A Survey of Evolutionary Algorithmsfor
Data Mining and Knowledge Discovery

Alex A. Freitas

Postgraduate Program in Computer Science, Pontificia Universidade Catolica do Parana
Rua Imaculada Conceicao, 1155. Curitiba- PR. 80215-901. Brazil.
E-mail : alex@ppgiapucpr.bor Web page: http://www.ppgia.pucpr.br/~a ex

Abstract: This chapter discusss the use of evolutionary algorithms, particularly
genetic algorithms and genetic programming, in data mining and knowledge
discovery. We focus on the data mining task of clasdfication. In addition, we
discuss ®me preprocessng and postprocessng steps of the knowledge discovery
process focusing on attribute seledion and pruning o an ensemble of classfiers.
We show how the requirements of data mining and knowledge discovery
influence the design of evolutionary algorithms. In particular, we discuss how
individual representation, genetic operators and fitness functions have to be
adapted for extracting high-level knowledge from data.

1. Introduction

The anount of data stored in databases continues to gow fast. Intuitively, this
large amount of stored data mntains valuable hidden knowledge, which could be
used to improve the dedsion-making process of an organization. For instance,
data aout previous sles might contain interesting relationships between
products and customers. The discovery of such relationships can be very useful to
increase the sales of a company. However, the number of human data analysts
grows at amuch small er rate than the amount of stored data. Thus, thereisaclea
need for (semi-)automatic methods for extracting knowledge from data.

This neal has led to the emergence of a field called data mining and
knowledge discovery [66]. This is an interdisciplinary field, usng methods of
several research areas (spedally machine learning and statistics) to extract high-
level knowledge from red-world data sets. Data mining is the cre step of a
broader process, called knowledge discovery in databases, or knowledge
discovery, for short. This process includes the applicaion of several
preprocessng methods aimed at facilitating the application of the data mining
algorithm and postprocessng methods aimed at refining and improving the
discovered knowledge.

This chapter discusses the use of evolutionary algorithms (EAS), particularly
genetic algorithms (GAs) [29], [47] and genetic programming (GP) [41], [6], in

data mining and knowledge discovery. We focus on the data mining task of
classfication, which is the task addressed by most EAs that extract high-level
knowledge from data. In addition, we discussthe use of EAs for performing some
preprocessng and postprocessng steps of the knowledge discovery process
focusing on attribute seledion and pruning o an ensemble of classfiers.

We show how the requirements of data mining and knowledge discovery
influence the design of EAs. In particular, we discuss how individua
representation, genetic operators and fitness functions have to be adapted for
extracting high-level knowledge from data.

This chapter is organized as follows. Sedion 2 presents an overview of data
mining and knowledge discovery. Sedion 3 dscusss sveral aspeds of the
design of GAs for rule discovery. Sedion 4 discusss GAs for performing some
preprocessng and postprocessng steps of the knowledge discovery process
Sedion 5 addresss the use of GP in rule discovery. Sedion 6 addresses the use
of GP in the preprocessng phase of the knowledge discovery process Finaly,
sedion 7 presents a discusson that concludes the chapter.

2. An Overview of Data Mining and K nowledge Discovery

This sedion is divided into three parts. Subsedion 2.1 dscusss the desirable
properties of discovered knowledge. Subsection 2.2 reviews the main data mining
tasks. Subsedion 2.3 presents an overview of the knowledge discovery process

2.1 The Desirable Properties of Discover ed K nowledge

In esence data mining consists of the (semi-)automatic extraction of knowledge
from data. This datement raises the question of what kind o knowledge we
should try to discover. Although thisis a subjedive issue, we @n mention three
general propertiesthat the discovered knowledge should satisfy; namely, it should
be accurate, comprehensible, and interesting. Let us briefly discuss each of these
propertiesin turn. (See &so sedion 3.3.)

Aswill be seen in the next subsedion, in data mining we are often interested
in discovering knowledge which has a certain predictive power. The basic ideais
to predict the value that some dtribute(s) will take on in “the future’, based on
previously observed data. In this context, we want the discovered knowledge to
have a high predictive accuracy rate.

We also want the discovered knowledge to be mmprehensible for the user.
Thisis necessary whenever the discovered knowledge isto be used for supporting
adedsion to be made by a human being. If the discovered “knowledge” is just a
black box, which makes predictions without explaining them, the user may not
trust it [48]. Knowledge comprehensibility can be achieved by using high-level
knowledge representations. A popular one, in the mntext of data mining, is a set
of IF-THEN (prediction) rules, where each ruleis of the form:

IF <some_conditions are satisfied>
THEN <predict_some_value for_an_attribute>

The third property, knowledge interestingness is the most difficult one to
define and quantify, sinceit is, to a large extent, subjedive. However, there ae
some aspeds of knowledge interestingnessthat can be defined in objective terms.
The topic of rule interestingness including a ammparison between the subjedive
and the objedive approaches for measuring rule interestingness will be discussed
in sedion 2.3.2.

2.2 DataMining Tasks

In this ®dion we briefly review some of the main data mining tasks. Each task
can be thought of as a particular kind o probem to be solved by a data mining
algorithm. Other data mining tasks are briefly discussed in [18], [25].

2.2.1 Classification. This is probably the most studied data mining task. It has
been studied for many decades by the machine learning and datistics
communities (among ahers). In this task the goal is to predict the value (the
clasg of a user-spedfied goa attribute based on the values of other attributes,
call ed the predicting attributes. For instance the goal attribute might be the Credit
of a bank customer, taking on the values (classs) “good” or “bad”, while the
predicting atributes might be the customer's Age, Sdary,
Current_accourt_bdance, whether or not the aistomer has an Unpaid Loan etc.

Clasdfication rules can be mnsidered a particular kind o prediction rules
where the rule antecelent (“IF part”) contains a combination - typicaly, a
conjunction - of conditions on predicting attribute values, and the rule consequent
(“THEN part”) contains a predicted value for the goa attribute. Examples of
clasdfication rules are:

IF (Unpaid_Loar? =“no") and (Current_account_balance > $3,000)
THEN (Credit = “good”)
IF (Unpaid_Loar? = “yes’) THEN (Credit = “bad”)

In the classfication task the data being mined is divided into two mutualy
exclusive and exhaugtive data sets, the training set and the test set. The data
mining algorithm hasto discover rules by accessng the training set only. In order
to do this, the dgorithm has accessto the vaues of both the predicting attributes
and the goal attribute of each example (recrd) in the training set.

Once the training process is finished and the algorithm has found a set of
classfication rules, the predictive performance of these rules is evaluated on the
test set, which was not seen during training. Thisisacrucid point.

Actually, it istrivial to get 100% of predictive acauracy in the training set by
completely sacrificing the predictive performance on the test set, which would be
useless To seethis, suppose that for a training set with n examples the data
mining algorithm “discovers’ nrules, i.e. onerule for each training example, such

that, for each “discovered” rule; (a) the rule antecedent contains conditions with
exactly the same atribute-value pairs as the @rresponding training example; (b)
the dasspredicted by the rule mnsequent is the same as the actual class of the
corresponding training example. In this case the “discovered” rules would
trivialy achieve a 100% of predictive accuracy on the training set, but would be
useless for predicting the dass of examples unseen during training. In other
words, there would be no generaization, and the “discovered” rules would be
capturing only idiosyncrasies of the training set, or just “memorizing” the training
data. In the parlance of machine leaning and data mining, the rules would be
overfitting the training deta.

For a ammprehensive discusson about how to measure the predictive accuracy
of classfication rules, thereader isreferred to [34], [67].

In the next three subsedions we briefly review the data mining tasks of
dependence modeling, clustering and discovery of asciation rules. Our main
goa is to compare these tasks against the task of clasdfication, since space
limitations do not dl ow us to discussthese tasks in more detail.

2.2.2 Dependence M odeling. Thistask can be regarded as a generalization of the
classfication task. In the former we want to predict the value of several attributes
- rather than a single goal attribute, as in classfication. We focus again on the
discovery of prediction (IF-THEN) rules, since this is a high-level knowledge
representation.

