ASIC Products Application Note

ASIC Design Methodology Primer

Abstract

This application note provides an overview of the application-specific integrated circuit (ASIC) design pro-
cess. Four major phases are discussed: design entry and analysis; technology optimization and floor-
planning; design verification; and layout.

Introduction

The ASIC Design Methodology Primer provides an overview of the steps involved in application specific
integrated circuit (ASIC) design. An ASIC is a collection of logic and memory circuits on a single silicon
die. ASICs are used in a wide variety of products ranging from consumer products such as video games,
digital cameras, automobiles and personal computers, to high-end technology products such as worksta-
tions and supercomputers. The ASIC market, with steady growth over the past decade and continued
growth predicted for the next one, is expected to become a $50 billion market by the year 2000
(Dataquest, 12/16/96).

This primer is organized into three sections:
- The first section, Basic Terminology, defines key terms and the scope of this paper.

- The second and largest section, Basic Methodology Walkthrough, covers, at a high level, the
four major phases of ASIC design, and is illustrated with real design examples. This discussion
also identifies some of the major software vendors who offer ASIC design tools, and lists any
process steps unique to IBM.

- The last section, Design Challenges and Strategies summarizes the specific strengths and
capabilities IBM ASICs brings to the marketplace, and their resulting value to its customers.

Basic Terminology

ASICs are logic chips designed by the end-customers to perform a specific function and thereby meet the
specific needs of their application. Customers implement their designs in a single silicon die by mapping
their functions to a set of predesigned, preverified logic circuits provided by the ASIC vendor. These cir-
cuits are referred to as the ASIC vendor’s library, and are described in the ASIC vendor’s databook.
These circuits range from the simplest functions, such as inverters, NANDs and NORs, flip-flops and
latches, to more complex structures such as static memory arrays, adders, counters and phase-lock
loops. Recently vendors have added some highly complex circuits to their ASIC libraries, such as micro-
processors, Ethernet® functions, and peripheral component interconnect (PCI) controllers. These com-
plex designs are referred to as cores and are fast becoming a major differentiator among ASIC vendors.

ASIC Vendor Selection Criteria

An ASIC designer, seeking to create a new design and select an appropriate ASIC vendor, should con-
sider the following criteria:

» ASIC library content and characteristics:

- Does the library contain the logic circuits needed to implement the design? Are the circuits fast
enough? How many can fit on a single die?

Initial Publication 5/98 Page 1

ASIC Products Application Note

ASIC Design Methodology Primer

» Design turn-around-time (TAT):

- How long does the ASIC vendor take to fabricate, package, and test the part once the design is
completed?

Price of the die:

- How much does the ASIC cost?
This is an important factor to all designers, but is more crucial to some customers than others.
Those in the consumer market may have this as their number one criteria when evaluating an
ASIC vendor, whereas a high-end workstation customer may put performance or function ahead
of price.

 Power consumption:

- How much power does the ASIC consume?
The importance of power utilization has greatly increased over the past several years, and
surpasses the importance of cost in some cases, such as in battery-powered applications like
cell phones and lap-top computers.

Miscellaneous aspects:

- Packaging options, reliability, supply assurance and second-source capabilities are absolutely
critical to some customers, and of secondary importance to others.

» Design methodology.

- Design methodology is the process that a designer must follow to implement a design in an
ASIC vendor’s library. The ease with which a designer can execute this process can affect time-
to-market, design verification and reliability, and the cost of the overall design process. It is this
aspect of the ASIC product, design methodology, that is the focus of this primer. This criteria is
of importance to all ASIC customers.

Design Views

During the course of the design process, the design data exists in several different formats or views. As
the design progresses, it becomes less abstract and more specific to, and optimized for, a particular tech-
nology. Each step in the design methodology serves a different purpose and requires unique tools.These
views evolve through three major phases:

* In the initial phase the design is realized primarily as a technology-independent Hardware Descrip-
tion Language (HDL), a format very similar to a programming language, to describe the design’s
functionality.

