Design for Testability DFT-1

DFT: Design for Testability

When you buy a new piece of equipment, you expect it to work properly “right
out of the box.” However, even with modern automated equipment, it’s impossi-
ble for an equipment manufacturer to guarantee that every unit produced will be
perfect. Some units don’t work because they contain individual components that
are faulty, or because they were assembled incorrectly or sloppily, or because
they were damaged in handling. Most manufacturers prefer to discover these
problems in the factory, rather than get a bad reputation when their customers
receive a faulty product. This is the purpose of testing.

The most basic test, a go/no-go test, yields just one bit of information—is
the system 100% functional or not? If the answer is yes, the system can be
shipped. If not, the next action depends on the size of the system. The appro-
priate response for a digital watch would be to throw it out. If many watches are
turning up faulty, it’s more efficient to repair what must be a consistent problem
in the assembly process or an individual component than to try to salvage
individual units.

On the other hand, you wouldn’t want to toss out a $10,000 computer that
fails to boot. Instead, a more detailed diagnostic test may be run to locate the
particular subsystem that is failing. Depending on cost, the failed subsystem
may be either repaired or replaced. A typical digital subsystem is a PCB whose
assembled cost with components ranges from $50 to $1,000. The repair/replace
decision is an economic trade-off between the cost of the assembled PCB and
the estimated time to locate and repair the failure.

This is where design for testability (DFT) comes in. “DFT” is a general
term applied to design methods that lead to more thorough and less costly
testing. Many benefits ensue from designing a system or subsystem so that
failures are easy to detect and locate:

* The outcome of a go/no-go test is more believable. If fewer systems with
hidden faults are shipped, fewer customers get upset, which yields obvious
economic as well as psychological benefits.

* Diagnostic tests run faster and produce more accurate results. This reduces
the cost of salvaging a subsystem that fails the go/no-go test, making it
possible to manufacture more systems at lower cost.

* Both go/no-go and diagnostic tests require less test-engineering time to
develop.

* Although the savings in test-engineering time may be offset by added
design-engineering effort to include DFT, any increase in overall product
development cost usually can be offset by decreased manufacturing cost.

testing
go/no-go test

diagnostic test

design for testability
(DFT)

Supplementary material to accompany Digital Design Principles and Practices, Fourth Edition, by John F. Wakerly.
ISBN 0-13-186389-4. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing by the publisher.

Design for Testability DFT-2

DFT.1 Testing

Digital circuits are tested by applying fest vectors which consist of input combi-
nations and expected output combinations. A circuit “passes” if its outputs
match what’s expected. In the worst case, an n-input combinational circuit
requires 2" test vectors. However, if we know something about the circuit’s
physical realization and make some assumptions about the type of failures that
can occur, the number of vectors required to test the circuit fully can be greatly
reduced. The most common assumption is that failures are single stuck-at faults,
that is, that they can be modeled as a single input or output signal stuck at logic
0 or logic 1. Under this assumption, an 8-input NAND gate, which might other-
wise require 256 test vectors, can be fully tested with just nine—11111111,
01111111, 10111111, ..., 11111110.

Under the single-fault assumption, it’s easy to come up with test vectors for
individual logic elements. However, the problem in practice is applying the test
vectors to logic elements that are buried deep in a circuit, and seeing the results.
For example, suppose that a circuit has a dozen combinational and sequential
logic elements between its primary inputs and the inputs of an 8-input NAND
gate that we want to test. It’s not at all obvious what primary-input vector, or
sequence of primary-input vectors, must be applied to generate the test vector
11111111 at the NAND-gate inputs. Furthermore, it’s not obvious what else
might be required to propagate the NAND gate’s output to a primary output of the
circuit.

Sophisticated test-generation programs deal with this complexity and try
to create a complete test set for a circuit, that is, a sequence of test patterns that
fully tests each logic element in the circuit. However, the computation required
can be huge, and it’s quite often just not possible to generate a complete test set.

DFT methods attempt to simplify test-pattern generation by enhancing the
“controllability” and “observability” of logic elements in a circuit. In a circuit
with good controllability, it’s easy to produce any desired values on the internal
signals of the circuit by applying an appropriate test-vector input combination to
the primary inputs. Similarly, good observability means that any internal signal
can be easily propagated to a primary output for comparison with an expected
value by the application of an appropriate primary-input combination. The most
common method of improving controllability and observability is to add test
points, additional primary inputs and outputs that are used during testing.

DFT.2 Bed-of-Nails and In-Circuit Testing

In a digital circuit that is fabricated on a single PCB, the “ultimate” in observ-
ability is obtained by using every pin of every IC as a test point. This is achieved
by building a special test fixture that matches the layout of the PCB and contains
a spring-loaded pin (nail) at each IC-pin position. The PCB is placed on this bed
of nails, and the nails are connected to an automatic tester that can monitor each
pin as required by a test program.

test vector

single stuck-at fault

test-generation
program

complete test set

controllability

observability

test points

test fixture
nail

bed of nails
automatic tester

Supplementary material to accompany Digital Design Principles and Practices, Fourth Edition, by John F. Wakerly.
ISBN 0-13-186389-4. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing by the publisher.