In its most general form, any attribute can occur bath in the antecadent (“IF
part”) of arule and in the consequent (“THEN part”) of ancther rule - but not in
both the axtecadent and the @mnsequent of the same rule. For instance, we might
discover the foll owing two rules:

IF (Current_account_balance > $3,000) AND (Sdary = “high”)
THEN (Credit = “good”)
IF (Credit = “good”) AND (Age >21) THEN (Grant_Loar? = “yes’)

In some @ses we want to restrict the use of certain attributes to a given pert
(antecadent or consequent) of a rule. For ingance we might spedfy that the
attribute Credit can occur only in the mnsequent of a rule, or that the attribute
Age can ocaur only in the antecedent of arule.

For the purposes of this chapter we assume that in this task, similarly to the
classfication task, the data being mined is partitioned into training and test sets.
Once again, we use the training set to discover rules and the test set to evaluate
the predictive performance of the discovered rules.

2.2.3 Clustering. As mentioned abowe, in the classfication task the class of a
training example is given as input to the data mining agorithm, characterizing a
form of supervised learning. In contrat, in the clustering task the data mining
algorithm must, in some sense, “discover” classs by itself, by partitioning the
examples into clusters, which is a form of unsupervised leaning [19], [20].

Examples that are similar to each other (i.e. examples with similar attribute
values) tend to be assgned to the same cluster, whereas examples different from
each other tend to be assgned to digtinct clusters. Note that, oncethe clusters are
found, each cluster cen be wnsidered as a “dass’, so that now we @n run a
classfication agorithm on the dustered data, by using the duster name asa dass
label. GAsfor clustering arediscussed e.g. in [50], [17], [33].

2.2.4 Discovery of Association Rules. In the standard form of this task (ignoring
variations proposed in the literature) each deta ingance (or “record”) consists of a
st of binary attributes called items. Each instance usually corresponds to a
customer transaction, where a given item has a true or false value depending an
whether or not the @rresponding customer bought that item in that transaction.
An assciation ruleisareationship o theform IF X THEN Y, where X and Y are
satsof itemsand X n Y=10 [1], [2]. An exampleisthe asciation rule;

IF fried_potatoes THEN soft_drink, ketchup .

Although bath classfication and association ruleshave an IF-THEN structure,
there ae important differences between them. We briefly mention here two o
these differences. Firdt, association rules can have more than one item in the rule
consequent, whereas classfication rules always have one attribute (the goal one)
in the mnsequent. Seand, unlike the aswociation task, the clasdfication task is
asymmetric with resped to the predicting attributes and the goa attribute.
Predicting attributes can occur only in the rule atecedent, whereas the goa
attribute ocaurs only in the rule mnsequent. A more detailed discusson about the
differences between classfication and asociation rules can be found in [24].

2.3 The Knowledge Discovery Process

The application of a data mining algorithm to a data set can be mnsidered the
core step of a broader process often called the knowledge discovery process[18].
In addition to the data mining step itself, this processalso includes sveral other
steps. For the sake of simplicity, these additiona steps can be roughy categorized
into data preprocessng and discovered-knowledge postprocessng.

We use the term data preprocessng in a generad sense, including the
following steps (among others) [55]:
(a) Data Integration - This is necessary if the data to be mined comes from
several different sources, such as sveral departments of an organization. This
step involves, for instance removing inconsistencies in attribute names or
attribute value names between data sets of different sources.
(b) Data Cleaning - It is important to make sure that the data to be mined is as
acaurate as posshle. This step may involve deteding and correding errorsin the
data, filling in missng values, etc. Data deaning has a strong overlap with data
integration, if thislatter is also performed. It is often desirable to involve the user
in data cleaning and data integration, so that (s)he can bring her/his background

knowledge into these tasks. Some data cleaning methods for data mining are
discused in [32], [59).

(c) Discretization - This gep consists of transforming a cntinuous attribute into a
categorical (or nominal) attribute, taking on only a few discrete values - eg., the
red-valued attribute Salary can be discretized to take on only three values, say
“low”, “medium”, and “high”. This gep is particularly required when the data
mining algorithm cannot cope with continuous attributes. In addition,
discretization often improves the mmprehenshility of the discovered knowledge
[11], [52.

(d) Attribute Selection - This step consists of selecting a subset of attributes
relevant for classfication, among all original attributes. It will be discussd in
subsedion 2.3.1.

Discovered-knowledge postprocessng uwsually ams at improving the
comprehensibility and/or the interestingnessof the knowledge to be shown to the
user. This ¢ep may involve, for indance the seledion of the most interesting
rules, among the discovered rule set. This step will be discussed in subsedion
2.3.2.

Note that the knowledge discovery process is inherently iterative, as
illugrated in Fig. 1. As can be seen in this figure, the output of a step can be not
only sent to the next step in the process but also sent — as a feedback - to a
previous gep.

input data >

output
inpu data knowledge

Fig. 1. An overview of the knowledge discovery process

2.3.1 Attribute Selection. This consigs of seleding, among al the attributes of
the data set, a subset of attributes relevant for the target data mining task. Note
that a number of data mining algorithms, particularly rule induction ones, already
perform a kind o attribute seledion when they discover arule @ntaining just a
few attributes, rather than al attributes. However, in this sedion we ae interested
in attribute seledion as a preprocessing step for the data mining agorithm.

Hence wefirst seled an attribute subset and then gve only the seleded attributes
for the data mining algorithm.

The motivation for this kind o preprocessng is the fact that irrelevant
attributes can somehow “confuse” the data mining algorithm, leading to the
discovery of inacaurate or usdess knowledge [38]. Considering an extreme
example, suppose we try to predict whether the credit of a customer is good or
bad, and suppose that the data set includes the attribute Customer_Name. A data
mining algorithm might discover too spedfic rules of the form:
IF (Customer_Name = “a_spedfic_name”) THEN (Credit = “goad”). This kind
of rule has no predictive power. Most likely, it covers a sngle astomer and
cannot be generalized to aher customers. Technicdly speaking, it is overfitting
the data. To avoid this problem, the attribute Customer_Name (and other
attributes having a unique value for each training example) should be removed in
apreprocessng step.

Attribute seledion methods can be divided into filter and wrapper approaches.
In the filter approach the dtribute seledion method is independent of the data
mining algorithm to be appli ed to the seleded attributes.

By contragt, in the wrapper approach the dtribute seledion method uses the
result of the data mining algorithm to determine how good a given attribute
subset is. In esence the attribute seledion method iteratively generates attribute
subsets (candidate solutions) and evaluates their qualities, until a termination
criterion is satisfied. The attribute-subset generation procedure can be virtualy
any search method. The major characteristic of the wrapper approach is that the
quality of an attribute subset is diredly measured by the performance of the data
mining algorithm applied to that attribute subset.

The wrapper approach tendsto be more dfedive than the filter one, sincethe
sdleded attributes are “optimized” for the data mining agorithm. However, the
wrapper approach tends to be much slower than the filter approach, sincein the
former a full data mining algorithm is applied to each attribute subset considered
by the seach. In addition, if we want to apply several data mining algorithms to
the data, the wrapper approach becmes even more mmputationally expensive,
sincewe need to run the wrapper procedure oncefor each data mining a gorithm.

2.3.2 Discovered-Knowledge Postprocessing. It is often the @se that the
knowledge discovered by a data mining a gorithm needs to undergo some kind of
postprocessng. Since in this chapter we focus on discovered knowledge
expresed as IF-THEN prediction rules, we are mainly interested in the
postprocessng of a discovered rule set.

There ae two main motivations for such postprocessng. First, when the
discovered rule set is large, we often want to simplify it - i.e., to remove some
rules and/or rule conditions - in order to improve knowledge wmprehensibility
for the user.

Second, we often want to extract a subset of interesting rules, among all
discovered ones. The reason is that although many data mining algorithms were

designed to discover acaurate, comprehensible rules, most of these agorithms
were not designed to discover interesting rules, which is a rather more difficult
and ambiti ous goal, as mentioned in sedion 2.1.

Methods for sdedion of interesting rules can be roughy divided into
subjedive and objedive methods. Subjedive methods are user-driven and
domain-dependent. For insance, the user may specify rule templates, indicaing
which combination of attributes must ocaur in the rule for it to be considered
interesting - this approach has been used mainly in the context of assciation
rules [40]. As another example of a subjective method, the user can give the
system a general, high-level description of higher previous knowledge about the
domain, so that the system can seled only the discovered rules which represent
previousy-unknown knowledge for the user [44].

