
C. Project Description

We propose development and implementation of evolutionary algorithms and their integration with
density functional theories to investigate stable conformations of heteronuclear clusters containing
metallic elements.  Our specific aims include (i) optimization of reproduction operators and fitness criteria
in evolutionary algorithms for searching stable conformations of clusters; (ii) development of a modular
evolutionary algorithm program for geometry optimization which can be easily interfaced with several
commonly used computer program suites for electronic structure calculations; (iii) optimization of
reproduction operators and fitness criteria in evolutionary algorithms for electronic structure calculations;
(iv) development of a co-evolutionary algorithm for micro scale (electronic structure) and macro scale
(nuclear conformation search).  Our objectives, once accomplished, will impact both the fields of
evolution programming and physical/theoretical chemistry, and will significantly  enhance our ability to
characterize clusters and nanoclusters.  It is multi-disciplinary and multi-institutional.  A significant
component of this proposal is the involvement of graduate and undergraduate students.

C.1. Significance and frame of problems

Structural, optical, and electronic properties of clusters have been the research focus in the fields of
chemistry, physics and nanotechnology because clusters offer a unique opportunity to approach size-
dependent phenomena.  By systematically varying the sizes of clusters, researchers are able to explore and
understand the emergence of collective bulk properties.  Interests in clusters are further fueled by recent
recognition that clusters form the building blocks of nanocrystals and quasi-crystals.  Our knowledge in
the properties of clusters would aid the rational design of nanocrystalline materials.

Computational simulations play a critical role in the investigations of clusters because simulations
provide a direct link between an observable property and a well-defined model system.  A fundamental
problem in cluster research is the identification of stable conformations.  Interactions between the
constituents (atoms, molecules, or ions) of a cluster give rise to a complex energy “landscape” as a
function of nuclear coordinates.  The local and global minima on this energy landscape correspond to the
stable conformations of a cluster.  The number of stable conformations rises extremely rapidly with
increasing cluster size, and it has been shown an NP-hard problem.1-3

Search the global minimum of a potential energy landscape has received significant attention in
the past decade because of it is an obstacle shared by biology, chemistry, and physics.4  Among the
methods attempted to tackle this problem is genetic algorithm which is a variation of evolution
programming, and much effort has been made to tailor genetic algorithms for geometry optimization of
clusters and molecules.  Evolution algorithms have been shown to be superior than the genetic algorithms.
Our first objective is therefore to optimize evolutionary algorithms specifically for searching
conformation of molecules and clusters.

Another significant, if not equally formidable, contribution to the computational cost is the
representation of the energy landscape.  The most accurate approaches are the first principle methods, for
example, density functional theories, which treat electrons explicitly and therefore incorporate the effects
of electron-electron correlation.  Semiempirical and empirical potentials approximate the interactions as
functions of the nuclear coordinates only, thereby reducing the computational cost.  They are economical
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for nano-scale systems, but inappropriate for investigating electronic and optical properties, because
electron-electron interactions are not treated explicitly.

A common approach to the aforementioned problem is the “composite” approach in which
conformations at the local minima of a semiempirical or an empirical potential are determined using
optimization techniques such as genetic algorithms; these conformations subsequently serve as starting
geometries in a DFT calculation and further optimized using gradient-based methods.  This approach is
limited by several inherent shortcomings.  Semiempirical and empirical potentials must be carefully
calibrated for the specific system of interest.  Currently only the ones for homonuclear clusters are well
characterized.  Constructing a many-body potential for heteronuclear clusters is a daunting obstacle.  The
semiempirical and empirical potentials are by definition reductions of the energy landscapes derived from
the first principle calculations.  As such, there is not necessarily a one-to-one correspondence between the
two types of energy landscape.  In particular, the energetic ordering of the stable conformations derived
from a semiempirical or empirical potential may not be consistent with that derived from DFT
calculations.

We approach this problem from two directions.  First and the most obvious is to interface
evolutionary algorithms for geometry optimization with programs for electronic structure calculations.
That is, an electronic structure calculation for a given nuclear conformation is carried out “on the fly”
during a geometry optimization by evolutionary algorithms.  Our objective is to implement evolutionary
algorithms in the most modular form that can be easily interfaced with commonly used program suites for
electronic structure calculations.