Design for Testability

Going one step further, in-circuit testing also achieves the “ultimate” in
controllability. This method not only monitors the signals on the bed of nails for
observability, but also connects each nail to a very low impedance driving circuit
in the tester. In this way, the tester can override (or overdrive) whatever circuit on
the PCB normally drives each signal, and directly generate any desired test
vector on the internal signals of the PCB. Overdriving an opposing gate output
causes excessive current flow in both the tester and the opposing gate, but the
tester gets away with it for short periods (milliseconds).

To test an 8-input NAND gate, an in-circuit tester needs only to provide the
nine test vectors mentioned previously, and can ignore whatever values the rest
of the circuit is trying to drive onto the eight input pins. And the NAND-gate
output can be observed directly on the output pin, of course. With in-circuit
testing, each logic element can be tested in isolation from the others.

Although in-circuit testing greatly enhances the controllability and
observability of a PCB-based circuit, logic designers must still follow a few DFT
guidelines for the approach to be effective. Some of these are listed below.

* [Initialization. It must be possible to initialize all sequential circuit elements
to a known state.

Since the preset and clear input pins of registers and flip-flops are available to
an in-circuit tester, you would think that this is no problem. However,
Figure DFT-1(a) shows a classic example of a circuit (a Gray-code counter) that
cannot be initialized, since the flip-flops go to an unpredictable state when PR
and CLR are asserted simultaneously. The correct way to handle the preset and
clear inputs is shown in (b).

+5V R
RV @
é“ 74x74 é‘o 74x74
PR 1 PR
2 b a 5 Q1 12 b Q 9
cLOCK N 6 N ek 8
alo— Q
CLR CLR
?1 <P13
Q2_L
+5V +5V
R
Tann o ©)
J)“ 74x74 J)‘O 74x74 R
PR 1 PR
2 b a 5 Q 12 b Q 9
3 11
CLOCK CLK 6 CLK 8
alo— alo—
CLR CLR
?1 RCLR ?13
Q2_L

DFT-3

in-circuit testing

overdrive

Figure DFT-1
Flip-flops with pull-up
resistors for unused
inputs: (a) untestable;
(b) testable.

Supplementary material to accompany Digital Design Principles and Practices, Fourth Edition, by John F. Wakerly.
ISBN 0-13-186389-4. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing by the publisher.

Design for Testability DFT-4

HITTING The rise of high-density surface-mount packaging has made bed-of-nails testing
THE NAIL ON considerably more difficult than it was with through-hole components like DIPs.
THE PIN Since components may be mounted on both sides of the PCB, a special test fixture
called a clam shell may be needed to connect nails to both sides of the PCB.
Furthermore, the pins of many surface-mount devices are so small and their
spacing is so tight (25 mils or less), that it may be impossible to reliably land a test
pin on them. In such cases, the PCB designer may have to explicitly provide test
pads, extra copper patches that are large enough for a test pin to contact (e.g., 50 mils
in diameter). A separate test pad must be provided for each signal that does not con-
nect to a larger (e.g., 62-mil through-hole) component pad somewhere on the PCB.

* Clock generation. The tester must be able to provide its own clock signal
without overdriving the on-board clock signals.

Testers usually must override an on-board clock, for several reasons: The speed
at which they can apply test vectors is limited; they must allow extra time for
overdriven signals to settle; and sometimes they must stop the clock. However,
overdriving the clock is a no-no. An overdriven signal may “ring” and make
several transitions between LOW and HIGH before finally settling to the level
that the tester wants. On a clock signal, such transitions can create unwanted
state changes.

Figure DFT-2 shows a recommended clock driver circuit. To inject its own
clock, the tester pulls CLKEN LOW and inserts its clock on TESTCLK_L. Since
the tester is not overdriving any gate outputs, the resulting CLOCK signal is
clean. In general, any normally glitch-free signal that is used as a clock input or
other asynchronous input must not be overdriven by the tester, and would have to
be treated in a way similar to Figure DFT-2. This is another reason why synchro-
nous design with a single clock is so desirable.

* Grounded inputs. In general, ground should not be used as a constant-0 logic
source.

The in-circuit tester can overdrive most signals, but it can’t overdrive ground.
Therefore, signals that require a constant-0 input during normal operation

5V
+5V *

R
R

CLKEN TESTCLK_L
. 0SC OSC_L CLOCK
oscillator

Figure DFT-2
Clock driver circuit
that allows a tester to
cleanly override the
system clock.

Supplementary material to accompany Digital Design Principles and Practices, Fourth Edition, by John F. Wakerly.
ISBN 0-13-186389-4. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing by the publisher.

