a proper balance between exploration, where new individuals are created for evaluation, and exploitation, where the search concentrates on those regions of the solution space where good solutions are known to exist. Both population size and selection pressure affect this balance. Population size is often dictated by a desired run time(large populations have large run times. There may not be much flexibility in choosing the population size. Selection pressure can be influenced. A very strong selection pressure, such as found in roulette-wheel selection, should be avoided because it quickly loses population diversity which causes the EA to converge too rapidly. Some form of tournament selection would be a reasonable first choice to investigate if there is little fitness variance in the population. Conversely, with large fitness variance a ranking selection scheme should be used. Studies indicate exponential ranking is very good at maintaining some population fitness diversity (Blickle and Thiele 1995). 

 The many components of an EA are interrelated; changing one parameter inevitably affects some other parameter. Domain experts are often needed to assist in fine-tuning the EA(i.e., an application expert and an evolutionary algorithm expert must work together to design an efficacious EA. The application expert can identify the key operational characteristics needed for the evolved circuit. In fact, their help with defining an appropriate objective function will undoubtedly be their most significant contribution. Lacking an application expert, the EA designer must resort to a literature search to see what was done to solve similar EHW problems.

Section 4 Which EA is best?


The term “evolutionary algorithm” is actually a generic term. The EAs in use today descend from three independently developed approaches: evolutionary programming, genetic algorithms, and evolution strategies. In the past the distinction between these algorithms was pretty clear(genetic algorithms used roulette-wheel selection and the primary reproduction operator was recombination; evolutionary programming only used tournament selection, and so on. Now the distinctions are becoming somewhat blurred and researchers are not so adamant about using one particular type of algorithm. Nevertheless, the genetic algorithm is still the most prevalent form used within the EHW community. It is therefore natural to ask if the genetic algorithm is the best EA to use. Unfortunately, that question is not easy to answer.

The no-free-lunch (NFL) theorem states there is no search algorithm that works best for all optimization problems. More specifically, the NFL theorem says if an algorithm does particularly well on average for one class of problems, then it must do worse on average over the remaining problems (Wolpert and Macready 1997). This means debating which algorithm is best for solving all EHW problems is a complete waste of time. Besides, any performance comparison between search algorithms is meaningless unless certain precautions are taken (Greenwood 1997). A designer’s time would be far more wisely spent on fine-tuning an EA to educe its best possible performance rather than worrying about which particular EA to use.
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� The term chromosome is often used in lieu of genotype if the representation is a binary string.


� In the literature “complementing a bit” is sometimes called “flipping a bit”.
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