The second approach which we believe is novel is to “couple” the electronic and nuclear parts of
a problem instead of a two-step process in the first approach.

Solving the electronic structures of a molecule or a cluster, by itself, is an optimization problem
which requires solutions to differential equations with boundary conditions.  In typical formulations of
electronic structure theory, the working equations are nonlinear and the solutions asymptotically approach
exponential functions.  It has been demonstrated that genetic algorithm is efficient for solving stiff
ordinary differential equations.  We attempt to formulate electronic structure theory to be solved by
evolutionary algorithms and to tailor the reproduction operators and fitness criteria in evolutionary
algorithms for electronic structure calculations.

Simultaneous optimization of electronic structure and nuclear conformation may be considered a
“co-evolution” process involving changes in both the micro and macro scales.  This presents an
opportunity to advance the methodology of evolutionary algorithms.  Since only the global minimum is of
interest, the convergence of electronic structure calculations at intermediate nuclear conformations need
not be stringent.  In other word, the fitness criteria need not be fixed, and can be adjusted during the
optimization process.  Consequently one expects that the “coupled” optimization should be more efficient.

In Section C.2 we give a brief overview of the general methodology of evolutionary algorithm.
In Sections C.3 — C.6 we discuss our four objectives, in particular, their significance, current challenges
and specific procedures.  In Section C.7 we discuss the validation and assessment of our objectives which
are carried out by applying the new methods to several prototypical systems in cluster research and
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nanotechnology.  In Section C.8 we outline a timetable and discuss briefly how this proposal will impact
the education and training of undergraduate and graduate students.

C.2. Background: Evolution algorithm

Evolution strategies (ES) belong to a group of optimization methods called evolutionary algorithm (EA)
which are based upon the principle of adaptive selection found in the natural world.  In optimization,
minimum and/or maximum values of a property E which depends on some parameters, {χi}, are sought
after,

E = E({χi}). (1)

In evolutionary algorithms the search for the minimum value of E emulates the process of natural
selection found in nature.  In the natural world organisms contain a specific set of genes, which is the
genotype.  The interaction of the genotype with its environment determines the organisms morphology
and behavior — i.e., its phenotype.  This phenotype translates into an organism's fitness, which ultimately
determines the likelihood of survival.

Figure 1 shows the similarity between evolutionary algorithms and evolution.  In evolutionary
algorithms the optimization problem parameters (genes) are encoded in a data structure (genotype).  The
solution defined by the problem parameters is qualitatively defined by the problem parameters is
qualitatively evaluated (phenotype).  Good solutions are retained (survive) and stochastically altered
(reproduced) to create new populations (new solutions).  This process is repeated until either a fixed
number of iterations (generations) have been processed or an acceptable solution has been found.  More
details on evolutionary algorithms can be found in various references (e.g. see Bäck5).
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Figure 1.  Comparison between evolutionary algorithms and natural selection
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Evolutionary algorithms have emerged as an extremely powerful heuristic search technique.
These algorithms attempt to emulate the principles of Darwinian evolution to search vast problem spaces
for good solutions.  The three best known evolutionary algorithms are genetic algorithms (GAs),
evolution strategies (ES) and evolutionary programming (EP).  GAs have been used in the past for cluster
studies  and the results indicate they are clearly superior to simulated annealing approaches.6-9

Since new solutions are generated by perturbation, the effectiveness and efficiency of evolution
strategies depend very much on how the reproduction operator introduces the perturbation.  A common
practice is to add to χi a “noise” from a gaussian distribution:

χ'iα = χiα + N iα(0, σiα) (2)

where N(0, σ) is a random variable obtained from a gaussian distribution with zero mean and standard
deviation σ.  Subscripts i and α collectively denote the i-th parameter (χi) of the α-th set ({χi}α) in the
population respectively (see Figure 1).  A new Niα(0, σiα) for each χi is generated in each iteration.  The
values for the standard deviation {σi} may evolve as well.  In a process known as intermediate
recombination, the standard deviation σ'iα of χ'iα  is obtained as follows,

σ'iα = 
1
2 (σiα + σiβ) (3)

where β is randomly selected from the µ sets of best solutions in the current iteration.  This procedure has
been shown to accelerate convergence of optimization [???].  Further improvement of convergence rates
may be possible by combining intermediate recombination with mutation (in σ's).

