

www.ti.com

FEATURES

- Available in the Texas Instruments
 NanoFree™ Package
- Supports 5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- Max t_{nd} of 4 ns at 3.3 V
- Low Power Consumption, 10-μA Max I_{CC}
- ±24-mA Output Drive at 3.3 V

- I_{off} Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

Seemechanicaldrawingsfordimensions.

DESCRIPTION/ORDERING INFORMATION

This single D-type latch is designed for 1.65-V to 5.5-V $V_{\rm CC}$ operation.

The SN74LVC1G373 is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. While the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the logic levels set up at the D inputs.

While the latch-enable (LE) input is high, the Q output follows the data (D) input. When LE is taken low, the Q output is latched at the logic level set up at the D input.

NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package.

ORDERING INFORMATION

T _A	PACKAGE(1)(2)		ORDERING PART NUMBER	TOP-SIDE MARKING(3)
	NanoFree™ – WCSP (DSBGA) 0.23-mm Large Bump – YZP (Pb-free)	Reel of 3000	SN74LVC1G373YZPR	D3_
	COT (COT 00) PDV	Reel of 3000	SN74LVC1G373DBVR	040
–40°C to 85°C	SOT (SOT-23) – DBV	Reel of 250	SN74LVC1G373DBVT	- CA3_
	COT (CO 70) DOV	Reel of 3000	SN74LVC1G373DCKR	Do
	SOT (SC-70) – DCK Reel of 250		SN74LVC1G373DCKT	D3_

- (1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.
- (2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.
- (3) DCK: The actual top-side marking has one additional character that designates the assembly/test site.

 YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, = Pb-free).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

NanoFree is a trademark of Texas Instruments.

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

 $\overline{\text{OE}}$ does not affect the internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

A buffered output-enable (\overline{OE}) input can be used to place the output in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the output neither loads nor drives the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

FUNCTION TABLE

	OUTPUT		
ŌĒ	LE	D	Q
L	Н	L	L
L	Н	Н	Н
L	L	X	Q_0
Н	Χ	X	Z

LOGIC DIAGRAM (POSITIVE LOGIC)

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range	Supply voltage range			
VI	Input voltage range (2)		-0.5	6.5	V
Vo	Voltage range applied to any output in the high-imped	-0.5	6.5	V	
Vo	Voltage range applied to any output in the high or lov	v state ⁽²⁾⁽³⁾	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current	·		±50	mA
	Continuous current through V _{CC} or GND			±100	mA
		DBV package		165	
θ_{JA}	Package thermal impedance ⁽⁴⁾	DCK package		259	°C/W
		YZP package	-5 -5 ±5 ±10 16 25	123	
T _{stg}	Storage temperature range	·	-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. The value of V_{CC} is provided in the recommended operating conditions table.

The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT
V _{CC} Supply voltage		Operating	1.65	5.5	.,,
v _{CC}	Supply voltage	Data retention only	1.5		V
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
V	High level input voltage	V _{CC} = 2.3 V to 2.7 V	1.7		V
v _{IH}	nigii-level iriput voltage	V _{CC} = 3 V to 3.6 V	2		V
	High-level input voltage	V _{CC} = 4.5 V to 5.5 V	$0.7 \times V_{CC}$		
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$	
.,	Law lavel input valtage	V _{CC} = 2.3 V to 2.7 V		0.7	V
VIL	Supply voltage Data retention only $V_{CC} = 1.65 \text{ V to } 1.00 \text{ V}_{CC} = 2.3 \text{ V to } 2.7 \text{ V}_{CC} = 3.0 \text{ V to } 3.0 \text{ V}_{CC} = 4.5 \text{ V to } 5.5 \text{ V}_{CC} = 3.0 \text{ V to } 3.0 \text{ V}_{CC} = 3.0 \text{ V to } 3.0 \text{ V}_{CC} = 3.0 \text{ V to } 3.0 \text{ V}_{CC} = 3.0 \text{ V to } 3.0 \text{ V}_{CC} = 3.0 \text{ V to } 3.0 \text{ V}_{CC} = 3.0 \text{ V to } 3.0 \text{ V}_{CC} = 3.0 \text{ V to } 3.0 \text{ V}_{CC} = 3.0 \text{ V to } 3.0 \text{ V}_{CC} = 3.0 \text{ V}_{$	V _{CC} = 3 V to 3.6 V		0.8	V
		V _{CC} = 4.5 V to 5.5 V		$0.3 \times V_{CC}$	
V _I	Input voltage		0	5.5	٧
v _o	Output voltage		0	V_{CC}	V
		V _{CC} = 1.65 V		-4	
	C Supply voltage High-level input voltage Vc Vc Vc Vc Vc Vc Vc V	V _{CC} = 2.3 V		-8	
I _{OH}		ligh-level output current $V_{CC} = 3 \text{ V}$		-16	mA
				-24	
		V _{CC} = 4.5 V		-32	
		V _{CC} = 1.65 V		4	
		V _{CC} = 2.3 V		8	
I_{OL}	Low-level output current	V 0 V		16	mA
		V _{CC} = 3 V		24	
	Low-level input voltage Input voltage Output voltage High-level output current Low-level output current	V _{CC} = 4.5 V		32	
		$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}, 2.5 \text{ V} \pm 0.2 \text{ V}$		20	
Δt/Δν	Input transition rise or fall rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		10	ns/V
		$V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$		5	
T _A	Operating free-air temperature	<u> </u>	-40	85	°C