* In the second phase the design is realized as a technology-dependent netlist that consists of a
series of instances of circuits from the ASIC vendor’s library, interconnected in a manner to imple-
ment the functionality described in the previous view.

* Inthe last phase the design is realized as a physical view, in which the logic circuits described in the
previous view are physically placed on a piece of silicon, called a die, and interconnected by various
layers of wiring.

Figure 1 on page 3 depicts these three design views.

Page 2 Initial Publication 5/98

ASIC Products Application Note

ASIC Design Methodology Primer

HDL View

Netlist View

Physical View

process(CLK)
begin
if (CLK = “1”) and (not CLK’stable) then

s_counter_output <= s_counter_input and not s_reset;

s_ref _ctr_out <= s_load;
end if;
end process;

begin

U68: INVERT_A port map (Z => s_load, A => n265);
U87 : NOR3_4 port map (Z => n275, A => COUNTb(3),

B => COUNTb(4), C => COUNTb(0));

U88 : NOR3_ 4 port map (Z => n275, A => COUNTb(3),

B => COUNTb(4), C => COUNTb(0));

s_ref_ctr_out_reg : D_F LPHO001_4 port map (L2 =>

s_ref ctr_out, D => s_load, E => CLKb);
end SYN_refctr_rtl;

/[HEEEEENENEEEEENENEN|
—

=1] |
CORE

IIIIJ

DMA

refctr

IIIII:IIIIIII
|_|_T||||
I

Figure 1. Design Views

Basic Methodology Walkthrough

There are four basic steps that an ASIC design must go through in order to create working silicon:

1. design entry and analysis

2. technology optimization and floorplanning

3. design verification

4. layout

Design Entry

The designer's first task is to describe the design’s intended function. Typically this functionality is spec-
ified in a document, such as a functional specification, written in a natural language such as English in
order to facilitate its development as well as to make it accessible for review by all project team members.
Once the specification is finalized, the designer then translates the specification into a form that can be

Initial Publication 5/98

Page 3

ASIC Products Application Note

ASIC Design Methodology Primer

understood by software tools in order to direct the creation of silicon. The two principal design description
methods are:

« Hardware Description Languages (HDLs), generally used for designs of 50 thousand gates or more;
and,

» Schematic Capture, an older method, suitable only for sub-50k gate designs and generally less often
used today.

The two dominant HDLs are Verilog® and VHDL. Both are entered using a text editor such as vi on a
UNIX®-based workstation. Verilog and VHDL are languages much like programming languages, such as
C or Pascal, but they have been designed specifically for describing hardware behavior. Verilog and VHDL
are functionally equivalent. The choice of one over the other is driven primarily by the experience base of
the design group, the tool set available to the designers to process the HDL, and, possibly, by organiza-
tional dictates, such as those of the US government, which requires that all designs be written in VHDL.
Verilog dominates the US merchant ASIC market, whereas VHDL prevails in Europe, the US government,
and some large US companies such as IBM.

HDLs allow designers to describe the function of their designs at a high level, often independent of the
eventual implementation in silicon, much as a programmer can describe a function in the C language with-
out knowing the specific compiler that will create the executable object code.

With schematic capture, graphical representations of the logic functions are placed on a computer screen
and are manually connected by the designer. Schematic capture requires the designer to enter a much
lower-level description of the design, implemented directly in the logic circuits available from the ASIC
vendor, thereby sacrificing the flexibility of the higher-level description possible with HDLs. Schematic
capture may still prevail for some time with very small ASICs (10—40k gates) or those containing analog
functions. With the average size of an ASIC in the United States in 1996 exceeding 100k gates, the vast
majority of customers will be using VHDL or Verilog as their design entry vehicle. (Dataquest).

Design Entry Examples

The following sections provide a brief look at some examples of HDL and a simple schematic.