There are two general versions of evolution strategies.  Let there be λ new sets of {χi}' generated
from each {χi} in the µ best sets of solutions by perturbation.  In the (µ+λ)-ES version, the new solutions
and the current ones form a new population (thus µλ + λ in total); and their corresponding values of E are
compared to derive another µ best sets of solutions.  In the (µ,λ)-ES a population is formed exclusively
from the {χi}' (thus µλ in total).  That is, each best solution survive only one iteration (generation).
While this may result in short phases of recession, it does avoid long stagnation phases, it has been
suggested that the (µ,λ)-ES works better in multimodal search spaces.

From the foregoing discussion, it is seen that the reproduction operator for ES is in essence
stochastic.  This does not mean, however, that the ES is merely conducting a random search.  The
deterministic selection of the best solutions during each iteration favors those regions of the search space
where good solutions have been previously found.

C.3.  Specific aim: development of evolutionary algorithms  for nuclear conformation optimization

Stability of a conformation is in part determined by its energy relative to that of the constituents separated
infinitely apart.  Interactions between the constituents (atoms, molecules, or ions) of a cluster give rise to
a complex energy “landscape” as a function of nuclear coordinates.  The local and global minima on this
energy landscape correspond to the stable conformations of a cluster.  One method of solving this
optimization problem is to  explore the potential energy surface (PES) composed of all possible  cluster
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conformations.  As the cluster size increases so does the number of degrees of freedom in the placement
of the atoms.  This characteristic produces a PES with numerous local optima 10.    In fact, determining
the ground state energy level of atomic clusters is known to be NP-hard 1, 3. Hence heuristic search
techniques are the only viable alternative.

A commonly used method for searching conformations is the simulated annealing method.2   For
example it has been applied to geometry optimization of polypeptides (in which CH and CH2 groups are
represented by united atom approach to reduce the dimension s of the problem).11  Whether SA can locate
the global minimum — given no limits on execution time — depends on the cooling schedule which in
the simplest form depends on three parameters: starting temperature, cooling rate and number of cooling
steps.  A variation of SA is to use the Liouville equation rather than the Newton's equation.12, 13

Many attempts have been made to tailor GA for finding the global minimum conformation.  A
modified genetic algorithm has been applied to atomic Ar clusters and molecular water clusters up to
(H2O)13.14  In that particular work, water is treated as rigid molecules without internal degrees of
freedom. Genetic algorithm has been applied to atomic clusters of rare gas.15-17  Attempted has been
made to optimize the GA procedure for search atomic cluster conformations,18, 19 including the twinning
mutations, add-and-etch processes, and seeding of the initial parental population with selected structural
motifs.

Our preliminary work with silicon clusters suggests ES may prove to be an even better
algorithm.20  Consequently,  we intend to use an ES in this research effort.  Implementation of ES in our
preliminary work20 is shown in Figure 1.  During each generation (iteration of the ES algorithm)  a
population of individuals or potential solutions  are evolved to  produce new solutions.   Only the highest
fit solutions survive to become parents for the next generation. The ES terminates after a sufficient
number of generations have been processed. Figure 1 shows the ES algorithm used to search for low
energy conformations.

1. Create an initial population of µ individuals.  Randomly place each atom

in Euclidean space.

2. For each individual, generate λ > µ  offspring by applying a reproduction

operator (describe  below).