By contrast, objective methods are data-driven and domain-independent.
Some of these methods are based on the idea of comparing a discovered rule
againg other rules, rather than against the user’s beliefs. In this case the basic
ideaisthat the interestingnessof arule dependsnot only on the quality of therule
itself, but also on its similarity to aher rules. Some objedive measures of rule
interestingnessare discussed in [2€], [22], [23)].

We believe that ideally a combination of subjective and oljedive approaches
should be used to try to solve the very hard prodem of returning interesting
knowledge to the user.

3. Genetic Algorithms (GAs) for Rule Discovery

In general the main motivation for using GAs in the discovery of high-level
prediction rulesisthat they perform a global seach and cope better with attribute
interaction than the greedy rule induction algorithms often used in data mining
[14].

In this ®dion we discuss svera aspeds of GAs for rule discovery. This
sedion is divided into three parts. Subsedion 3.1 discusses how one can design
an individua to represent prediction (IF-THEN) rules. Subsedion 3.2 dscusss
how genetic operators can be adapted to handle individuals representing rules.
Sedion 3.3 discusses me isaes involved in the design of fitness functions for
rule discovery.

3.1 Individual Representation

3.1.1 Michigan ver sus Pittsbur gh Approach. Genetic dgorithms (GAs) for rule
discovery can be divided into two kroad approaches, based on how rules are
encoded in the population of individuals (“chromosomes’). In the Michigan
approach each individual encodes a single prediction rule, whereas in the
Pittsburgh approach each individual encodes a set of prediction rules.

It should be noted that some authors use the term “Michigan approach” in a

narrow sense, to refer only to classfier systems [35], where rule interaction is
taken into acoount by a spedfic kind o credit assgnment method. However, we
use the term “Michigan approach” in a broader sense, to denote any approach
where each GA individua encodesasingle prediction rule.

The coice between these two approaches grongly depends on which kind of
rule we want to discover. Thisis related to which kind o data mining task we are
addressng. Suppose the task is classfication. Then we usually evaluate the
quality of the rule set as awhale, rather than the quality of a singlerule. In other
words, the interaction among the rules is important. In this case, the Pittsburgh
approach seems more natural.

On the other hand, the Michigan approach might be more natural in other
kinds of data mining tasks. An example is atask wherethe goal isto find a small
set of high-quality prediction rules, and each ruleis often evaluated independently
of other rules[49]. Another exampleisthetask of deteding rare events[65).

Turning back to classfication, which isthe focus of this chapter, in a nutshell
the pros and cons of each approach are as follows. The Pittsburgh approach
diredly takes into acoount rule interaction when computing the fitnessfunction of
an individual. However, this approach leads to syntactically-longer individuals,
which tends to make fithess computation more cmputationally expensive. In
addition, it may require some modifications to standard genetic operators to cope
with relatively complex individuals. Examples of GAs for classfication which
follow the Pittsburgh approach are GABIL [13], GIL [37], and HDPDCS [51].

By contrast, in the Michigan approach the individuads are smpler and
syntacticdly shorter. This tends to reduce the time taken to compute the fitness
function and to simplify the design of genetic operators. However, this advantage
comes with a @st. First of all, snce the fitnessfunction evaluates the quality of
each rule separately, now it is not easy to compute the quality of the rule set asa
whole - i.e taking rule interactions into account. Another problem is that, since
we want to discover a set of rules, rather than a single rule, we annot allow the
GA population to converge to a single individual - which is what usually happens
in standard GAs. This introduces the need for some kind d niching method [45],
which obvioudy is not necessary in the case of the Pittsburgh approach. We can
avoid the need for niching in the Michigan approach by running the GA several
times, each time discovering a different rule. The drawback of this approach is
that it tends to be computationally expensive. Examples of GAs for classfication
which foll ow the Michigan approach are COGIN [30] and REGAL [2§].

So far we have seen that an individual of a GA can represent a single rule or
several rules, but we have not said yet how the rule(s) is(are) encoded in the
genome of the individual. We now turn to this issue. To follow our discusson,
asaime that arule has the form “IF cond; AND ... AND cond, THEN class= ¢“,
where cond, ... cond, are attribute-value cnditions (e.g. Sex =“M”) and ¢; isthe
class predicted by the rule. We divide our discusson into two parts, the
representation of the rule antecedent (the “IF’ part of the rule) and the
representation of the rule mnsequent (the “THEN" part of the rule). These two

isaes are discussd in the next two subsections. In these subsections we will
asaume that the GA foll ows the Michigan approach, to simplify our discusson.
However, most of the ideas in these two subsedions can be adapted to the
Pittsburgh approach as well .

3.1.2 Representing the Rule Antecedent (a Conjunction of Conditions). A
simple approach to encode rule @nditions into an individual is to use ahbinary
encoding. Suppose that a given attribute can take on k discrete values. Then we
can encode a condition on the value of this attribute by using k bits. The i-th value
(i=1,...K) of the atribute domain is part of the rule mndition if and anly if the
i-th bit is“on” [13].

For instance, suppose that a given individual represents arule antecalent with
a single attribute-value ndition, where the attribute is Marital_Satus and its
values can be “single’, “married”, “divorced” and “widow”. Then a ndition
involving this attribute would be encoded in the genome by four hits. If these bits
take on, say, the values “0 11 0’ then they would be representing the foll owing
rule atecealent:

IF (Marital_Satus=“married” OR “divorced”)

Hence this encoding scheme dlows the representation of conditions with
interna digunctions, i.e. with the logicd OR operator within a condition.

Obvioudly, this encoding scheme can be esily extended to represent rule
antecedents with several conditions (linked by alogicd AND) by including in the
genome an appropriate number of bits to represent each attribute-value condition.

Notethat if al the k bits of a given rule mndition are “on”, this means that the
corresponding attribute is effedively being ignored by the rule antecalent, since
any value of the attribute satisfies the @rresponding rule condition. In practice, it
is desirable to favor rules where some @nditions are “turned off” - i.e. have all
their bits set to “1” —in order to reduce the size of the rule antecelent. (Recl
that we want comprehensible rulesand, in genera, the shorter the rule is the more
comprehensible it is) To achieve this, one can automatically set al bits of a
condition to “1” whenever more than haf of those bits are arrently set to “1”.
Another technique to achieve the same dfed will be discussed at the end of this
subsedion.

The above discusson assumed that the atributes were ategorical, also called
nominal or discrete. In the @se of continuous attributes the binary encoding
mechanism gets dightly more awmplex. A common approach is to use bits to
represent the value of a continuous attribute in binary notation. For instance, the
binary string“0 000 11 01" represents the value 13 of a given integer-valued
attribute.

Ingead of using a binary representation for the genome of an individual, this
genome can be expressed in a higher-level representation which diredly encodes
the rule conditions. One of the alvantages of this representation is that it leadsto
amore uniform treatment of categorical and continuous attributes, in comparison

with the binary representation.

In any case, in rule discovery we usually neal to use variable-length
individuals, since, in principle, we do not know a priori how many conditi ons will
be necessry to produce agood rule. Therefore, we might have to modify
crosover to be able to cope with variable-length individuals in such a way that
only valid individuals are produced by this operator.

For ingance suppose that we use a high-level representation for two
individuals to be mated, as follows (there is an implicit logical AND conneding
the rule conditions within each individual):

(Age > 25) (Marital_Status = “Married”)
(Has_a job="yes’) (Age<?2l)

As aresult of a crosover operation, one of the children might be a invalid
individual (i.e. arule with contradicting conditions), such as the following rule
antecalent:

IF (Age> 25) AND (Age< 21).

To avoid this, we can modify the individual representation to encode attributes in
the same order that they ocaur in the data set, including in the representation
“empty conditions’ as necessary. Continuing the above ecample, and assuming
that the data set being mined has only the attributes Age, Marital_Satus, and
Has_a_job, in this order, the two above individual s would be encoded as foll ows:

(Age > 25) (Marital_Satus=“married”) (“empty conditon”)
(Age < 21) (“empty condition™) Has a job="yes")

Now each attribute occupies the same position in the two individuals, i.e
attributes are aligned [21]. Hence, crossover will produceonly valid individuds.