Sample High-Level Hardware Description Language (HDL)

Figure 2 on page 5 contains a portion of a direct memory access (DMA) controller written in two different
HDLs: VHDL and Verilog. Notice that though there are syntactical differences between the two languages
(for example, VHDLs “entity DMAL..." versus Verilog's “module DMAL.."), the types of language state-
ments and level of description are essentially equivalent. Both HDLs have execution control statements
based on the state of a signal called CLK, and both propagate certain design values based on the status
of CLK. The language statements are independent of any particular ASIC vendor’s library and are at a
level of abstraction above any particular logic circuit implementation; for example, such statements might
be at a behavioral level or register transfer language (RTL) level. Whatever the level, an HDL can be im-
plemented in several different ways, using different combinations of circuits from any one of a number of
different ASIC vendors’ libraries.

Sample Schematic

Figure 2 contrasts sharply with Figure 3 on page 5, which provides a schematic representation that is di-
rectly mapped into the logic circuits in an ASIC vendor’s library. The schematic assembles circuits such
as NOR3, AND2 and INVERT and includes explicit connections between inputs and outputs.The logic cir-
cuit implementation for this function is completely defined. Because the vast majority of ASIC designs

Page 4 Initial Publication 5/98

ASIC Products Application Note

ASIC Design Methodology Primer

done at IBM begin with an HDL description rather than schematic entry, this paper focuses primarily on
HDL in the analysis phase.

DMA Controller

VHDL Verilog
RTL-level description RTL-level description

entity DNAL is module DMAL(CLK, REST, FIFO_RESTART,...)
port(CLK o IN STD_LOGIC; input CLK;
RESET : IN STD_LOGIC; Input RESET;

FIFO_RESTART: BUFFER STD_LOGIC; output FIFO_RESTART;

--*process to create latches //* process to create latches

architecture DATAFLOW of DMAL is

process always

begin begin : block 578
wait until (CLK”EVENT and CLK="17); @ (posedge CLK);
OUT_END1 L2 <= OUT_END1_SIG; OUT_END1 L2 <= OUT_END1_SIG;
OUT END1_L1L2 <= OUT_END1 L2; OUT_END1_L1L2 <= OUT_END1_L2;

OUT_END2_L2 <= OUT_END2_SIG;
OUT_END2_L1L2 <= OUT_END2_L2;

end process;

OUT_END2_L2 <= OUT_END2_SIG;
OUT_END2_L1L2 <= OUT_END2_L2;

endmodule;

Figure 2. DMA Controller with Two Different HDLs

=D >0

NOR3 INVERT
5::: AND2
OR3
NOR2 INVERT

1)
1/

AND3

Figure 3. Schematic Representation of Logic Circuits in an ASIC Library

Initial Publication 5/98 Page 5

ASIC Products Application Note

ASIC Design Methodology Primer

Design Analysis

After entering a design in an HDL, the designer begins the process of analyzing what was entered to de-
termine if it correctly implements the intended function. The traditional method is through simulation,
which evaluates how a design behaves. Simulation is a mature, well-understood process, and there are
many simulators available that accept HDLs written in VDHL, Verilog, or increasingly, both languages.
IBM ASICs supports many different simulators available from CAD vendors, such as Verilog-XL™ and
Leapfrog™ from Cadence; VSS™ from Synopsys; and MTI™ from Model Technology, Inc.

A more recent addition to the design analysis phase is power analysis, with many new CAD tools coming
to market in the last year. For a growing number of customers, the power consumption and dissipation of
their designs are becoming critical factors. Early feedback on the power requirements of a design allows
designers to make timely basic design trade-offs in order to achieve power targets. Because this analysis
is at the architectural level and is technology-independent, the estimates may not be extremely accurate
and may vary as much as 50% from the actual silicon implementation.

Simulation

Figure 4 represents the traditional simulation process. The VHDL or Verilog, which describes the design
function, is read into the simulator tool along with a set of input vectors created by the designer. The
simulator generates output vectors that are captured and evaluated against a set of expected values. If
the output values match the expected values, then the simulation passes; if the output values differ, then
the simulation is said to fail and the design needs to be corrected. Most simulators generate output in two
forms: numerically, as 0's and 1's in a file for comparison purposes, and graphically, as waveforms that
depict the transition of signals from 0 to 1 and vice-versa.