3. Determine the fitness of each offspring by computing its potential energy.

4. Select the m fittest individuals for survival.  Discard the other individuals.

5. Proceed to step 2 unless Γ generations have been processed.

Figure 1.  The evolutionary algorithm for finding low energy conformations

Each individual represents a cluster conformation. The mutation operator used to produce
offspring (new conformations)  is quite simple.  A bond between two atoms in the cluster is randomly

chosen.  Let r i  denote its current length.  Then the new value of the bond length is ′ r i  which is given by

′ r i = ri + σi
rNi (4)
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where N produces a normally distributed random variable with zero mean and unit variance.  The notation

Ni  indicates that a new random variable is generated for each. ′ r i .  Offspring may have the same bond

lengths as their parent except with a different angle that an atom makes with a coordinate axis.  In a
similar manner, offspring can be produced by randomly selecting an angle and perturbing it by

′ ϕ i = ϕ i + σ i
ϕ Ni (5)

Individuals in a population are composed of both object parameters (the r i 's and ϕi 's) and strategy

parameters (the σ's).  Offspring are produced by perturbing these parameters through the process differs
depending on the parameter type.  Object parameters are mutated by adding Gaussian noise while strategy
parameters are adapted.  A log normal form of self-adaptation is commonly used since it has been shown
to be effective over a wide variety of search space topologies.21  We choose the following log format

′ σ = σ ⋅ exp(τ ⋅ N) (6)

where τ ∝ N .

There are two general versions of an ES.  In the (m + l)-ES version m parameters produce l
offspring; parents and offspring compete equally for survival.  In the (m,l)-ES each parent produces
multiple offspring but only the m best of the offspring survive.  Notice that here parents survive only one
generation regardless of their fitness.  While this may result in short phases of recession, it does avoid
phases of long stagnation.  (In this work we will initially use the (m,λ) version with l = 7m.)

More specifically, we will employ a simplified model that treats the atom as a point mass in 3-
dimensional space.  Spherical coordinates will be used to specify each point mass location.  Hence for an
N atom cluster, an individual in the population of an ES encodes

  r1,φ1,θ1;r2 , φ2 ,θ2 ;L;rN , φN ,θ N{ } (7)

and the mutation operator selects a single element of this set and perturbs it to produce an offspring (c.f.
Eqs. (4) and (5)).

The fitness of an individual is the energy where lower energy values denote higher fitness.

C.4.  Specific aim: integration of evolutionary algorithms  with electronic structure calculations

A prerequisite for any geometry optimization is a potential energy function, analytic or numerical, that
provides the energy for a given nuclear conformation.  Semiempirical and empirical potentials
approximate the interactions as functions of the nuclear coordinates only, thereby reduce the
computational cost.  Currently several approaches provide the empirical and semiempirical potential
energy functions for metallic systems  The constant-volume pair potentials22 are pair-potential models
with explicit volume-dependent terms and are best suited for bulk uniform metallic systems.  The
embedded-atom method belong to the general category of pair functional methods (a comparison of
various parameterization and interpretations is given by Raeker and Depristo23).  This method takes into
account the variation of bond strength with respect to the coordination numbers, and can therefore be
applied to inhomogeneous metallic systems including clusters and nanoclusters.  There are, however,
serious limitations.  The embedded-atom methods give the best results for metals with completely empty

NSF-ITR : Section C Greenwood & Liu

6



or filled d orbitals but not as reliable for the transition metals with partially filled d orbitals.  In part this is
due to the assumed spherical symmetry of the pair functionals.24  It is also caused by the average nature
of the empirical data used in fitting the potentials.24  Several other approaches have been developed to
circumvent the limitations for the transitional metals.  These include , for example, adding angular
dependent terms in the pair functionals and taking into consideration the variation of the density of state s.

General-purpose molecular mechanics force fields for nonmetals are typically developed and
parameterized under the constraint of fixed coordination numbers.  They are therefore not appropriate for
heteronuclear clusters of metallic and non-metallic elements.  In general potential energy functions for
metal-nonmetal interactions are less well developed.  In order to investigate heteronuclear clusters with
mixed metallic and nonmetallic elements, one faces the daunting task of constructing a potential energy
function based on either first principle calculations or empirical data which is often for bulk systems and
may not be appropriate for parameterizing potential energy functions for clusters and nanoclusters.