This example raises the question of how to determine, for each gene, whether
it represents a normally-expressed condition or an empty condition. A smple
technique for solving this problem is as foll ows. Suppose the data being mined
contains m attributes. Then each individua contains m genes, each of them
divided into two parts. The first one spedfies the rule @ndition itself (e.g. Age >
25), whereas the second oneisasingle bit. If thishbit is“on” (“off”) the @ndition
isincluded in (excluded from) the rule atecelent represented by the individual.
In other words, the “empty conditions’ in the above example ae represented by
turning off this bit. Since we want rule antecelents with a variable number of
conditi ons, this bit isusually subject to the action of genetic operators [43].

3.1.3 Representing the Rule Consequent (Predicted Class). Broadly speaking,
there ae at least threeways of representing the predicted class (the “THEN” part
of therule) in an evolutionary algorithm. The first posshility isto encode it in the
genome of an individual [13], [30] — possbly making it subjed to evolution.

The second posshility isto associate dl individuals of the population with the
same predicted class which is never modified during the running of the
algorithm. Hence, if we want to discover a set of classfication rules predicting k

different classes, we would neel to run the evolutionary algorithm at least k
times, so that in thei-th run, i=1,..,k, the algorithm discovers only rules predicting
thei-th class[37], [493].

The third posshility is to choose the predicted classmost suitable for arule,
in a kind o deterministic way, as on as the crresponding rule antecalent is
formed. The chosen predicted classcan be the classthat has more representatives
in the set of examples satisfying the rule atecalent [28] or the class that
maximizesthe individua’ s fithess[49].

The above first and third posshilities have the advantage of alowing that
different individuals of the population represent rules predicting different classes.
This avoids the neal to perform multiple runs of the evolutionary algorithm to
discover rules predicting different classes, which is the case in the above second
posshili ty. Overall, the third posshility seems more soundthan thefirst one.

3.2 Genetic Operatorsfor Rule Discovery

There has been several proposals of genetic operators designed particularly for
rule discovery. Although these genetic operators have been used mainly in the
classfication task, in general they can be also used in other tasks that involve rule
discovery, such as dependence modeling. We review some of these operators in
the foll owing subsedions.

3.2.1 Selection. REGAL [27] follows the Michigan approach, where each
individual representsa singlerule. Sincethe goal of the algorithm isto discover a
set of (rather than just one) clasdfication rules, it is necessry to avoid the
convergence of the population to asingleindividual (rule).

REGAL does that by using a seledion procedure @lled universal suffrage. In
esence individuals to be mated are “deded” by training examples. An example
“votes’ for one of rules that cover it, in a probabili stic way. More predsely, the
probability of voting for a given rule (individual) is proportional to the fitness of
that rule. Only rules covering the same eamples compete with each other.
Hence this procedure dfedively implements a form of niching, encouraging the
evolution of several different rules, each of them covering a different part of the

data space

3.2.2 Generalizing/Specializing Crossover. The basic ideaof this gpeda kind
of crossover isto generalize or spedalize agiven rule, depending on whether it is
currently overfitting o underfitting the data, respedively [27], [3]. Overfitting
was briefly discussed in sedions 2.2.1 and 23.1. Undefitting is the dua
situation, in which arule is covering too many training examples, and so should
be specialized. A more @mprehensive discusson about overfitting and
underfitting in rule induction (independent of evolutionary algorithms) can be
found eg. in [57].

To simplify our discusson, assume that the evolutionary algorithm foll ows

the Michigan approach - where each individual represents a single rule - using a
binary encoding (as discussd in subsedion 3.1.2). Then the generdizing /
spedalizing crosover operators can be implemented as the logical OR and the
logical AND, respedively. This is illustrated in Fig. 2, where the above-
mentioned bitwise logical functions are used to compute the values of the hits
between the two crossover points denoted by the“|” symbal.

children produced by children produced by

parents ceneralizing crossover spedalizing crosover
101 1|1 0 00|1
5101‘0 Ell‘o 1 OO‘O

Fig. 2. Example of generalizing / spedalizing crosover

3.23 Generalizing/Specializing-Condition Operator. In the previous
subsedion we saw how the crosover operator can be modified to generaize/
spedalize arule. However, the generalization/spedalization of arule can dso be
done in a way independent of crossover. Suppose, e.g., that a given individud
represents a rule atecelent with two attribute-value nditions, as follows -
again, thereisan implicit logical AND conneding the two conditionsin (1):

(Age>25) (Marital_Satus="“single’). (1)

We @n generalize, say, the first condition of (1) by using a kind of mutation
operator that subtracts a small, randomly-generated value from 25. This might
transform the rule anteceadent (1) into, say, the following one:

(Age>21) (Marital_Satus="“single’). 2

Rule antecalent (2) tends to cover more examples than (1), which is the kind
of result that we wish in the ase of a generalization operator. Ancther way to
generdize rule atecalent (1) is simply to delete one of its conditions. This is
usually call ed the drop condition operator in theliterature.

Conversely, we could spedalize the first condition of rule antecedent (1) by
using akind o mutation operator that adds a small, randomly-generated value to
25. Another way to spedalize (1) is, of course, to add another condition to that
rule atecealent.

3.3. Fitness Functionsfor Rule Discovery

Recall that, as discussd in sedion 2.1, idedly the discovered rules should: (a)
have a high predictive accuracy; (b) be mmprehensible; and (c) be interesting. In
this subsedion we discusshow these rule quality criteria can be incorporated in a
fitness function. To simplify our discusson, throughout this sibsedion we will
again asaume that the GA follows the Michigan approach - i.e. an individual
represents a single rule. However, the basic ideas discussed below can be easily
adapted to GAs foll owing the Pittsburgh approach, where an individual represents

arule set.

Let a rule be of the form: IF A THEN C, where A is the antecalent (a
conjunction of conditions) and C is the consequent (predicted class, as discussed
earlier. A very smple way to measure the predictive acauracy of a rule is to
compute the so-call ed confidencefactor (CF) of therule, defined as:

CF=|A & C|/|A],

where |A| is the number of examples stisfying al the wnditions in the
antecadlent A and |[A & C| is the number of examples that bath satisfy the
antecedent A and have the dasspredicted by the mnsequent C. For instance if a
rule covers 10 examples (i.e. |JA| = 10), out of which 8 have the classpredicted by
therule(i.e. JA&C| = 8) then the CF of theruleis CF = 80%.

Unfortunately, such a simple predictive accuracy measure favors rules
overfitting the data. For ingtance, if |A| = |A & C| = 1 then the CF of therule is
100%. However, such arule is most likely representing an idiosyncrasy of a
particular training example, and probably will have apoor predictive accuracy on
the test set. A solution for this problem is described next.

The predictive performance of a rule can be summarized by a 2 x 2 matrix,
sometimes called a @mnfusion matrix, as illustrated in Fig. 3. To interpret this
figure, recl that A denotes a rule atecedent and C denotes the dass predicted
by the rule. The dasspredicted for an example is C if and anly if the example
satisfies the rule antecalent. The labels in each quadrant of the matrix have the
following meaning:

TP = True Positives = Number of examples stisfying A and C

FP = False Positives = Number of examples stisfying A but not C

FN = False Negatives = Number of examples not satisfying A but satisfying C
TN = True Negatives = Number of examples not satisfying A nor C

Clealy, the higher the values of TP and TN, and the lower the values of FP
and FN, the better therule.

actual class

C not C
predicted C TP FP
class not C FN TN

Fig. 3. Confusion matrix for a dassfication rule

Note that the above-mentioned CF measure is defined, in terms of the notation
of Fig. 3, by: CF=TP/ (TP + FP). We can now measure the predictive accuracy
of a rule by taking into account not only its CF but also a measure of how
“complete” the rule is, i.e. what is the proportion of examples having the
predicted class C that is actually covered by the rule atecedent. The rule
completeness measure, denoted Comp, is computed by the formula

Comp = TP/ (TP + FN). In order to combine the CF and Comp measures we @n
define afitnessfunction such as:

Fitness= CF x Comp.

Although this fitness function does a good job in evaluating predictive
performance it has nothing to say about the mwmprehensbility of the rule. We
can extend this fitness function (or any other focusing anly on the predictive
acauracy of the rule) with a rule comprehensbility measure in several ways. A
simple approach isto define afitnessfunction such as

Fitness= w; x (CF x Comp.) + w, X Simp,

where Simp is a measure of rule smplicity (normaized to take on values in the
range 0..1) and w; and w, are user-defined weights. The Simp measure can be
defined in many different ways, depending an the application domain and on the
user. In generd, its vaue isinversely proportiond to the number of conditionsin
therule antecalent —i.e., the shorter therule, the smpler it is.