Note that the simulation at this level is technology-independent. There is usually little or no technology-
specific information delivered by an ASIC vendor to support simulation at this phase. Exceptions include
high-level behavioral models for large macros such as RAMs, ROMs, or complex cores.

Waveforms
HDL SignalA T L_TL_T1_
Desqription Signale —1L__I——
‘Vi{;'gﬁ)” - P> signaic L
Simulator
r—— - - - - - - - — — = =1 +
I Simulation Expected | Actual
| Input Simulation | Simulation
| Vectors Output ' Output
(Stimulus) Vectors Pass Vectors
I Fail ?
I |
L e e e e o e _— —_———— -
Simulation Test Bench

Figure 4. Traditional Simulation Process

Page 6

Initial Publication 5/98

ASIC Products Application Note

ASIC Design Methodology Primer

Technology Optimization

Technology optimization takes a technology-independent description of a design, and maps it to a library
of logic circuits provided by an ASIC vendor, thereby making the design technology-dependent. This
phase seeks not just a correct mapping, but the most efficient one in terms of the customer requirements.
The optimization process is divided into subprocesses: logic synthesis; test insertion; clock planning and
insertion; and floorplanning.

Logic Synthesis

Logic synthesis is the basic step that transforms the HDL representation of a design into technology-spe-
cific logic circuits. An ASIC vendor provides the logic circuits in a form called a “synthesis library”. As the
synthesis tool breaks down high-level HDL statements into more primitive functions, it searches this Ii-
brary to find a match between the functions required and those provided in the library. When a match is
found, the synthesis tool copies the function into the design (instantiates the circuit) and gives it a unique
name (cell instance name). This process continues until all statements are broken down and mapped
(synthesized) to logic circuits. There are potentially hundreds, or even thousands, of different combina-
tions of logic circuits that can implement the same logical function. The combination chosen by a synthe-
sis tool is determined by the synthesis constraints provided by the designer. These constraints define the
design’s performance, power, and area targets. A design driven primarily by performance criteria may
use larger, faster circuits than one driven to minimize area or power consumption. Synthesis has matured
over the past 5-8 years in the merchant market and is used in virtually all ASIC design starts today.

The inputs to the logic synthesis process are the HDL design description (VHDL or Verilog), the design
constraints, and the synthesis library provided by the ASIC vendor. The output of the synthesis process
is a list of circuit instances interconnected in a manner that implements the logical function of the design.
This list of interconnected circuit instances is called a netlist and can be written in several different for-
mats or languages. The dominant netlist languages are VHDL, Verilog, and Electronic Design Inter-
change Format (EDIF). The interconnected circuits may also be graphically represented as schematics.

Technology- Technology-
Independent Dependent
Input Output

HDL
Description
(Verilog or
VHDL) |[——p] Netlist
Logic Description
0 i B (eril IC\)/HDL
: Synthesis (Verilog, ,
Design ——p EDIF)
Constraints
(Timing,
Power,
Area)
ASIC
Vendor
Synthesis
Library

Figure 5. Logic Synthesis Process

The most popular synthesis tool in the external market, accounting for about 85% of the total synthesis

Initial Publication 5/98 Page 7

ASIC Products Application Note

ASIC Design Methodology Primer

seats, is Design Compiler™ by Synopsys. At IBM, IBM’s BooleDozer™ is the tool of choice, accounting for
approximately 90% of the internal synthesis seats.

Sample Synthesis Workflow

The next four figures depict the synthesis process. Figure 6 provides an overview of the process and in-
dexes the three figures which follow it.