Moreover an inherent limitation of semiempirical and empirical potential energy functions and
functionals is that they often can treat only ground electronic states.  Many of the important observations
and applications in nanotechnology concern electronic transitions and excited state properties.  A
“composite” approach is commonly employed to circumvent this problem.  Conformations at the local
minima of a semiempirical or an empirical potential are determined using heuristic stochastic
optimization techniques such as simulated annealing and genetic algorithms; these conformations
subsequently serve as starting geometries in a first principle calculation and further “relaxed” (i.e.,
optimized) using gradient-based methods such as Newton-Ralphson and conjugated gradient methods.
The composite approach is applied to for example the structure and kinetics of silicon oxide interface
where preliminary structures are first obtained using Monte Carlo simulated annealing using an analytic
empirical potential and then refined using plane-wave expansion DFT calculations;25 the lowest energy
structures of gold nanclusters (Aun, n =38, 55, and 75) using a modified GA with a Gupta n-body
potential first and then relaxed using conjugate-gradient method with DFT-LDA.26  The composite
approach is limited by several inherent shortcomings.  Semiempirical and empirical potentials must be
carefully calibrated for the specific system of interest.  Currently only the ones for homonuclear clusters
are well characterized.  Constructing a many-body potential for heteronuclear clusters is a daunting
obstacle.  The semiempirical and empirical potentials are by definition reductions of the energy
landscapes derived from the first principle calculations.  As such, there is not necessarily a one-to-one
correspondence between the two types of energy landscape.  In particular, the energetic ordering of the
stable conformations derived from a semiempirical or empirical potential may not be consistent with that
derived from DFT calculations.

Though it requires more computational resources, direct use of energy calculated by the first
principle in geometry optimization may be less time consuming and less ambiguous.  Searching stable
conformations directly with ab initio energy has also been attempted by Monte Carlo simulations using ab
initio energy as input.  For example a Monte Carlo simulated annealing method was applied to
HCl(H2O)n, n = 3 and 4 clusters.27  Also by using a variation of SA, i.e., instead of Newton's equation the
Liouville's equation is used.28  Our objective is to implement ES in a modular form that can be interfaced
with several commonly used program suites for electronic structure calculations such as Gaussian 9829

and Gamess.30
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C.5.  Specific aim: development of evolutionary algorithms  for electronic structure calculation

Solving the electronic structures of a molecule or a cluster, by itself, is an optimization problem which
requires solutions to differential equations with boundary conditions.  In typical formulations of electronic
structure theory, the working equations are nonlinear and the solutions asymptotically approach
exponential functions.  An advantage of EA is that it does not share the numerical instability of iterative
procedures for solving a stiff ordinary differential equation.  This is because, unlike iterative methods,
differential operators are used to assess fitness but not suggest a better guess.31  This has been
demonstrated using GA in several stiff and non-stiff ordinary differential equation problems.31  This is
particularly ideal for electronic structure problems because the wavefunction asymptotically approaches
an exponential function and numerical instability.  GA has been used to solve the electronic structure of a
helium atom.32

With nearly half a century of development in theory33 and algorithms for electronic structure
calculations, most computer program suites, whether they are based on density functional theory or
molecular orbital theory, employ sophisticated numerical methods that are developed and optimized
specifically for electronic structure problems.  The performance of an algorithm depends in part on the
particular hardware architecture where it is implemented.  It is therefore critical to design and test new
algorithms to adapt to new development in computer architecture.  For example, extensive effort has been
devoted to developing the quantum Monte Carlo methods for electronic structure calculations.34, 35

We attempt to formulate electronic structure theory to be solved by evolutionary algorithms and
to tailor the reproduction operators and fitness criteria in evolutionary algorithms for electronic structure
calculations.  Our objective is to solve the following  optimization problem:

Given a molecule or a cluster of N electrons which are subject to
coulombic forces, find the electronic wavefunction within the Born-
Oppenheimer approximation.

Since this is a interdisciplinary proposal, we review below briefly the density functional theory.  In
particular, we  focus on the nonlinearity and the many-body nature of the problem.

Because of the disparity between the masses and, consequently, the kinetic energies of an electron
and a nucleus, the Born-Oppenheimer approximation assumes that electronic configurations adjust
instantaneously with respect to the nuclear motion.  That is, nuclei appear standing still relative to the
electrons.  This leads to the separation of the nuclear and electronic parts of the Schrödinger equation, and
allows one to solve the electronic Schrödinger equation for a fixed nuclear arrangement:

Ĥel Ψ({r};{R}) = Eel({R})Ψ({r};{R}) (1)

where the electronic wavefunction Ψ({r};{R}) is a function of the electronic coordinates {r} and depends
parameterically on the nuclear coordinates {R}.  The electronic hamiltonian in atomic units is defined as

Ĥel = T̂  + V̂
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where subscripts i and j designate electrons; subscripts a and b designate nuclei; N is the number of
electrons; and Na is the number of nuclei.  The eigenvalue, Eel({R}), defines the potential energy

landscape which governs the nuclear motions.