Severa fitness functions that take into account bath the predictive accuracy
and the comprehensibility of a rule ae described in the literature - see eg. [37],
(28], [51], [21].

Noda and his coll eagues [49] have proposed a fitness function which takes
into acoount not only the predictive accuracy but also a measure of the degree of
interestingness of a rule. Their GA follows the Michigan approach and was
developed for the task of dependence modeling. Their fitness function is
esentialy awelghted sum of two terms, where one term measures the predictive
acauracy of the rule and the other term measures the degreeof interestingness (or
surprisingnesy of therule. The weights assgned to each term are spedfied by the
user. Another fitness function involving a measure of rule interestingness more
predsely avariation of the well -known Jmeasure, is discussed in [4].

In the above projeds the rule interestingness measure is objedive. An
intriguing reseach diredion would be to design a fitness function based on a
subjedive rule interestingness measure. In particular, one posshility would be to
design a kind of interactive fitness function, where the fitness of an individud
depends on the user’'s evaluation. A similar approach has been reported in an
image-enhancement application [53], where the user drives GP by deciding which
individual should be the winner in tournament seledion; and in an attribute-
sdledion task [60], where a user drives a GA by interactively and subjectively
seleding good prediction rules.

4. Genetic Algorithms (GAs) for the K nowledge Discovery
Process

This sedion is divided into two parts. Subsedion 4.1 discuses GAs for data
preprocessng, particularly attribute seledion; whereas sibsedion 4.2 discusses a

GA for discovered-knowledge postprocessng, particularly “pruning” an
ensemble of clasdfiers.

4.1 Genetic Algorithms (GAs) for Data Preprocessing

Asdiscussd in sedion 2.3.1, one of the key problems in preparing a data set for
mining is the attribute seledion problem. In the mntext of the dassfication task,
this problem consists of selecting, among all available attributes, a subset of
attributes relevant for predicting the value of the goal attribute.

The use of GAs for attribute seledion seems natural. The main reason is that
the major source of difficulty in attribute seledion is attribute interaction, and one
of the strengths of GAsisthat they usually cope well with attribute interactions.

In addition, the problem definition lends itself to a very smple, natura
genetic encoding, where each individua represents a candidate attribute subset (a
candidate solution, in this problem). More predsely, we @n represent a candidate
attribute subset as a string with m binary genes, where m is the number of
attributes and each gene can take on the values 1 o 0, indicaing whether or not
the @rresponding atribute is in the candidate attribute subset. For ingance
asaming a 5-attribute data set, the individual “0 1 1 0 0" corresponds to a
candidate solution where only the second and third attributes are seleded to ke
given to the dassfication agorithm.

Then, asimple GA, using conventional crossover and mutation operators, can
be used to evolve the population of candidate solutions towards a goad attribute
subset. The “trick” is to use a fitness function that is a dired measure of the
performanceachieved by the dassfication algorithm accessng only the dtributes
sdeded by the @rresponding individual. With resped to the cdegorization of
wrapper and filter approaches for attribute seledion dscussed in sedion 2.3.1,
thisapproach isclealy an instance of the wrapper approach.

Note that in the above simple encoding scheme an attribute is either seleded
or not, but thereis no information abaut the relative relevance of each attribute. It
is posshle to use an alternative encoding scheme where highly relevant attributes
will tend to ke replicated in the genome. This replication will tend to reduce the
probability that a highly relevant attribute be removed from the individua due,
for ingtance to aharmful mutation.

Such an alternative encoding scheme was proposed by Cherkauer & Shavlik
[12]. In their scheme, each gene of an individud contains either an attribute A;,
i=1,....,m, or no attribute, dencted by 0. The length of theindividual isfixed, but it
isnot necessarily equal to m, the number of attributes. An attribute is seleded if it
occurs a least oncein the individual. For instance, asaiming a 10-attribute data
st and a 5-gene string, the individual “0 Ag 0 Ag A" represents a candidate
solution where only attributes Ag and A; are sdeded to ke given to the
classfication agorithm.

Note that this example suggests an intriguing posshility. Suppose we are
interested not only in seleding a subset of attributes, but also in determining how

relevant each of the sdleded attributes are. In the above example perhaps we
could consider that Ag is presumably more relevant than A4, since the former
occurs twicein the genome of theindividual, whereas the latter occurs just once

In any case it is posshble to use a GA to gptimize attribute weights diredly
(assgningto an attribute aweight that is proportional to itsrelevance), rather than
to smply select attributes. This approach has been used particularly for
optimizing attribute weights for neaest neighbor agorithms [39], [54].

Comprehensive mmparisons between GA and aher attribute-seledion
algorithms, acrossa number of data sets, are reported in [69] and [42]. In these
projeds GA was used as a wrapper to seled attributes for a @nstructive neurd
network and a neaest neighbor agorithm, respedively. Overall, the results $ow
that GA is quite mmpetiti ve with other respedabl e attribute-seledion algorithms.
In particular, the results reported in [42] indicae that in large-scale attribute-
sdedion problems, where the number of attributes is greater than 10, GA
becomes the only practicd way to get reasonable dtribute subsets.

In [6Q] it is reported that the use of an interactive GA for attribute seledion
led to the discovery of rules that are easy-to-undersand and simple enough to
make practical dedsions on a marketing applicaion involving oral care products.
A further discusson on the use of genetic dgorithms in attribute seledion can be
found in[5], [63], [31], [46].

4.2 Genetic Algorithms (GAs) for Discover ed-K nowledge Postpr ocessing

GAs can be used in a postprocessing step applied to the knowledge discovered by
a data mining agorithm. As an example, suppose that the data mining step of the
knowledge discovery process has produced an ensemble of classfiers (e.g. rule
sets), rather than a single dassfier (e.g. asingerule set). Actually, generating an
ensemble of clasdfiersis arelatively recent trend in machine leaning when our
primary goal isto maximize predictive accuracy, sinceit has been shown that in
several cases an ensemble of classfiers has a better predictive acauracy than a
single dasdfier [58], [15]. When an ensemble of classfiers is produced, it is
common to assgn a weight to each classfier in the ensemble. Hence when
classfying a new test example, the dassassgned to that example is determined
by taking a kind o weighted vae of the dasses predicted by the individua
clasdfiersin the ensemble.

However, there is a risk of generating too many classfiers which end up
overfitting the training data. Therefore, it is desirable to have a procedure to
“prune” the ensemble of classfiers, which is conceptually similar to prune arule
set or adedsion tree

To addressthis problem, Thompson [61], [62] has proposed a GA to gotimize
the weights of the dassfiers in the ensemble. The proposed GA uses a red-
valued individual encoding. Each individual has n real-valued genes, where n is
the number of classfiersin the ensemble. Each gene represents the voting weight
of its corresponding classfier. The fitness function consists of measuring the
predictive accuracy of the ensemble with the weights proposed by the individual.

This predictive accuracy is measured on a separate data subset, cdled the
“pruning” set (or hold-out set). Thisisa part of the original training set reserved
only for fithessevaluation purposes, whereas the remaining part of the original
training set is used only for generating the ensembl e of classfiers.

Note that the number of classfiersin the ensemble can be effectively reduced
if the voting weight of some dassfier(s) is(are) set to 0. Actudly, one of the
mutation methods with which the aithor has experimented consists of simply
setting a gene (voting weight) to 0.

5. Genetic Programming (GP) for Rule Discovery

GP can be mnsidered asa more open-ended search paradigm, in comparison with
GA [41], [6]. The seach performed by GP can be very useful in classfication and
other prediction tasks, sincethe system can produce many different combinations
of attributes - usng the several different functions available in the function set -
which would not be mnsidered by a conventional GA. Hence even if the origina
attributes do not have much predictive power by themselves, the system can
effedively create “derived attributes’ with greater predictive power, by applying
the function set to the original atributes. The potential of GP to crede these
derived attributes will be discussed in more detail in sedion 6.

Before we move on to that sedion, we discuss next two issues in the use of
GP for rule discovery, namely individual representation (subsedion 5.1) and
discovery of comprehensible rules (subsedion 5.2).