Input Output

netlist
—® schematic view
(see figure 7)

netlist
> in VHDL
. ';'/E"-DL synthesis (see figure 8)
(S'QE fiques) | ©9-Design Compiler™ or :
BooleDozer netlist

—® in Verilog
(see figure 8)

netlist
— in EDIF

(see figure 9)

Figure 6. Synthesis Process with Various Possible Outputs

Page 8 Initial Publication 5/98

ASIC Products Application Note

ASIC Design Methodology Primer

The HDL design description (in VHDL) shown below in Figure 7 is a technology-independent description
of a counter function called refctr. Take note of the statements in the dotted box that assign the value of
a signal s_load to a signal s_ref_ctr_out based on the status of CLK.

entity refctr is
port (COUNT: in std_ulogic_vector(5 downto 0);
CLK: in std_ulogic;
RESET: out std_ulogic);

architecture refctr_rtl of refctr is

signal s_ref _ctr_out : std_ulogic;

signal s_load : std_ulogic;

s_next_ctr_val : std_ulogic_vector(5 downto 0);

s_counter_input : std_ulogic_vector(5 downto 0);

s_counter_output : std_ulogic_vector(5 downto 0);

s_reset : std_ulogic_vector(5 downto 0);
begin

s_reset(0) <= RESET;

T Tif (CIK = “T°) and (not CLK’stable) Then — — — — 1

| s_counter_output <= s_counter_input and not s_reset;
s_ref_ctr_out <= s_load;

., endif; N

end process;

end refctr_rtl;

Figure 7. Technology-Independent VHDL Source

Initial Publication 5/98 Page 9

ASIC Products Application Note

ASIC Design Methodology Primer

Schematic View of refctr

Figure 8 depicts a post-synthesis schematic view of a section of refctr. Notice that the design was
mapped to specific logic circuit functions, such as INVERT_A, NOR3_4 and D_F_LPH0001_4. These
names correspond to circuit names found in the IBM ASIC CMOS 5S Databook, SA14-2203-03. Each
circuit has a unique name, such as U87 for one instance of NOR3_4, and U88 for another instance of
NOR3_4. The instance names U87 and U88 were generated by the synthesis tool as it mapped the HDL
function into logic circuits such as NOR3_4.

Signals generated by the synthesis tool as it mapped the HDL to logic circuits appear with names such
as n275 and n276. Signal names explicitly named in the HDL, such as sload and CLK, are retained. No-
tice that sload and CLK feed into a circuit that generates the signal s_ref _ctr_out, as described in the tech-
nology-independent source on the previous page (Figure 7).

INVERT_A D_F_LPHO0001_4
_ sload o s_ref_ctr_out
= 7a | =] [|
A VA D 7 o
ues 5>
s_ref_ctr_out_reg
NOR3 4
A
— &5 A AND2_8
C n275 - N\
n276 >—&
g5/
B
U89
NOR3 4
—8% >
C
u8s8
CLK

s

Figure 8. Netlist Schematic View of refctr

Page 10 Initial Publication 5/98

ASIC Products Application Note

ASIC Design Methodology Primer

Netlist Gate-Level View of refctr (VHDL, Verilog)

Figure 9 contains the post-synthesis netlist of refctr, output in both VHDL and Verilog. The circuits de-
scribed, along with net names and instance names are exactly the same. The difference is in the syntax
of the description.

VHDL

entity refctr is

architecture SYN refctr_rtl of refctr is

conponent | NVERT_A

port(Z : out std_logic; A: in std_logic);
end conponent;

conponent NOR3_4

port(Z : out std_logic; A, B, C: in std_logic);
end conponent ;

conponent AND2_8

port(Z : out std_logic; A B: in std_logic);
end conponent ;

conponent D_F _LPHO001_4

port(L2 : out std_logic; D, E: in std_|logic);
end conponent;

begin

U68 : INVERT_A port map (Z => s_load, A => n265);

U87 : NOR3_4 port map (Z => n275, A => COUNT(3),
B => COUNT(4), C => COUNT(0));