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	UNIT
	$I_{OH} = -100 \ \mu A$	1.65 V to 5.5 V	V _{CC} - 0.1			
	$I_{OH} = -4 \text{ mA}$	1.65 V	1.2			
V	$I_{OH} = -8 \text{ mA}$	2.3 V	1.9			V
V_{OH}	$I_{OH} = -16 \text{ mA}$	3 V	2.4			V
	I _{OH} = -24 mA	3 V	2.3			
	$I_{OH} = -32 \text{ mA}$	4.5 V	3.8			
	$I_{OL} = 100 \mu A$	1.65 V to 5.5 V			0.1	
	I _{OL} = 4 mA	1.65 V	1.65 V		0.45	V
V	I _{OL} = 8 mA	2.3 V				
V_{OL}	I _{OL} = 16 mA	3 V			0.4	V
	I _{OL} = 24 mA	- 3 V			0.55	
	I _{OL} = 32 mA	4.5 V			0.55	
I _I	V _I = 5.5 V or GND	0 to 5.5 V		0.55 ±1		
I _{OZ}	V _O = 0 to 5.5 V	3.6 V			±5	
I _{off}	V_1 or $V_0 = 5.5 \text{ V}$	0			±10	μΑ
I _{CC}	$V_I = 5.5 \text{ V or GND}, \qquad I_O = 0$	1.65 V to 5.5 V			10	
Δl _{CC}	One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND			500		
C _i	V _I = V _{CC} or GND	3.3 V		3.5		nΕ
Co	V _O = V _{CC} or GND	3.3 V		6		pF

⁽¹⁾ All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		V _{CC} = 1 ± 0.1	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _w	Pulse duration, LE high	3		3		3		3		ns
t _{su}	Setup time, data before LE↓	2.4		2		1.5		1.5		ns
t _h	Hold time, data after LE↓	2.5		1.5		1.5		1.5		ns

Switching Characteristics

over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM INPUT	TO (OUTPUT)	V _{CC} = ± 0.1	1.8 V 5 V	V _{CC} = 1 ± 0.2		V _{CC} = 0.3		V _{CC} = ± 0.5	5 V 5 V	UNIT
	INPUT	(001P01)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	D	0	2	15	1.5	5	1	4	1	3.5	no
^l pd	LE	Q	2	15	1.5	5	1	4	1	3.5	ns
t _{en}	ŌĒ	Q	2	12.5	1.5	4.5	1	4	1	2.5	ns
t _{dis}	ŌĒ	Q	2	14	1.5	7	1	7.9	1	5.3	ns

Switching Characteristics

over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ or 50 pF (unless otherwise noted) (see Figure 2)

PARAMETER	FROM INPUT	TO (OUTPUT)	V _{CC} = ± 0.1		V _{CC} = ± 0.2		V _{CC} = 3 ± 0.3		V _{CC} = ± 0.5		UNIT
	INFOI	(001701)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	D	Q	2	16	1.5	7.3	1	5.4	1	4	
ι _{pd}	LE		2	16.3	1.5	7.4	1	5.5	1	4	ns
t _{en}	ŌĒ	Q	2	13	1.5	6.3	1	5.1	1	3.7	ns
t _{dis}	ŌĒ	Q	2	17.4	1	5.9	1	6.5	1	4.6	ns

Operating Characteristics

T_A = 25°C

	PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	V _{CC} = 5 V TYP	UNIT
	Power dissipation	Outputs enabled	f = 10 MHz	19	19	19	20	pF
C _{pd}	capacitance	Outputs disabled	1 = 10 MH2	3	3	3	4	pΕ