5.1 Individual Representation

The application of standard GP to the dasdfication task is reatively
straightforward, as long as al the attributes are numeric. In this case we @n
include in the function set several kinds of mathematical function appropriate to
the appli caion domain and include in the terminal set the predicting attributes -
and possbly a random-constant generator. Once we apply the functions in the
interna nodes of a GP individual to the values of the attributes in the leaf nodes
of that individual, the system computes anumerical valuethat is output at the roct
node of the tree Asauming a two-class problem, if this output is greater than a
given threshold the system predicts a given class, otherwise the system predicts
the other class

In this ®dion, however, we ae interested in using GP for discovering high-
level, comprehensible prediction (IF-THEN) rules, rather than just producing a
numerical signa in theroat node. The first obstacle to be overcome is the dosure
property of GP. This property means that the output of anode in a GP tree ca be
used asthe inpu to any parent node in the tree Note that this property is stisfied
in the above @se of standard GP applied to numeric data, since in principle, the
number returned by a mathematicd function can be used as the input to another
mathematicd function. (In practice some mathematical functions have to be

dightly modified to satisfy the dosure property.)

When mining a data set containing a mixture of continuous and caegorical (or
nominal) attribute values this property is not satisfied by standard GP. Different
attributes are asociated with different operators/functions. E.g. the ndition
“Age< 18’ isvalid, but the condition “ Sex < female” isnot.

Several solutions have been proposed to cope with the dosure property of GP,
when addressng the dassfication task. One approach is based on the use of
constrained-syntax GP. The key idea is that, for each function available in the
function set, the user spedfies the type of its arguments and the type of its result
[7]. Crosover and mutation are then modified to create only valid trees, by
respeding the user-defined restrictions on treesyntax.

An example is shown in Tablel, where, for each row, the second and third
columns gedfy the data type of the input and of the output of the function
spedfied in the first column. Once this kind of spedfication is available to the
GP, the system can generate individuals uch as the one shown in Fig. 4. This
figure assumes that Atrl is a caegorical (nomina) attribute, whereas Atr3, Atr5,
Atr6 arered-valued attributes.

Table 1: Example of data type definitions for input and output of functions.

Functions data type of input arguments data type of output
+ - % (red, real) red

<, > (red, real) bod ean

= (nominal, nominal) bod ean

AND, OR (bodean, bodean) bod ean

Fig. 4.Example of a GPindividual (representing arule atecedent)
medingthe data type restrictions gedfied in Table 1

Another approach to constrained-syntax GP consigts of having a user-defined,
domain-dependent grammar spedfy the syntax of valid rules. The grammar cen

also be used to incorporate domain-spedfic knowledge into the GP system. This
approach, discussd in detail in [68], has led to the discovery of interesting
knowledge (in the opinion of medical experts) in red-world fracture and scoliosis
databases.

A different approach for coping with the problem of closure in GP for rule
discovery consists of somehow modifying the data being mined - rather than
modifying the standard GP algorithm. An example of this approach consists of
bodeanizing all the attributes being mined and then using logical operators
(AND, OR, etc.) in the function set. Hence the output of any node in the tree
will be a bodean value, which can be used as input to any logical operator in the
corresponding parent node. Systems based on this approach are described in [16],

(8]
5.2 Discovering Compr ehensible Rules with Genetic Programming (GP)

In principle a GP system for rule discovery could use fitness functions similar to
the ones used by GAs for rule discovery. There ae, however, some important
differences. In particular, sincethe size of GP trees can grow alot, in generd itis
more necessary to incorporate some measure of rule omprehensibility in the
fitnessfunction of a GP for rule discovery than in the fitnessfunction of a GA for
rule discovery. Actually, using GP to discover comprehensible dassfication rules
can be mnsidered areseach isaie. Some recent proposals to cope with thisissue
are briefly reviewed in the foll owing.

First of al, it should be noted that, although knowledge cmprehensibility isa
kind o subjedive concept, the data mining literature often uses an objective
measure of rule cmprehengbility: in general, the shorter (the fewer the number
of conditions in) the rule, the more mmprehensible it is. The same principle
applies to rule sets. In genera, the fewer the number of rules in the rule s, the
more mmprehensible it is. Our discusson in the following paragraphs asaumes
this kind of objedive measure of rule mmprehensibility. In other words, we are
interested in GP systems that return a small number of short rules - aslong as the
discovered rule set still has a high predictive acauracy, of course.

The simplest approach to favor the discovery of short rules is to include a
penaty for long rules in the fitness function. An example of the use of this
approach can be found in [9], where apart of the fitness function is a direa
measure of rule smplicity, given by the formula:

Simplicity = (MaxNodes — 05 NumNodes —0.5) / (MaxNodes — 1),

where MaxNodes is the maximum allowed number of nodes of a tree (individual)
and NumNodes is the current number of nodes of the tree This formula produces
its maximum value of 1.0 when arule is so Smple that it contains just one term,
and it produces its minimum value of 0.5 when the number of treenodes equals
the dlowed maximum. This approach has led to the discovery of short, simple
rulesin areal-world application involving chest-pain diagnosis.

A more dabarated approach for discovering comprehensible rules is, for

instance, the hybrid GA/GP system to evolve dedsion trees proposed by [56)].
The system is a hybrid GA/GP in the sense that it uses a GA to evolve a
population of “programs’ (dedsion trees). The system also uses a fitnessfunction
that considers bath a treés predictive accuracy and its size, in order to achieve
the goal of minimizing treesize without unduy reducing predictive accuracy.

6. Genetic Programming (GP) for Data Preprocessing

In sedion 4.1 we saw that a simple GA can be naturally applied to an important
data preprocessng task, namely the sdedion of relevant attributes for data
mining. Sometimes, however, the preprocessing task may be more naturally
addressed by a more open-ended evol utionary algorithm such as GP.

A good example is the preprocessng task of attribute @nstruction - also
called constructive induction. In this task the goal is to automaticdly construct
new attributes, applying some operations to the original attributes, such that the
new attributes make the datamining problem easier.

To illugrate the importance of this preprocessng task, consider the
commonplace @se where a ¢asdfication algorithm can dscover only
propositional (“O-th order”) logic rules. Suppose that we want to apply this
algorithm to a data set where each record contains sveral attributes that can be
used to predict whether the shares of a company will go up or down in the
financial market. Now suppose that the set of predicting attributes includes the
attributes Income and Expenditure of a company. Our propositional-logc
classfication agorithm would not be able to discover rules of the form:

IF (Income > Expenditure) AND . . . THEN (Shaes=up)
IF (Income < Expenditure) AND . . . THEN (Shaes = down)

because these rules involve a first-order logic condition, namely a comparison
between two attributes — rather than between an attribute and its value.

A suitably-designed attribute @nstruction agorithm could automatically
construct a binary attribute such as “(Income > Expenditure)?”, taking on the
values “yes’ or “no”. The new attribute would then be given to the dassfication
algorithm, in order to improve the quality of the rules to be discovered by the
latter.

The major problem in attribute @nstruction is that the search space tends to
be huge. Although in the above very simple example it was easy to seethat a
goad attribute wuld be mnstructed by using the relationa operator “>“, in
practice there ae alarge number of candidate operations to be applied to the
original attributes. In addition, the cnstruction of a good attribute often requires
that the dtribute cnstruction algorithm generates and eval uates combinations of
several original attributes, rather than just two attributes as in the above example.
GP can be used to seach this huge seach space

An example of the use of GP in attribute mnstruction is found in [36]. In this

projed a GP-based system is compared with two aher attribute cnstruction
methods, namely LFC and GALA. The mmparison is made across 12 data sets.
Overall, the predictive acauracy of the GP-based system was considerably better
than LFC's one and somewhat better than GALA’s one. A hybrid GA/GP system,
performing attribute seledion and atribute @nstruction at the same time, is
discussd in [64]. This approach has sibstantially reduced error rate in a face
recognition problem.