U88 : NOR3_4 port map (Z => n276, A => COUNTh(5),
B => COUNT(2), C => COUNT(1));

s_ref _ctr_out_reg : D F _LPHO001_4 port map (L2 =>
s_ref _ctr_out, D=>s_load, E => CLK);

end SYN refctr_rtl;

Verilog

modul e refctr (COUNT, CLK, RESET, REF);

I NVERT_A U68 (.Z(s_load), .A(n265));

NCR 4 UB7 (.Z(n275), . A(COUNT[3]),
- B(COUNT[4]), . C{COUNT[O]));

NOR3_4 U8 (.Z(n276), .A(COUNT[5]),
. B(COUNT[2]), . C(COUNT[1])),

AND2_8 U89 (.Z(n277),.A(n275),
.B(n276));

D F_LPHO001_4 s_ref _ctr_out _reg(
.L2(s_ref _ctr_out), .D(s_load), .E(CLK));

endnodul e;

Figure 9. Gate-Level Netlist View of refctr - VHDL/Verilog

Initial Publication 5/98

Page 11

ASIC Products Application Note

ASIC Design Methodology Primer

Netlist Gate-Level View of refctr (EDIF)

The EDIF version of the netlist also contains the exact same information as the schematic, VDHL and
Verilog versions in terms of the circuits and their connectivity. The difference is, again, syntactical. EDIF
is also more verbose than either VHDL or Verilog, and the data volume of an EDIF netlist is a drawback;
nonetheless, EDIF is an industry standard and is accepted by almost every electronic design automation
(EDA) tool on the market.

EDIF EDIF (continued)
(cell refctr (cellType GENERI C) (net s_l oad
(joined (portRef A (instanceRef U74))
(contents (portRef D (instanceRef s_ref_ctr_out_reg))
(portRef Z (instanceRef U68))
(instance U68)
(viewRef Netlist_representation)
(cel I Ref I NVERT_A(libraryRef |BMCMOS5S_SC)) (net CLK
) (joined (portRef CLK)(portRef E (instanceRef
)(, . w7 (s_ref_ctr_out_reg))
i nstance ;
(vi ewRef Netlist representation (portRef E (instanceRef s_counter_output_.....
(cel I Ref NOR3_4(libraryRef |BMOMOS5S_SC)) e
(net s_ref_ctr_out
)) (joined (portRef DO (instanceRef UW90))
(portRef L2 (instanceRef s_ref _ctr_out_reg))
(i nstance U88)
(viewRef Netlist_representation)
(cel I Ref NOR3_4(libraryRef |BMOMOS5S_SC))
) (net 275
) (joined (portRef A (instanceRef U89)) (portRef Z
(instance UBY ‘ (i nstanceRef U87)))
(viewRef Netlist representation)
(cel I Ref AND2_8 (l'i braryRef |BMOMOS5S_SC)) (net 276
) (joined (portRef B (instanceRef U39)) (portRef Z
) (i nstanceRef U88)))
(instance s_ref_ctr_out_reg)
(viewRef Netlist_representation (net 277
(cel I Ref D_F _LPHO001 4 (joined (portRef SD instanceRef u90)) (portRef Z
(libraryRef 1 BMCMOS5S_SC)) (instanceRef U89)))
))
))

Figure 10. Gate-Level Netlist View of refctr - EDIF

Test Insertion

Test insertion, the step following logic synthesis, consists of inserting structures into the design to enable
a complete and efficient manufacturing test. The IBM ASIC methodology requires that the test structures
be inserted in a manner that is compliant with IBM’s full-scan design-for-test (DFT) methodology. IBM is
a recognized industry leader in DFT, and its incorporation into IBM ASIC flow is an important market dif-
ferentiator. Compliance with the methodology offers customers significant advantages, such as high-qual-
ity test coverage (greater than 99% on average) and automatically-generated test patterns.