In density functional theory, the electronic energy Eel({R}) is a functional (Eel[ρ]) of electron

density (ρ) with contributions from the kinetic energy (T[ρ]), the nuclear-electron interactions (Vne[ρ])
and electron-electron interactions (Vee[ρ]):

Eel[ρ] = T[ρ]  + Vne[ρ] + Vee[ρ] (3)

The Hohenberg-Kohn theorem states that Eel derived from any electron density cannot be less than that

derived from the true ground state electron density for a given nuclear arrangement.  This allows solutions
of Eel({R}) by variationally minimizing Eel[ρ] with respect to ρ:

δ {Eel[ρ] – µ ∫ ρ(r) dr} = 0 (4)

δ Eel[ρ]
δ ρ(r)   ||

 
ρ=ρ0

 =  µ (5)

where ρ0 is the ground-state electron density, µ is a Lagrange undetermined multiplier which is defined as
the chemical potential of the electronic system.

In the Kohn-Sham density functional theory, the correlated many-body problem of an N-electron
system is mapped to a problem of N non-interacting fermions moving under the influence of an “effective
potential.”  The effective potential is constructed so that the ground-state electron densities of the two
systems are identical.  A new energy functional due to the effective potential is defined as

Eel[ρ] = Ts[ρ]  + Vne[ρ] + J[ρ] + Vxc[ρ] (6)

The  wavefunction of N non-interacting fermions may be written as a Slater determinant of natural spin
orbitals ψi(r,s):

Ψs = 
1

N !
 det [ψ1ψ2ψ3  Lψi] (7)

and the associated electron density is

ρ(r) =  
N
∑
i =1

 |ψi(r,s)| 2 (8)

Given the wavefunction, the kinetic energy functional Ts[ρ] may be  evaluated exactly.  It should be noted
however that the variation of Ts[ρ] with respect to ρ is different from that of the true kinetic energy
functional T[ρ] for a correlated many-body system.  Common to both the correlated and the non-
interacting fermion systems are Vne[ρ], the electrostatic interactions between electrons and nuclei, and
J[ρ], the classical coulombic interactions between electrons.  The differences between the correlated and
the non-interacting fermion systems (including the differences between T[ρ] and Ts[ρ]) are included in
the exchange-correlation functional, Vxc[ρ].  The effective potential for the non-interacting fermions is

υeff(r) =
δ Vne[ρ] 

δ ρ(r)   + 
δ J[ρ]
δ ρ(r) +  

δ Exc[ρ]
δ ρ(r)
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= υ(r) + 
ρ ′ r ( )
r− ′ r 

d∫ ′ r  + υxc(r) (9)

where υ(r) is the electrostatic potential due to nuclei, and υxc(r) is called the exchange-correlation
potential.

In the Kohn-Sham density functional theory, minimization of E[ρ] with respect to ρ is carried out
indirectly by varying the spin orbitals subject to the constraint that the spin orbitals are orthonormal.  This
procedure leads to a set of Kohn-Sham equations:

ĥeff ψι = [– 
1
2 ∇2

i   + υeff] ψι =  ειψι (10)

Because υeff in the effective hamiltonian varies with the electron density (equation (9)) and, therefore, the
spin orbitals (equation(8)), the Kohn-Sham equations are solved iteratively.