7. Discussion and Research Directions

We have begun our discusson of data mining and knowledge discovery by
identifying, in sedion 2.1, three desirable properties of discovered knowledge.
These properties are predictive accuracy, comprehensibility and interestingness
We believe a promising research dredion is to design evolutionary algorithms
which aim at discovering truly interesting rules. Clealy, this is much easier said
than done. The major problem is that rule interestingnessis a complex concept,
involving bath objective and subjective aspeds. Almost all the fitness functions
currently used in evolutionary algorithms for data mining focus on the objedive
asped of rule quality, and in most cases only predictive acauracy and rule
comprehensibility are taken into account. However, these two factors alone do
not guaranteerule interestingness since a highly-accurate, comprehensible rule
can gill be uninteresting, if it corresponds to a piece of knowledge previously
known by the user.

Concerning data mining tasks, which correspond to kinds of problems to ke
solved by data mining algorithms, in this chapter we have focused on the
classfication task only (see section 2.2.1), due to space limitations. However,
many of the ideas and concepts discussed here ae relevant to aher data mining
tasks involving prediction, such as the dependence modeling task briefly
discussed in sedion 22.2.

We have discussed several approaches to encode prediction (IF-THEN) rules
into the genome of individuals, as well as several genetic operators designed
spedfically for data mining purposes. A typical example is the use of
generaizing/spedalizing crosover discussed in sedion 3.2.2. Another exampleis
the information-theoretic rule pruning goerator proposed in [10]. We believe that
the development of new data mining-oriented gperators is important to improve
the performance of evolutionary algorithms in data mining and knowledge
discovery. Using this kind of operator makes evolutionary algorithms endowed
with some “knowledge” about what kind of genome-modification operation
makes nse in data mining problems. The same agument holds for other ways
of tailoring evolutionary algorithms for data mining, such as developing data
mining-oriented individual representations.

We have dso discused the use of evolutionary algorithms in the
preprocessng and postprocessng phases of the knowledge discovery process

Although there has been significant reseach on the use of GAs for attribute
sdledion, the use of evolutionary algorithms in other preprocessng tasks and in
postprocessng tasks sans to be less explored. In particular, we believe that a
promising research diredion is to use evolutionary algorithms for attribute
construction (or constructive induction). Open-ended evolutionary algorithms,
such as GP, can be suitable for this difficult, important data mining problem.

Acknowledgments

| thank Heitor S. Lopes for useful comments on the first draft of this chapter.
My research on data mining with evolutionary algorithms is partialy supported
by grant 30015398-8 from CNPq (the Brazlian government’s National Council
of Scientific and Tedhnological Devel opment).

References

[1] Agrawal R, Imielinski T and Swami A. Mining asociation rules between sets
of items in large databases. Proc. 1998 Int. Conf. Management of Data
(SGMOD-93), 207-216. May 1993

[2] Agrawa R, Mannila H, Sikant R, Toivonen H and Verkamo Al. Fast
discovery of association rules. In: Fayyad UM, Piatetsky-Shapiro G, Smyth P
and Uthurusamy R. (Eds) Advances in KnoMedge Discovery and Data
Mining, 307-328. AAAI/MIT Press 1996.

[3] Anglano C, Giordana A, Lo Bdlo G, Saitta L. Coevolutionary, distributed
seach for inducing concept descriptions. Lecture Notes in Artificial
Intelligence 1398. ECML-98: Proc. 10th Europ. Conf. Machine Learning, 422-
333 Springer-Verlag, 1998.

[4] Araujo DLA, Lopes HS and Freitas AA. A parallel genetic dgorithm for rule
discovery in large databases. Proc. 199 |IEEE Systems, Man ard Cybernetics
Cortf., v. 3, 940-945. Tokyo, 1999.

[5] Bala J, De Jong K, Huang J, Vafaie H, and Wechder H. Using leaning to
facilitate the evolution of features for reagnizing visual concepts.
Evolutionary Computation 4(3) - Special Issue on Evolution, Learning, and
Instinct: 100 years of the Baldwin Effect. 1997.

[6] Banzhaf W, Nordin P, Keller RE, Francone FD Genetic Programning ~ an
Introduction: On the Automatic Evolution of Computer Programs and Its
Applications. Morgan Kaufmann, 1998.

[7] Bhattacharyya S, Pictet O, Zumbach G. Representational semantics for
genetic programming based leaning in high-frequency financial data. Genetic
Programning 1998: Proc. 3rd Annual Conf., 11-16. Morgan Kaufmann,
1998

[8] Bojarczuk CC, Lopes HS, and Freitas AA. Discovering comprehensible
classfication rules using genetic programming: a case study in a medical
domain. Proc. Genetic and Evolutionary Computation Conference (GECCO-
99), 953:958. Orlando, FL, USA, July/1999

[9] Bojarczuk CC, Lopes HS, Freitas AA. Genetic programming for knowledge
discovery in chest pain dagnosis. |IEEE Engineaingin Medicine and Biology
Magazine — spedal issue on data mining and knoMedge discovery, 19(4), 38
44, July/Aug. 2000.

[10] Carvalho DR and Freitas AA. A hybrid dedsion tredgenetic dgorithm for
coping with the problem of small disuncts in data mining. Proc. Genetic and
Evolutionary Computation Conf (GECCO-2000, 10611068 Las Vegas, NV,
USA. July 200Q

[11] Catlett J. On changing continuous attributes into ardered dscrete dtributes.
Proc. European Working Sesson on Learning (EWSL-91). Lecture Notes in
Artificial Intelligence 482, 164-178. Springer-Verlag, 1991.

[12] Cherkauer KJ & Shavlik JW. Growing simpler decison trees to facilitate
knowledge discovery. Proc. 2nd Int. Conf. Knowledge Discovery & Data
Mining (KDD-96), 315-318. AAAI Press, 1996

[13] De Jong KA, Speas WM and Gordon DF. Using genetic dgorithms for
concept learning. Machine Learning 13, 161-188, 1993,

[14] Dhar V, Chou D, Provod F. Discovering interesting petterns for investment
decision making with GLOWER — a Genetic Learner Overlaid with Entropy
Reduction. To appear in Data Mining and Knowledge Discovery journal.
2000

[15] Domingos P. Knowledge aquisition from examples via multiple models.
Machine Learning. Proc. 14" Int. Conf. (ICML-97), 98-106. Morgan
Kaufmann, 1997.

[16] Eggermont J, Eiben AE, and van Hemert J. A comparison of genetic
programming variants for data dassfication. Proc. Intelligent Data Analysis
(IDA-99). 199%9.

[17]) Falkenauer E. Genetic Algorithms and Grouping Problems. John Wiley &
Sons, 1998.

[18] Fayyad UM, Piatetsky-Shapiro G and Smyth P. From data mining to
knowledge discovery: an overview. In: Fayyad UM, Piatetsky-Shapiro G,
Smyth P and Uthurusamy R. Advances in Knowledge Discovery & Data
Mining, 1-34. AAAI/MIT, 19%.

[19] Fisher DH. Knowledge acquisition via incremental conceptual clugtering.
Machine Learning, 2, 1987, 139-172.

[20] Fisher D and Hapanyengwi G. Database management and anaysis tools of
machine induction. Journal of Intelligent Information S§stems, 2(1), Mar.
1993 5-38.

[21] Flockhart IW and Radcliffe NJ. GA-MINER: pardle data mining with
hierarchical genetic algorithms - final report. EPCC-AIKMS-GA-MINER-
Report 1.0. University of Edinburgh, UK, 1995

[22] Freitas AA. On ohjedive measures of rule surprisingness Lecture Notes in
Artificial Intelligence 1510: Principles of Data Mining and KnoMedge
Discovery (Proc. 2" European Symp., PKDD'98, Nantes, France), 1-9.
Springer-Verlag, 1998.

[23] Freitas AA. On Rule Interestingness Measures. Knowedge-Based Systems
12(5-6), 309-315. Oct. 199.

[24] Freitas, AA. Understanding the crucid differences between classfication
and dscovery of asciation rules - a position paper. To appear in ACM

S GKDD Explorations, 2(1), 20Q0.

[25] Freitas AA and Lavington SH. Mining Very Large Databases with Parallel
Processng. Kluwer, 1998.

[26] Gebhardt F. Choosng among competing generdizations. Knowledge
Acquisition 3, 1991, 361-380.

[27] Giordana A, Saitta L, Zini F. Learning digunctive mncepts by means of
genetic dgorithms. Proc. 10th Int. Conf. Machine Learning (ML-94), 96-104.
Morgan Kaufmann, 1994.