Page 12 Initial Publication 5/98

ASIC Products Application Note

ASIC Design Methodology Primer

The design output by the logic synthesis phase is not automatically compliant with IBM’s full-scan DFT.
The sequential storage elements that the synthesis tool can select automatically from an ASIC vendor's
library is limited to a flip-flop element that is not scan-based. The test insertion process replaces the non-
scannable flip-flop with a scannable element from the IBM ASIC library, and then generates and con-
nects the appropriate scan and test clocks. Figure 11 below depicts this insertion process.

Scan Data

Soan Clock ——— Output
Clock Full
System Clock > Scan
Latch
Master Clock |
Scan

|
I

I

I

I

I

| Slave Clock Data Output
I

I

I

I

I

I

|

System Clock Clock Output
I I Flip P

Data Flop

Input 1

Input N

Figure 11. Test Insertion

Clock Planning and Insertion

The last phase of the technology optimization process is the planning and insertion of the clock network.
Every ASIC design has at least one clock; many of the large and more complex ASIC designs have mul-
tiple clocks, in some cases, twenty or more. The manner in which the clock network is propagated
throughout the design to the clocked circuits (such as latches, flip-flops and other logic circuits that need
to be synchronized with the clock signal), can vary from vendor to vendor, and involves trade-offs
amongst various design parameters:

- die area;
- delay through the clock network to the clocked circuits (latency);

the variation in clock arrival time at the various clocked elements (skew); and,

- the power generated by the clock network as it switches.

The clocking methodology must comply with the DFT requirements in order to maintain the testability of
the design.

IBM uses a clock tree or repowering tree method to propagate a clock signal to the hundreds, thou-
sands, or tens of thousands of logic circuits that receive that clock signal. Before clock tree insertion, a
design is said to have idealized clocks, meaning that all logic circuits receiving a given clock signal are
driven in parallel from a single clock driver circuit. However, there are significant barriers to actually im-
plementing a single circuit directly driving thousands of other circuits; these barriers include: routability;
required circuit drive strength; management of clock latency and skew; and others. IBM’s ClockPro tool
allows a customer to input information on the characteristics and constraints for each clock network on
the die. ClockPro automatically generates multiple valid clock trees, or levels of repowering circuitry, for

Initial Publication 5/98 Page 13

ASIC Products Application Note

ASIC Design Methodology Primer

each clock network, and generates for each such clock tree, the corresponding information on its cell ar-
ea, latency, and fanout. This information allows the customer to select the optimum repowering network
for each clock. The information from ClockPro can then be automatically added to the customer’s design
by IBM’s BooleDozer-Lite tool.

Another important task accomplished during clock insertion is the introduction of clock splitter circuits
into the design. The clock splitter, placed at the last stage of the repowering tree before the latches, gen-
erates the true and complement (master and slave) clock phases required for area-efficiency and high
performance. The splitter also includes clock control logic required for DFT compliance, and can drive the
optimum number of latches as chosen by the customer via the Clockpro™ tool. Figure 12 represents in-
sertion process, including the clock splitter circuitry.

Before Clock Insertion After Clock Insertion

Full Scan Latch

Flip-flop or Latch

System Clock

=>4

System Clock
|_>—>-o Vi
L

Master and Slave
Clocks

AN
==

\
&

AN

Z
L

A

Clock Driver /
L]

T\

Clock Splitter

Repowering Tree

Figure 12. Clock Planning and Insertion

Floorplanning

Floorplanning is the process of placing groups of circuits on a die, and analyzing the effect of that place-
ment in terms of design performance and routability. The need for floorplanning arose as circuits became
smaller and the length of the wires that interconnect those circuits began to dominate design performance
trade-offs. This is often referred to as one of the “deep-submicron” (>0.5 micron) design paradigms where
interconnect delay dominates the delay through the individual circuits or gates. Integrating floorplanning
into the prelayout portion of the methodology allows the designer to consider the physical implementation
of the design during the logic design process. Trade-offs on design partitioning, I/O assignment, and mac-
ro location assignments can be made early on, avoiding costly design iterations between layout and syn-
thesis.

Page 14 Initial Publication 5/98