Design for Testability DFT-5

should be tied to ground through a resistor, which allows the tester to set them
to 1 as required during testing. For example, consider what would happen if we
used a GAL16V8 PLD to generate a customized set of clock waveforms from a
master clock, as we did in the ABEL program of Table 8-31 on page 744. If not
for testing considerations, we could connect the 16V8’s pin 11, its active-low
global output-enable pin, directly to ground. However, it should be connected
through a resistor, so that the tester can float the PLD outputs and drive the clock
signals P1_L—P6_L itself. Although the tester could theoretically overdrive these
signals, it shouldn’t if they are used as clocks.

* Bus drivers. In general, it should be possible to disable the drivers for wide
buses so that the tester can drive the bus without having to overdrive all the
signals on the bus.

That is, it should be possible to output-disable all of the three-state drivers on a
bus, so that the tester drives a “floating” bus. This reduces electrical stress both
on the tester and on multibit drivers (e.g., 74x244) that might otherwise be over-
heated and damaged by having all of their outputs overdriven simultaneously.

DFT.3 Scan Methods

In-circuit testing works fine, up to a point. It doesn’t do much good for custom
VLSI chips and ASICs, because the internal signals simply aren’t accessible.
Even in board-level circuits, high-density packaging technologies such as
surface mounting greatly increase the difficulty of providing a test point for
every signal on a PCB. As a result, an increasing number of designs are using
“scan methods” to provide controllability and observability.

A scan method attempts to control and observe the internal signals of a
circuit using only a small number of test points. A scan-path method considers
any digital circuit to be a collection of flip-flops or other storage elements
interconnected by combinational logic, and is concerned with controlling and
observing the state of the storage elements. It does this by providing two operat-
ing modes: a normal mode, and a scan mode in which all of the storage elements
are reorganized into a giant shift register. In scan mode, the state of the circuit’s
n storage elements can be read out by 7 shifts (observability), and a new state can
be loaded at the same time (controllability).

Figure DFT-3 on the next page shows a circuit designed using a scan-path
method. Each storage element in this circuit is a scan flip-flop (Section 7.2.7)
that can be loaded from one of two sources. The test enable (TE) input selects the
source—normal data (D) or test data (T). The T inputs are daisy-chained to cre-
ate the scan path shown in color. By asserting ENSCAN for 11 clock ticks, a
tester can read out the current state of the flip-flops and load a new state. The test
engineer is left with the job of deriving test sets for the individual combinational
logic blocks, which can be fully controlled and observed using the scan path and
the primary inputs and outputs.

scan method
scan-path method

scan mode

Supplementary material to accompany Digital Design Principles and Practices, Fourth Edition, by John F. Wakerly.
ISBN 0-13-186389-4. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing by the publisher.

Design for Testability

SCANIN
D Q D Q D
] —T — T — T
TE TE TE
—> CLK —> CLK —> CLK
comb. comb. comb. comb.
— logic logic logic logic
D Q D
—T — T
TE D Q TE
— S CLK — T ——> CLK
Primary TE
inputs ———> CLK
— D Q D
— T — T
TE TE
——1> CLK D Q ——> CLK
] — T
TE
D Q —> CLK D
— — T —T
TE TE
—1> CLK —1> CLK
CLOCK
ENSCAN

Figure DFT-3 Circuit containing a scan path, shown in color.

Scan-path design is used most often in custom VLSI and ASIC design,
because of the impossibility of providing a large number of conventional test
points. However, the two-port flip-flops used in scan-path design do increase
chip area. For example, in LSI Logic Corp.’s LCA500K series of CMOS gate
arrays, an FD1QP D flip-flop macrocell uses seven “gate cells,” while an
FD1SQP D scan flip-flop macrocell uses nine gate cells, almost a 30% increase
in silicon area. However, the overall increase in chip area is much less, since flip-
flops are only a fraction of the chip, and large “regular’” memory structures (e.g.,
RAM) may be tested by other means. In any case, the improvement in testability
may actually reduce the cost of the packaged chip when the cost of testing is
considered. For large ASIC designs with rich, complicated control structures,
scan-path design should be considered a requirement.

References

We briefly discussed device testing in the context of ABEL test vectors. There
is a large, well-established body of literature on digital device testing, and a good
starting point for study is McCluskey’s 1986 book. Generating a set of test vec-
tors that completely tests a large circuit such as a PLD is a task best left to a
program. At least one company’s entire business is focused on programs that
automatically create test vectors for PLD testing (ACUGEN Software, Inc.,
Nashua, NH 03063, www.acugen. com).

DFT-6

Primary
outputs

SCANOUT

Supplementary material to accompany Digital Design Principles and Practices, Fourth Edition, by John F. Wakerly.
ISBN 0-13-186389-4. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing by the publisher.