[28] Giordana A and Neri F. Seach-intensive wncept induction. Evolutionary
Computation 3(4): 375416, Winter 19%.

[29] Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wedley, 1989.

[30] Greene DP & Smith SF. Competition-based induction of decision models
from examples. Machine Learning 13, 229-257. 1993.

[31] Guerra-Salcedo C & Whitley D. Feature seledion mechanisms for ensemble
creation: a genetic seach perspedive. In: Freitas AA (Ed.) Data Mining with
Evolutionary Algorithms: Research Directions — Papers from the AAAI
Workshop, 13-17. Technical Report WS-99-06. AAA | Press 1999.

[32] Guyon |, Matic N and Vapnik V. Discovering informative patterns and data
cleaning. In: Fayyad UM, Ratetsky-Shapiro G, Smyth P and Uthurusamy R.
(Eds.) Advances in Knowledge Discovery and Data Mining, 181-203.
AAAI/MIT Press 19%.

[33] Hall LO, Ozyurt IB and Bezdek JC. Clustering with a genetically optimized
approach. |EEE Trans. Evolutionary Computation 3(2), 103-112. July 1999.
[34] Hand DJ. Congtruction ard Assesament of Classfication Rules. John Wiley

& Sons, 1997.

[35] Holland JH. Escaping brittleness the posshilities of general-purpose
learning algorithms applied to parallel rule-based systems. In: Mitchell T et al.
(Eds.) Machine Learning, Vol. 2, 593-623. Morgan Kaufmann, 1986.

[36] Hu Y-J. A genetic programming approach to constructive induction. Genetic
Programming 19%: Proc. 3rd Annual Conf., 146-151. Morgan Kaufmann,
1998

[37] Janikow CZ. A knowledge-intensve genetic agorithm for supervised
leaning. Machine Learning 13, 189-228. 1993.

[38] John GH, Kohavi R and Pfleger K. Irrelevant features and the subset
seledion problem. Proc. 11th Int. Conf. Machine Learning, 121-129. 1994,
[39] Kelly Jr. JD and Davis L. A hybrid genetic dgorithm for classfication. Proc.

12th Int. Joint Conf. on Al, 645-650. 1991.

[40] Klemettinen M, Mannila H, Ronkainen P, Toivonen H and Verkamo Al.
Finding interesting rules from large sets of discovered association rules. Proc.
3rd Int. Conf. on Information ard Knowledge Management. Gaithersburg,
Maryland. Nov./Dec. 199%.

[41] Koza JR. Genetic Programning: on the Programming o Computers by
Means of Natural Sdection. MIT Press 1992

[42] Kudo M & Skalansky J. Comparison o algorithms that select features for
pattern classfiers. Pattern Recognition 33(1), 25-41, Jan. 2000.

[43] Kwedlo W and Kretowski M. Discovery of dedsion rules from databases: an
evolutionary approach. Proc. 2nd European Symp. on Principles of Data

Mining and Knowedge Discovery (PKDD-98). Lecture Notes in Artificial
Intelligence 1510, 371-378. Springer-Verlag, 19%8.

[44] Liu B, Hsu W. and Chen S. Using general impressons to analyze discovered
clasdfication rules. Proc. 3rd Int. Conf. Knowledge Discovery & Data Mining,
31-36. AAA| Press 1997.

[45] Mahfoud SW. Niching Methods for Genetic Algorithms. Ph.D. Thesis. Univ.
of lllinoisat Urbana-Champaign. IlliGAL Report No. 95001. May 19%.

[46] Martin-Bautista MJ and Vila MA. A survey of genetic feature seledion in
mining isaues. Proc. Congress on Evolutionary Computation (CEC-99), 1314
1321 Washington D.C., July 1999

[47] Michalewicz Z. Genetic Algorithms + Data Sructures = Evolution
Programs. 3rd Ed. Springer-Verlag, 1996.

[48] D. Michie, D.J. Spiegehalter and C.C. Taylor. Machine Learning, Neural
and Satistical Classfication. New Y ork: Ellis Horwood, 1994.

[49] Noda E, Freitas AA and Lopes HS. Discovering interesting prediction rules
with a genetic dgorithm. Proc. Conference on Evolutionary Computation —
1999(CEC-99), 1322-1329. Washington D.C., USA, July/1999

[50] Park Y and Song M. A genetic algorithm for clustering problems. Genetic
Programming 19%: Proc. 3rd Annual Cortf., 568-575. Morgan Kaufmann,
1998

[51] Pei M, Goodman ED, Punch WF. Pattern discovery from data using genetic
algorithms. Proc. 14 Pacific-Asia Conf. Knowledge Discovery & Data Mining
(PAKDD-97). Feb. 1997.

[52] Pfahringer B. Supervised and unsupervised discretization o continuows
features. Proc. 12th Int. Conf. Machine Learning, 456-463. 19%.

[53] Poli R and Cagnoni S. Genetic programming with user-driven selection:
experiments on the evolution of algorithms for image enhancement. Genetic
Programning 1997: Proc. 2nd Annua Conf., 269-277. Morgan Kaufmann,
1997

[54] Punch WF, Goodman ED, Pei M, Chia-Sun L, Hovland P, Enbody R.
Further research on feature selection and classfication wsEng genetic
algorithms. Proc. 5th Int. Conf. Genetic Algorithms (ICGA-93), 557-564.
Morgan Kaufmann, 1993,

[55] Pyle D. Data Preparation for Data Mining. Morgan Kaufmann, 1999,

[56] Ryan MD & Rayward-Smith VJ. The evolution of dedsion trees. Genetic
Programming 19%: Proc. 3rd Annual Conf., 350-358. Morgan Kaufmann,
1998

[57] Schaffer C. Overfitting avoidance & bias. Machine Learning 10, 153-178.
1993

[58] Schapire RE, Freund Y, Bartlett P, Lee WS. Boosting the margin: a new
explanation for the df ectivenessof voting methods. Machine Learning: Proc.
14th Int. Conf. (ICML-97), 322-330. Morgan Kaufmann, 1997.

[59] Simoudis E, Livezey B and Kerber R. Integrating inductive and deductive
reasoning for data mining. In: Fayyad UM, Piatetsky-Shapiro G, Smyth P and
Uthurusamy R. (Eds.) Advances in Knowledge Discovery and Data Mining,
353-373. AAAI/MIT Press 1996.

[60] Terano T & Ishino Y. Interactive genetic algorithm based feature seledion
and its applicaion to marketing data anaysis. In: Liu H & Motoda H (Eds)

Feature Extraction, Construction and Selection: a data mining perspective,
393406. Kluwer, 1998.

[61] Thompson S. Pruning boosted classfiers with a real valued genetic
algorithm. Research & Dewdlop. in Expert Systems XV - Proc. ES 98, 133
146. Springer-Verlag, 1998

[62] Thompson S. Genetic dgorithms as postprocessors for data mining. In:
Freitas AA (Ed.) Data Mining with Evolutionary Algorithms: Research
Directions — Papers from the AAAl Workshop, 18-22. Technical Report WS-
99-06. AAA| Press 199%.

[63] Vafaie H and De Jong K. Robust feature seledion agorithms. Proc. 1993
|EEE Int. Conf on Todswith Al, 356-363. Boston, Mass, USA. Nov. 1993
[64] Vafaie H and De Jong K. Evolutionary feature space transformation. In: Liu
H & Motoda H (Eds.) Feature Extraction, Construction and Selection: a data

mining perspective, 307-323. Kluwer, 1998.

[65] WeissGM & Hirsh H. Learning to predict rare events in event sequences.
Proc. 4th Int. Conf. KnomMedge Discovery and Data Mining, 359-363. AAA|
Press 1998

[66] Weiss SM and Indurkhya N. Predictive Data Mining: a practical guide.
Morgan Kaufmann, 1998.

[67] Weiss SM and Kulikowski CA. Computer Systems that Learn. Morgan
Kaufmann, 1991.

[68] Wong ML & Leung KS. Data Mining Using Gramnar-Based Genetic
Programming ard Applications. Kluwer, 2000.

[69] Yang J and Honavar V. Feature subset seledion using a genetic algorithm.
In: LiuH & Motoda H (Eds.) Feature Extraction, Construction and Selection:
a data mining perspective, 117-136. Kluwer, 1998