In the implementation of the Kohn-Sham density function theory, the spatial part of  spin orbitals,
ψi(r,s) are represented by linear combinations of basis function φµ:

ψi =  
M
∑
µ

 ciµ φµ (11)

where M is the number of basis functions.  The density is related to the basis functions by

ρ(r) = 
 
∑
i

 
 
∑
µν

 ciµ ciν φµ(r) φν(r) (12)

In terms of the basis functions, equation (10) becomes

 
∑
µ

 ĥeff φµciµ =  
 
∑
µ

 ει φµciµ (13)

or secular equations,

 
∑
µ

 (hµν  –  Sµνει) ciµ = 0 (14)

where hµν equals φν ˆ h φµ  and Sµν is the overlap integral φν φµ .  The coefficients {ciµ} are

obtained by diagonalizing an M-by-M matrix with matrix elements hµν  –  Sµνει.  In practice, energy
minimization begins with an initial guess of {ciµ}.  The effective hamiltonian, in particular, υeff] is then
constructed based on the initial {ciµ}.  With the effective hamiltonian, hµν and Sµν are calculated for
each pair of basis functions.  A new set of {ciµ} is obtained by solving the secular equations (equation
(13)) and used to update the effective hamiltonian.  This process is repeated until the coefficients {ciµ},
and therefore, the wavefunction converge.

C.6.  Specific aim: development of a co-evolutionary algorithm for coupled micro scale (electronic
structure) and macro scale (nuclear conformation search)

In Sections C.4 and C.5 geometry optimization is presented as a two step process: first a first principle
calculation is carried out for a given nuclear conformation, and then the fitness is evaluated followed by

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reproduction and mutation.  Such division is artificial.  By coupling the two steps with an adjustable
fitness criteria that varies depending on which region of a potential energy landscape is explored,
convergence may be achieved much sooner.  This coupled optimization problem may be considered
analogous to the co-evolution process that spans both the micro and macro scales.  Although co-
evolutionary concepts are well studied aspects of evolutionary algorithms, they have never been used in
this context.  Coupled optimization problems are not unique to chemistry.  Therefore the new
development in methodology will contribute to many other fields.

C.7.  Validation and assessment

The success of numerical method development could be measured by (i) timing comparison, (ii) accuracy
of the calculated results (iii) applications to problems that cannot be treated with existing methodologies.
Timing comparison requires implementation of methods to be compared  It is beyond the scope of this
proposal.  We focus on the last two criteria in our assessment.

1. Application to transition-metal clusters

As discussed in Section C.4, transition metals with partially filled d orbitals are less reliably described by
the embedded-atom pair potential functionals.24  They are therefore ideal systems for demonstrating the
range of applicability of the methods we will develop, in particular, the ones described in Sections C.4,
C.5 and C.6.  Transition metal clusters of different sizes (i.e., containing different number of atoms or
ions) have been investigated experimentally and the trends of various properties with respect to cluster
size .  Typical properties investigated include ionization potentials, bond dissociation energies, magnetic
moments, electron affinities, and photoelectron spectra   In most experiments, the conformations of the
clusters are unresolved, and therefore theoretical investigations can make significant contributions to the
understanding of these clusters.

For clusters consist of Ni, in particular, ionization potential has been measured for Ni3 up to Ni90,
and unexpected trend has bee observed36   The conformations of Ni3 – Ni5 have been studied
experimentally and theoretically.3738  They are therefore ideal for the initial stage of our proposed
research, i.e., for optimizing the reproduction operators and fitness criteria used in the evolutionary
algorithms.  Previous theoretical calculations on these small Ni clusters will serve as the main test cases
for our new development detailed in Section C.5 and C.6 involving optimization of the electronic degrees
of freedom.  Once we are confident that our methodologies are optimized and free of error, we will
investigate larger Ni clusters and compare the calculated ionization potential with experiment.

2. Application to metal-carbide clusters and nanocrystals

Heteronuclear clusters containing metallic and nonmetallic elements present a challenge to our current
ability to simulate them.  Heteronuclear clusters containing carbons and transition metals (so-called met-
cars39-41) are particularly fascinating because they form specific stoichiometries (fixed ratios): M8C12
and M14C13 (where M denotes transition metals and C denotes carbons).  Theoretical calculations can
shed light on the underlying causes of favored stoichiometry of these met-car and nanocrysals.  By
comparing the calcualted  conformations and vibrational spectra, we can compare our results with limited
experimental observations and gauge the robustness of our our methods.


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C.8.  Timetable and educational impact

The timetable and strategy for carrying out our research plan is given below.


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